1
|
Hussain Y, Dar MI, Pan X. Circadian Influences on Brain Lipid Metabolism and Neurodegenerative Diseases. Metabolites 2024; 14:723. [PMID: 39728504 DOI: 10.3390/metabo14120723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
Circadian rhythms are intrinsic, 24 h cycles that regulate key physiological, mental, and behavioral processes, including sleep-wake cycles, hormone secretion, and metabolism. These rhythms are controlled by the brain's suprachiasmatic nucleus, which synchronizes with environmental signals, such as light and temperature, and consequently maintains alignment with the day-night cycle. Molecular feedback loops, driven by core circadian "clock genes", such as Clock, Bmal1, Per, and Cry, are essential for rhythmic gene expression; disruptions in these feedback loops are associated with various health issues. Dysregulated lipid metabolism in the brain has been implicated in the pathogenesis of neurological disorders by contributing to oxidative stress, neuroinflammation, and synaptic dysfunction, as observed in conditions such as Alzheimer's and Parkinson's diseases. Disruptions in circadian gene expression have been shown to perturb lipid regulatory mechanisms in the brain, thereby triggering neuroinflammatory responses and oxidative damage. This review synthesizes current insights into the interconnections between circadian rhythms and lipid metabolism, with a focus on their roles in neurological health and disease. It further examines how the desynchronization of circadian genes affects lipid metabolism and explores the potential mechanisms through which disrupted circadian signaling might contribute to the pathophysiology of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yusuf Hussain
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| | - Mohammad Irfan Dar
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| | - Xiaoyue Pan
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| |
Collapse
|
2
|
Scott L, Winzey KD, Moreira D, Bresee C, Vit JP, Tourtellotte WG, Karumanchi SA, Lahiri S. Microglia ameliorate delirium-like phenotypes in a murine model of acute ventilator-induced lung injury. J Neuroinflammation 2024; 21:270. [PMID: 39434161 PMCID: PMC11495074 DOI: 10.1186/s12974-024-03260-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Delirium affects 50-85% of patients on mechanical ventilation and is associated with increased mortality, prolonged hospitalization, and a three-fold higher risk of dementia. Microglia, the resident immune cells of the brain, exhibit both neuroprotective and neurotoxic functions; however, their effects in mechanical ventilation-induced acute lung injury (VILI) are unknown. We hypothesize that in a model of short-term VILI, microglia play a neuroprotective role to ameliorate delirium-like phenotypes. METHODS Microglia depletion (n = 18) was accomplished using an orally administered colony stimulating factor 1 receptor inhibitor, while controls received a vehicle diet (n = 18). We then compared extent of neuronal injury in the frontal cortex and hippocampus using cleaved caspase-3 (CC3) and multiple delirium-like behaviors in microglia depleted and non-microglia depleted male mice (C57BL/6 J aged 4-9 months) following VILI. Delirium-like behaviors were evaluated using the Open Field, Elevated Plus Maze, and Y-maze assays. We subsequently evaluated whether repopulation of microglia (n = 14 repopulation, 14 vehicle) restored the phenotypes. RESULTS Frontal/hippocampal neuronal CC3 levels were significantly higher in microglia depleted VILI mice compared to vehicle-treated VILI controls (p < 0.01, p < 0.01, respectively). These structural changes were accompanied by worse delirium-like behaviors in microglia depleted VILI mice compared to vehicle controls. Specifically, microglia depleted VILI mice demonstrated: (1) significantly increased time in the periphery of the Open Field (p = 0.01), (2) significantly increased coefficient of variation (p = 0.02), (3) trend towards reduced time in the open arms of the Elevated Plus Maze (p = 0.09), and (4) significantly decreased spontaneous alternations on Y-maze (p < 0.01). There was a significant inverse correlation between frontal CC3 and percent spontaneous alternations (R2 = 0.51, p < 0.01). Microglia repopulation showed a near-complete return to vehicle levels of delirium like-behaviors. CONCLUSIONS This study demonstrates that microglia depletion exacerbates structural and functional delirium-like phenotypes after VILI, while subsequent repopulation of microglia restores these phenotypes. These findings suggest a neuroprotective role for microglia in ameliorating neuronal and functional delirium-like phenotypes and call for consideration of interventions that leverage endogenous microglia physiology to mitigate delirium.
Collapse
Affiliation(s)
- Landon Scott
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kevin D Winzey
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Debbie Moreira
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Catherine Bresee
- Biostatistics Shared Resources, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jean-Philippe Vit
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Warren G Tourtellotte
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Shouri Lahiri
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Stephan M, Papiol S, Zhang M, Song J, Frommeyer SM, Haupt H, Jensen N, Kannaiyan N, Gupta R, Schuler P, Picklmann P, McCarthy M, Schulte E, Landen M, Falkai P, Scheuss V, Schulze T, Zhang W, Rossner MJ. Modulation of Neuronal Excitability and Plasticity by BHLHE41 Conveys Lithium Non-Responsiveness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605130. [PMID: 39372797 PMCID: PMC11451663 DOI: 10.1101/2024.07.25.605130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Many bipolar disorder (BD) patients are non-responsive to lithium. The mechanisms underlying lithium (non-)responsiveness are largely unknown. By using gene-set enrichment analysis methods, we found that core clock gene-sets are significantly associated with lithium response. Among the top hits was BHLHE41, a modulator of the molecular clock and homeostatic sleep. Since BHLHE41 and its paralog BHLHE40 are functionally redundant, we assessed chronic lithium response in double-knockout mutant mice (DKO). We demonstrated that DKOs are non-responsive to lithium's effect in various behavioral tasks. Cellular assays and patch clamp recordings revealed lowered excitability and reduced lithium-response in prefrontal cortical layer 2/3 DKO neurons and on hippocampal long-term potentiation. Single-cell RNA sequencing identified that lithium deregulated mitochondrial respiration, cation channel and postsynapse associated gene-sets specifically in upper layer excitatory neurons. Our findings show that lithium acts in a highly cell-specific way on neuronal metabolism and excitability and modulates synaptic plasticity depending on BHLHE40/41.
Collapse
Affiliation(s)
- Marius Stephan
- Department of Psychiatry and Psychotherapy, Molecular and Behavioral Neurobiology, LMU University Hospital, LMU Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Sergi Papiol
- Department of Psychiatry and Psychotherapy, Molecular and Behavioral Neurobiology, LMU University Hospital, LMU Munich, Germany
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Germany
- Instituto de Salud Carlos III, Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
| | - Mingyue Zhang
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Muenster, Germany
| | - Jie Song
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Samuel M Frommeyer
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Muenster, Germany
| | - Helen Haupt
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Muenster, Germany
| | - Niels Jensen
- Department of Psychiatry and Psychotherapy, Molecular and Behavioral Neurobiology, LMU University Hospital, LMU Munich, Germany
| | | | - Rajinder Gupta
- Department of Psychiatry and Psychotherapy, Molecular and Behavioral Neurobiology, LMU University Hospital, LMU Munich, Germany
| | - Philipp Schuler
- Department of Psychiatry and Psychotherapy, Molecular and Behavioral Neurobiology, LMU University Hospital, LMU Munich, Germany
| | - Pia Picklmann
- Department of Psychiatry and Psychotherapy, Molecular and Behavioral Neurobiology, LMU University Hospital, LMU Munich, Germany
| | - Michael McCarthy
- VA San Diego Healthcare System, CA, USA
- Department of Psychiatry, Center for Circadian Biology, University of California San Diego, San Diego, CA, USA
| | - Eva Schulte
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Germany
- Institute of Human Genetics, University Hospital, Faculty of Medicine, University of Bonn, Bonn, Germany
- Department of Psychiatry, University Hospital, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Mikael Landen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Molecular and Behavioral Neurobiology, LMU University Hospital, LMU Munich, Germany
| | - Volker Scheuss
- Department of Psychiatry and Psychotherapy, Molecular and Behavioral Neurobiology, LMU University Hospital, LMU Munich, Germany
- MSH Medical School, Hamburg, Germany
| | - Thomas Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Germany
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, U.S. Department of Health & Human Services, Bethesda, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, United States
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Weiqi Zhang
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Muenster, Germany
| | - Moritz J Rossner
- Department of Psychiatry and Psychotherapy, Molecular and Behavioral Neurobiology, LMU University Hospital, LMU Munich, Germany
- Systasy Bioscience GmbH, Munich, Germany
| |
Collapse
|
4
|
Feng WW, Chen HC, Audira G, Suryanto ME, Saputra F, Kurnia KA, Vasquez RD, Casuga FP, Lai YH, Hsiao CD, Hung CH. Evaluation of Tacrolimus' Adverse Effects on Zebrafish in Larval and Adult Stages by Using Multiple Physiological and Behavioral Endpoints. BIOLOGY 2024; 13:112. [PMID: 38392330 PMCID: PMC10886482 DOI: 10.3390/biology13020112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Tacrolimus (FK506) is a common immunosuppressant that is used in organ transplantation. However, despite its importance in medical applications, it is prone to adverse side effects. While some studies have demonstrated its toxicities to humans and various animal models, very few studies have addressed this issue in aquatic organisms, especially zebrafish. Here, we assessed the adverse effects of acute and chronic exposure to tacrolimus in relatively low doses in zebrafish in both larval and adult stages, respectively. Based on the results, although tacrolimus did not cause any cardiotoxicity and respiratory toxicity toward zebrafish larvae, it affected their locomotor activity performance in light-dark locomotion tests. Meanwhile, tacrolimus was also found to slightly affect the behavior performance, shoaling formation, circadian rhythm locomotor activity, and color preference of adult zebrafish in a dose-dependent manner. In addition, alterations in the cognitive performance of the fish were also displayed by the treated fish, indicated by a loss of short-term memory. To help elucidate the toxicity mechanism of tacrolimus, molecular docking was conducted to calculate the strength of the binding interaction between tacrolimus to human FKBP12. The results showed a relatively normal binding affinity, indicating that this interaction might only partly contribute to the observed alterations. Nevertheless, the current research could help clinicians and researchers to further understand the toxicology of tacrolimus, especially to zebrafish, thus highlighting the importance of considering the toxicity of tacrolimus prior to its usage.
Collapse
Affiliation(s)
- Wen-Wei Feng
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung 84001, Taiwan
- Department of Dermatology, E-Da Cancer Hospital, Kaohsiung 82445, Taiwan
- Dr. Feng's Dermatology Clinic, Kaohsiung 82445, Taiwan
| | - Hsiu-Chao Chen
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung 84001, Taiwan
- Department of Dermatology, E-Da Cancer Hospital, Kaohsiung 82445, Taiwan
- Dr. Feng's Dermatology Clinic, Kaohsiung 82445, Taiwan
| | - Gilbert Audira
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taoyuan 320314, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taoyuan 320314, Taiwan
| | - Michael Edbert Suryanto
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taoyuan 320314, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taoyuan 320314, Taiwan
| | - Ferry Saputra
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taoyuan 320314, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taoyuan 320314, Taiwan
| | - Kevin Adi Kurnia
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taoyuan 320314, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taoyuan 320314, Taiwan
| | - Ross D Vasquez
- Research Center for Natural and Applied Sciences, Department of Pharmacy, University of Santo Tomas, Manila 1008, Philippines
- The Graduate School, Faculty of Pharmacy, University of Santo Tomas, Manila 1008, Philippines
| | - Franelyne P Casuga
- Research Center for Natural and Applied Sciences, Department of Pharmacy, University of Santo Tomas, Manila 1008, Philippines
- The Graduate School, Faculty of Pharmacy, University of Santo Tomas, Manila 1008, Philippines
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taoyuan 320314, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taoyuan 320314, Taiwan
- Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Chung-Li, Taoyuan 320314, Taiwan
| | - Chih-Hsin Hung
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung 84001, Taiwan
| |
Collapse
|
5
|
Hühne-Landgraf A, Laurent K, Frisch MK, Wehr MC, Rossner MJ, Landgraf D. Rescue of Comorbid Behavioral and Metabolic Phenotypes of Arrhythmic Mice by Restoring Circadian Cry1/2 Expression in the Suprachiasmatic Nucleus. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:632-641. [PMID: 37881564 PMCID: PMC10593920 DOI: 10.1016/j.bpsgos.2023.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 06/03/2023] [Accepted: 06/22/2023] [Indexed: 10/27/2023] Open
Abstract
Background Psychiatric and metabolic disorders occur disproportionately often comorbidly, which poses particular hurdles for patients and therapists. However, the mechanisms that promote such comorbidities are largely unknown and therefore cannot yet be therapeutically targeted for the simultaneous treatment of both conditions. Because circadian clocks regulate most physiological processes and their disruption is a risk factor for both psychiatric and metabolic disorders, they may be considered as a potential mechanism for the development of comorbidities and a therapeutic target. In the current study, we investigated the latter assumption in Cry1/2-/- mice, which exhibit substantially disrupted endogenous circadian rhythms and marked metabolic and behavioral deficits. Methods By targeted virus-induced restoration of circadian rhythms in their suprachiasmatic nucleus, we can restore behavioral as well as several metabolic processes of these animals to near-normal circadian rhythmicity. Results Importantly, by rescuing suprachiasmatic nucleus rhythms, several of their anxiety-like behavioral as well as diabetes- and energy homeostasis-related deficits were significantly improved. Interestingly, however, this did not affect all deficits typical of Cry1/2-/- mice; for example, restlessness and body weight remained unaffected. Conclusions Taken together, the results of this study demonstrate, on the one hand, that restoration of disturbed circadian rhythms can be used to simultaneously treat psychiatric and metabolic deficits. On the other hand, the results also allow us to distinguish processes that depend more on local canonical clocks from those that depend more on suprachiasmatic nucleus rhythms.
Collapse
Affiliation(s)
- Anisja Hühne-Landgraf
- Circadian Biology Group, Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Katharina Laurent
- Circadian Biology Group, Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Muriel K. Frisch
- Circadian Biology Group, Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Michael C. Wehr
- Cell Signaling Group, Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- Systasy Bioscience GmbH, Munich, Germany
| | - Moritz J. Rossner
- Systasy Bioscience GmbH, Munich, Germany
- Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Dominic Landgraf
- Circadian Biology Group, Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
6
|
Francis TC, Porcu A. Emotionally clocked out: cell-type specific regulation of mood and anxiety by the circadian clock system in the brain. Front Mol Neurosci 2023; 16:1188184. [PMID: 37441675 PMCID: PMC10333695 DOI: 10.3389/fnmol.2023.1188184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/29/2023] [Indexed: 07/15/2023] Open
Abstract
Circadian rhythms are self-sustained oscillations of biological systems that allow an organism to anticipate periodic changes in the environment and optimally align feeding, sleep, wakefulness, and the physiological and biochemical processes that support them within the 24 h cycle. These rhythms are generated at a cellular level by a set of genes, known as clock genes, which code for proteins that inhibit their own transcription in a negative feedback loop and can be perturbed by stress, a risk factor for the development of mood and anxiety disorders. A role for circadian clocks in mood and anxiety has been suggested for decades on the basis of clinical observations, and the dysregulation of circadian rhythms is a prominent clinical feature of stress-related disorders. Despite our understanding of central clock structure and function, the effect of circadian dysregulation in different neuronal subtypes in the suprachiasmatic nucleus (SCN), the master pacemaker region, as well as other brain systems regulating mood, including mesolimbic and limbic circuits, is just beginning to be elucidated. In the brain, circadian clocks regulate neuronal physiological functions, including neuronal activity, synaptic plasticity, protein expression, and neurotransmitter release which in turn affect mood-related behaviors via cell-type specific mechanisms. Both animal and human studies have revealed an association between circadian misalignment and mood disorders and suggest that internal temporal desynchrony might be part of the etiology of psychiatric disorders. To date, little work has been conducted associating mood-related phenotypes to cell-specific effects of the circadian clock disruptions. In this review, we discuss existing literature on how clock-driven changes in specific neuronal cell types might disrupt phase relationships among cellular communication, leading to neuronal circuit dysfunction and changes in mood-related behavior. In addition, we examine cell-type specific circuitry underlying mood dysfunction and discuss how this circuitry could affect circadian clock. We provide a focus for future research in this area and a perspective on chronotherapies for mood and anxiety disorders.
Collapse
Affiliation(s)
- T. Chase Francis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Alessandra Porcu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
7
|
Albrecht U. The circadian system and mood related behavior in mice. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:269-291. [PMID: 37709379 DOI: 10.1016/bs.apcsb.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Most organisms on earth have evolved an internal clock in order to predict daily recurring events. This clock called circadian clock has a period of about 24 h and allows organisms to organize biochemical and physiological processes over one day. Changes in lighting conditions as they occur naturally over seasons, or man made by jet lag or shift work, advance or delay clock phase in order to synchronize an organism's physiology to the environment. A misalignment of the clock to its environment results in sleep disturbances and mood disorders. Although there are strong associations between the circadian clock and mood disorders such as depression, the underlying molecular mechanisms are not well understood. This review describes the currently known molecular links between circadian clock components and mood related behaviors in mice, which will help to understand the causal links between the clock and mood in humans in the future.
Collapse
Affiliation(s)
- U Albrecht
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
8
|
Mood phenotypes in rodent models with circadian disturbances. Neurobiol Sleep Circadian Rhythms 2022; 13:100083. [PMID: 36345502 PMCID: PMC9636574 DOI: 10.1016/j.nbscr.2022.100083] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Many physiological functions with approximately 24-h rhythmicity (circadian rhythms) are generated by an internal time-measuring system of the circadian clock. While sleep/wake cycles, feeding patterns, and body temperature are the most widely known physiological functions under the regulation of the circadian clock, physiological regulation by the circadian clock extends to higher brain functions. Accumulating evidence suggests strong associations between the circadian clock and mood disorders such as depression, but the underlying mechanisms of the functional relationship between them are obscure. This review overviews rodent models with disrupted circadian rhythms on depression-related responses. The animal models with circadian disturbances (by clock gene mutations and artifactual interventions) will help understand the causal link between the circadian clock and depression. The molecular mechanisms of the mammalian circadian rhythm are systematically overviewed. We overview how genetic and pharmacological manipulations of clock (related) genes are linked to mood phenotypes. We overview how artificial perturbations, such as SCN lesions and aberrant light, affect circadian rhythm and mood.
Collapse
|
9
|
Spironolactone alleviates schizophrenia-related reversal learning in Tcf4 transgenic mice subjected to social defeat. SCHIZOPHRENIA 2022; 8:77. [PMID: 36171421 PMCID: PMC9519974 DOI: 10.1038/s41537-022-00290-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/17/2022] [Indexed: 11/08/2022]
Abstract
AbstractCognitive deficits are a hallmark of schizophrenia, for which no convincing pharmacological treatment option is currently available. Here, we tested spironolactone as a repurposed compound in Tcf4 transgenic mice subjected to psychosocial stress. In this ‘2-hit’ gene by environment mouse (GxE) model, the animals showed schizophrenia-related cognitive deficits. We had previously shown that spironolactone ameliorates working memory deficits and hyperactivity in a mouse model of cortical excitatory/inhibitory (E/I) dysbalance caused by an overactive NRG1-ERBB4 signaling pathway. In an add-on clinical study design, we used spironolactone as adjuvant medication to the standard antipsychotic drug aripiprazole. We characterized the compound effects using our previously established Platform for Systematic Semi-Automated Behavioral and Cognitive Profiling (PsyCoP). PsyCoP is a widely applicable analysis pipeline based on the Research Domain Criteria (RDoC) framework aiming at facilitating translation into the clinic. In addition, we use dimensional reduction to analyze and visualize overall treatment effect profiles. We found that spironolactone and aripiprazole improve deficits of several cognitive domains in Tcf4tg x SD mice but partially interfere with each other’s effect in the combination therapy. A similar interaction was detected for the modulation of novelty-induced activity. In addition to its strong activity-dampening effects, we found an increase in negative valence measures as a side effect of aripiprazole treatment in mice. We suggest that repurposed drug candidates should first be tested in an adequate preclinical setting before initiating clinical trials. In addition, a more specific and effective NRG1-ERBB4 pathway inhibitor or more potent E/I balancing drug might enhance the ameliorating effect on cognition even further.
Collapse
|
10
|
Zadeh-Haghighi H, Simon C. Magnetic field effects in biology from the perspective of the radical pair mechanism. J R Soc Interface 2022; 19:20220325. [PMID: 35919980 PMCID: PMC9346374 DOI: 10.1098/rsif.2022.0325] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/14/2022] [Indexed: 04/07/2023] Open
Abstract
Hundreds of studies have found that weak magnetic fields can significantly influence various biological systems. However, the underlying mechanisms behind these phenomena remain elusive. Remarkably, the magnetic energies implicated in these effects are much smaller than thermal energies. Here, we review these observations, and we suggest an explanation based on the radical pair mechanism, which involves the quantum dynamics of the electron and nuclear spins of transient radical molecules. While the radical pair mechanism has been studied in detail in the context of avian magnetoreception, the studies reviewed here show that magnetosensitivity is widespread throughout biology. We review magnetic field effects on various physiological functions, discussing static, hypomagnetic and oscillating magnetic fields, as well as isotope effects. We then review the radical pair mechanism as a potential unifying model for the described magnetic field effects, and we discuss plausible candidate molecules for the radical pairs. We review recent studies proposing that the radical pair mechanism provides explanations for isotope effects in xenon anaesthesia and lithium treatment of hyperactivity, magnetic field effects on the circadian clock, and hypomagnetic field effects on neurogenesis and microtubule assembly. We conclude by discussing future lines of investigation in this exciting new area of quantum biology.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
11
|
McCarthy MJ, Gottlieb JF, Gonzalez R, McClung CA, Alloy LB, Cain S, Dulcis D, Etain B, Frey BN, Garbazza C, Ketchesin KD, Landgraf D, Lee H, Marie‐Claire C, Nusslock R, Porcu A, Porter R, Ritter P, Scott J, Smith D, Swartz HA, Murray G. Neurobiological and behavioral mechanisms of circadian rhythm disruption in bipolar disorder: A critical multi-disciplinary literature review and agenda for future research from the ISBD task force on chronobiology. Bipolar Disord 2022; 24:232-263. [PMID: 34850507 PMCID: PMC9149148 DOI: 10.1111/bdi.13165] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIM Symptoms of bipolar disorder (BD) include changes in mood, activity, energy, sleep, and appetite. Since many of these processes are regulated by circadian function, circadian rhythm disturbance has been examined as a biological feature underlying BD. The International Society for Bipolar Disorders Chronobiology Task Force (CTF) was commissioned to review evidence for neurobiological and behavioral mechanisms pertinent to BD. METHOD Drawing upon expertise in animal models, biomarkers, physiology, and behavior, CTF analyzed the relevant cross-disciplinary literature to precisely frame the discussion around circadian rhythm disruption in BD, highlight key findings, and for the first time integrate findings across levels of analysis to develop an internally consistent, coherent theoretical framework. RESULTS Evidence from multiple sources implicates the circadian system in mood regulation, with corresponding associations with BD diagnoses and mood-related traits reported across genetic, cellular, physiological, and behavioral domains. However, circadian disruption does not appear to be specific to BD and is present across a variety of high-risk, prodromal, and syndromic psychiatric disorders. Substantial variability and ambiguity among the definitions, concepts and assumptions underlying the research have limited replication and the emergence of consensus findings. CONCLUSIONS Future research in circadian rhythms and its role in BD is warranted. Well-powered studies that carefully define associations between BD-related and chronobiologically-related constructs, and integrate across levels of analysis will be most illuminating.
Collapse
Affiliation(s)
- Michael J. McCarthy
- UC San Diego Department of Psychiatry & Center for Circadian BiologyLa JollaCaliforniaUSA
- VA San Diego Healthcare SystemSan DiegoCaliforniaUSA
| | - John F. Gottlieb
- Department of PsychiatryFeinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Robert Gonzalez
- Department of Psychiatry and Behavioral HealthPennsylvania State UniversityHersheyPennsylvaniaUSA
| | - Colleen A. McClung
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Lauren B. Alloy
- Department of PsychologyTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Sean Cain
- School of Psychological Sciences and Turner Institute for Brain and Mental HealthMonash UniversityMelbourneVictoriaAustralia
| | - Davide Dulcis
- UC San Diego Department of Psychiatry & Center for Circadian BiologyLa JollaCaliforniaUSA
| | - Bruno Etain
- Université de ParisINSERM UMR‐S 1144ParisFrance
| | - Benicio N. Frey
- Department Psychiatry and Behavioral NeuroscienceMcMaster UniversityHamiltonOntarioCanada
| | - Corrado Garbazza
- Centre for ChronobiologyPsychiatric Hospital of the University of Basel and Transfaculty Research Platform Molecular and Cognitive NeurosciencesUniversity of BaselBaselSwitzerland
| | - Kyle D. Ketchesin
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Dominic Landgraf
- Circadian Biology GroupDepartment of Molecular NeurobiologyClinic of Psychiatry and PsychotherapyUniversity HospitalLudwig Maximilian UniversityMunichGermany
| | - Heon‐Jeong Lee
- Department of Psychiatry and Chronobiology InstituteKorea UniversitySeoulSouth Korea
| | | | - Robin Nusslock
- Department of Psychology and Institute for Policy ResearchNorthwestern UniversityChicagoIllinoisUSA
| | - Alessandra Porcu
- UC San Diego Department of Psychiatry & Center for Circadian BiologyLa JollaCaliforniaUSA
| | | | - Philipp Ritter
- Clinic for Psychiatry and PsychotherapyCarl Gustav Carus University Hospital and Technical University of DresdenDresdenGermany
| | - Jan Scott
- Institute of NeuroscienceNewcastle UniversityNewcastleUK
| | - Daniel Smith
- Division of PsychiatryUniversity of EdinburghEdinburghUK
| | - Holly A. Swartz
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Greg Murray
- Centre for Mental HealthSwinburne University of TechnologyMelbourneVictoriaAustralia
| |
Collapse
|
12
|
Moretti J, Rodger J. A little goes a long way: Neurobiological effects of low intensity rTMS and implications for mechanisms of rTMS. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100033. [PMID: 36685761 PMCID: PMC9846462 DOI: 10.1016/j.crneur.2022.100033] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/26/2022] [Accepted: 02/15/2022] [Indexed: 01/25/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a widespread technique in neuroscience and medicine, however its mechanisms are not well known. In this review, we consider intensity as a key therapeutic parameter of rTMS, and review the studies that have examined the biological effects of rTMS using magnetic fields that are orders of magnitude lower that those currently used in the clinic. We discuss how extensive characterisation of "low intensity" rTMS has set the stage for translation of new rTMS parameters from a mechanistic evidence base, with potential for innovative and effective therapeutic applications. Low-intensity rTMS demonstrates neurobiological effects across healthy and disease models, which include depression, injury and regeneration, abnormal circuit organisation, tinnitus etc. Various short and long-term changes to metabolism, neurotransmitter release, functional connectivity, genetic changes, cell survival and behaviour have been investigated and we summarise these key changes and the possible mechanisms behind them. Mechanisms at genetic, molecular, cellular and system levels have been identified with evidence that low-intensity rTMS and potentially rTMS in general acts through several key pathways to induce changes in the brain with modulation of internal calcium signalling identified as a major mechanism. We discuss the role that preclinical models can play to inform current clinical research as well as uncover new pathways for investigation.
Collapse
Affiliation(s)
- Jessica Moretti
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia,Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Jennifer Rodger
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia,Perron Institute for Neurological and Translational Science, Perth, WA, Australia,Corresponding author. School of Biological Sciences M317, The University of Western Australia, 35 Stirling Highway, Crawley WA, 6009, Australia.
| |
Collapse
|
13
|
Yin W, Zhang J, Guo Y, Wu Z, Diao C, Sun J. Melatonin for premenstrual syndrome: A potential remedy but not ready. Front Endocrinol (Lausanne) 2022; 13:1084249. [PMID: 36699021 PMCID: PMC9868742 DOI: 10.3389/fendo.2022.1084249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Premenstrual syndrome (PMS), a recurrent and moderate disorder that occurs during the luteal phase of the menstrual cycle and quickly resolves after menstruation, is characterized by somatic and emotional discomfort that can be severe enough to impair daily activities. Current therapeutic drugs for PMS such as selective serotonin reuptake inhibitors are not very satisfying. As a critical pineal hormone, melatonin has increasingly been suggested to modulate PMS symptoms. In this review, we update the latest progress on PMS-induced sleep disturbance, mood changes, and cognitive impairment and provide possible pathways by which melatonin attenuates these symptoms. Moreover, we focus on the role of melatonin in PMS molecular mechanisms. Herein, we show that melatonin can regulate ovarian estrogen and progesterone, of which cyclic fluctuations contribute to PMS pathogenesis. Melatonin also modulates gamma-aminobutyric acid and the brain-derived neurotrophic factor system in PMS. Interpreting the role of melatonin in PMS is not only informative to clarify PMS etiology but also instructive to melatonin and its receptor agonist application to promote female health. As a safe interaction, melatonin treatment can be effective in alleviating symptoms of PMS. However, symptoms such as sleep disturbance, depressive mood, cognitive impairment are not specific and can be easily misdiagnosed. Connections between melatonin receptor, ovarian steroid dysfunction, and PMS are not consistent among past studies. Before final conclusions are drawn, more well-organized and rigorous studies are recommended.
Collapse
Affiliation(s)
- Wei Yin
- Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Neurobiology, Shandong University, Jinan, Shandong, China
| | - Jie Zhang
- Department of Neurosurgery, Laizhou City People’s Hospital, Laizhou, Shandong, China
| | - Yao Guo
- Department of Psychiatry, Shandong Provincial Mental Health Center, Jinan, Shandong, China
| | - Zhibing Wu
- Department of Anatomy, Changzhi Medical College, Changzhi, Shanxi, China
| | - Can Diao
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jinhao Sun
- Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Neurobiology, Shandong University, Jinan, Shandong, China
- *Correspondence: Jinhao Sun,
| |
Collapse
|
14
|
Lu Q, Kim JY. Mammalian circadian networks mediated by the suprachiasmatic nucleus. FEBS J 2021; 289:6589-6604. [PMID: 34657394 DOI: 10.1111/febs.16233] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022]
Abstract
The brain has a complex structure composed of hundreds of regions, forming networks to cooperate body functions. Therefore, understanding how various brain regions communicate with each other and with peripheral organs is important to understand human physiology. The suprachiasmatic nucleus (SCN) in the brain is the circadian pacemaker. The SCN receives photic information from the environment and conveys this to other parts of the brain and body to synchronize all circadian clocks. The circadian clock is an endogenous oscillator that generates daily rhythms in metabolism and physiology in almost all cells via a conserved transcriptional-translational negative feedback loop. So, the information flow from the environment to the SCN to other tissues synchronizes locally distributed circadian clocks to maintain homeostasis. Thus, understanding the circadian networks and how they adjust to environmental changes will better understand human physiology. This review will focus on circadian networks mediated by the SCN to understand how the environment, brain, and peripheral tissues form networks for cooperation.
Collapse
Affiliation(s)
- Qingqing Lu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Jin Young Kim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,Tung Foundation Biomedical Sciences Centre, Hong Kong, China.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
| |
Collapse
|
15
|
Zhou Y, Kreek MJ. Blockade of alcohol excessive and "relapse" drinking in male mice by pharmacological cryptochrome (CRY) activation. Psychopharmacology (Berl) 2021; 238:1099-1109. [PMID: 33420591 PMCID: PMC7969462 DOI: 10.1007/s00213-020-05757-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022]
Abstract
RATIONALE Metabolic dysfunction, mood disorders, anxiety disorders, and substance abuse disorders are associated with disruptions in circadian rhythm and circadian clock gene machinery. While the effects of alcohol on several core components of the clock genes have been described in rodent models, pharmacological activation or inhibition of clock gene functions has not been studied on alcohol drinking behaviors. OBJECTIVES We investigated whether cryptochrome (CRY1/2) activator KL001 altered alcohol intake in mice in excessive and relapse-like alcohol drinking models. METHODS Mice, subjected to 3 weeks of chronic intermittent alcohol drinking (IAD) (two-bottle choice, 24-h access every other day) developed excessive alcohol intake and high preference. We evaluated the pharmacological effects of KL001 after either 1-day acute withdrawal from IAD or 1-week chronic withdrawal using the alcohol deprivation effect (ADE) model. RESULTS Single pretreatment with KL001 at 1-4 mg kg-1 reduced alcohol intake and preference after acute withdrawal in a dose-related manner. The effect of KL001 on reducing excessive alcohol consumption seems alcohol specific, as the compound does not alter sucrose (caloric reinforcer) or saccharin (noncaloric reinforcer) consumption in mice. Both single- and multiple-dosing regimens with an effective dose of KL001 (4 mg kg-1) prevented the ADE after chronic withdrawal, with no tolerance development after the multi-dosing regimen. CONCLUSIONS Pretreatment with KL001 (a CRY1/2 activator) reduces excessive and "relapse" alcohol drinking in mice. Our in vivo results with a CRY activator suggest a possible novel target for alcohol treatment intervention.
Collapse
Affiliation(s)
- Yan Zhou
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, 10065, USA.
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, 10065, USA
| |
Collapse
|
16
|
Volkmann P, Stephan M, Krackow S, Jensen N, Rossner MJ. PsyCoP - A Platform for Systematic Semi-Automated Behavioral and Cognitive Profiling Reveals Gene and Environment Dependent Impairments of Tcf4 Transgenic Mice Subjected to Social Defeat. Front Behav Neurosci 2021; 14:618180. [PMID: 33519394 PMCID: PMC7841301 DOI: 10.3389/fnbeh.2020.618180] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Recently, hundreds of risk genes associated with psychiatric disorders have been identified. These are thought to interact with environmental stress factors in precipitating pathological behaviors. However, the individual phenotypes resulting from specific genotype by environment (G×E) interactions remain to be determined. Toward a more systematic approach, we developed a novel standardized and partially automatized platform for systematic behavioral and cognitive profiling (PsyCoP). Here, we assessed the behavioral and cognitive disturbances in Tcf4 transgenic mice (Tcf4tg) exposed to psychosocial stress by social defeat during adolescence using a "two-hit" G×E mouse model. Notably, TCF4 has been repeatedly identified as a candidate risk gene for different psychiatric diseases and Tcf4tg mice display behavioral endophenotypes such as fear memory impairment and hyperactivity. We use the Research Domain Criteria (RDoC) concept as framework to categorize phenotyping results in a translational approach. We propose two methods of dimension reduction, clustering, and visualization of behavioral phenotypes to retain statistical power and clarity of the overview. Taken together, our results reveal that sensorimotor gating is disturbed by Tcf4 overexpression whereas both negative and positive valence systems are primarily influenced by psychosocial stress. Moreover, we confirm previous reports showing that deficits in the cognitive domain are largely dependent on the interaction between Tcf4 and psychosocial stress. We recommend that the standardized analysis and visualization strategies described here should be applied to other two-hit mouse models of psychiatric diseases and anticipate that this will help directing future preclinical treatment trials.
Collapse
Affiliation(s)
- Paul Volkmann
- Department of Psychiatry and Psychotherapy, Laboratory of Molecular Neurobiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Marius Stephan
- Department of Psychiatry and Psychotherapy, Laboratory of Molecular Neurobiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Sven Krackow
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Niels Jensen
- Department of Psychiatry and Psychotherapy, Laboratory of Molecular Neurobiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Moritz J Rossner
- Department of Psychiatry and Psychotherapy, Laboratory of Molecular Neurobiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
17
|
von Schantz M, Leocadio-Miguel MA, McCarthy MJ, Papiol S, Landgraf D. Genomic perspectives on the circadian clock hypothesis of psychiatric disorders. ADVANCES IN GENETICS 2020; 107:153-191. [PMID: 33641746 DOI: 10.1016/bs.adgen.2020.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Circadian rhythm disturbances are frequently described in psychiatric disorders such as major depressive disorder, bipolar disorder, and schizophrenia. Growing evidence suggests a biological connection between mental health and circadian rhythmicity, including the circadian influence on brain function and mood and the requirement for circadian entrainment by external factors, which is often impaired in mental illness. Mental (as well as physical) health is also adversely affected by circadian misalignment. The marked interindividual differences in this combined susceptibility, in addition to the phenotypic spectrum in traits related both to circadian rhythms and mental health, suggested the possibility of a shared genetic background and that circadian clock genes may also be candidate genes for psychiatric disorders. This hypothesis was further strengthened by observations in animal models where clock genes had been knocked out or mutated. The introduction of genome-wide association studies (GWAS) enabled hypothesis-free testing. GWAS analysis of chronotype confirmed the prominent role of circadian genes in these phenotypes and their extensive polygenicity. However, in GWAS on psychiatric traits, only one clock gene, ARNTL (BMAL1) was identified as one of the few loci differentiating bipolar disorder from schizophrenia, and macaque monkeys where the ARNTL gene has been knocked out display symptoms similar to schizophrenia. Another lesson from genomic analyses is that chronotype has an important genetic correlation with several psychiatric disorders and that this effect is unidirectional. We conclude that the effect of circadian disturbances on psychiatric disorders probably relates to modulation of rhythm parameters and extend beyond the core clock genes themselves.
Collapse
Affiliation(s)
- Malcolm von Schantz
- Faculty of Health and Medical Sciences, University of Surrey, Surrey, United Kingdom; Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| | - Mario A Leocadio-Miguel
- Faculty of Health and Medical Sciences, University of Surrey, Surrey, United Kingdom; Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Michael J McCarthy
- Department of Psychiatry, University of California San Diego, San Diego, CA, United States
| | - Sergi Papiol
- Department of Psychiatry, University Hospital, Munich, Germany; Institute of Psychiatric Phenomics and Genomics (IPPG), Munich, Germany
| | - Dominic Landgraf
- Circadian Biology Group, Department of Molecular Neurobiology, Clinic of Psychiatry and Psychotherapy, University Hospital, Munich, Germany
| |
Collapse
|