1
|
Wang Y, Yang H, Li N, Wang L, Guo C, Ma W, Liu S, Peng C, Chen J, Song H, Chen H, Ma X, Yi J, Lian J, Kong W, Dong J, Tu X, Shah M, Tian X, Huang Z. A Novel Ubiquitin Ligase Adaptor PTPRN Suppresses Seizure Susceptibility through Endocytosis of Na V1.2 Sodium Channels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400560. [PMID: 38874331 PMCID: PMC11304301 DOI: 10.1002/advs.202400560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/06/2024] [Indexed: 06/15/2024]
Abstract
Intrinsic plasticity, a fundamental process enabling neurons to modify their intrinsic properties, plays a crucial role in shaping neuronal input-output function and is implicated in various neurological and psychiatric disorders. Despite its importance, the underlying molecular mechanisms of intrinsic plasticity remain poorly understood. In this study, a new ubiquitin ligase adaptor, protein tyrosine phosphatase receptor type N (PTPRN), is identified as a regulator of intrinsic neuronal excitability in the context of temporal lobe epilepsy. PTPRN recruits the NEDD4 Like E3 Ubiquitin Protein Ligase (NEDD4L) to NaV1.2 sodium channels, facilitating NEDD4L-mediated ubiquitination, and endocytosis of NaV1.2. Knockout of PTPRN in hippocampal granule cells leads to augmented NaV1.2-mediated sodium currents and higher intrinsic excitability, resulting in increased seizure susceptibility in transgenic mice. Conversely, adeno-associated virus-mediated delivery of PTPRN in the dentate gyrus region decreases intrinsic excitability and reduces seizure susceptibility. Moreover, the present findings indicate that PTPRN exerts a selective modulation effect on voltage-gated sodium channels. Collectively, PTPRN plays a significant role in regulating intrinsic excitability and seizure susceptibility, suggesting a potential strategy for precise modulation of NaV1.2 channels' function.
Collapse
Affiliation(s)
- Yifan Wang
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Hui Yang
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Na Li
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Lili Wang
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Chang Guo
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Weining Ma
- Department of NeurologyShengjing Hospital Affiliated to China Medical UniversityShenyang110022China
| | - Shiqi Liu
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Chao Peng
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Jiexin Chen
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Huifang Song
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Hedan Chen
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Xinyue Ma
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Jingyun Yi
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Jingjing Lian
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Weikaixin Kong
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Jie Dong
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Xinyu Tu
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Mala Shah
- UCL School of PharmacyUniversity College LondonLondonWC1N 1AXUK
| | - Xin Tian
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory of NeurologyChongqing400016China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| |
Collapse
|
2
|
Wu J, Zhang J, Chen X, Wettschurack K, Que Z, Deming BA, Olivero-Acosta MI, Cui N, Eaton M, Zhao Y, Li SM, Suzuki M, Chen I, Xiao T, Halurkar MS, Mandal P, Yuan C, Xu R, Koss WA, Du D, Chen F, Wu LJ, Yang Y. Microglial over-pruning of synapses during development in autism-associated SCN2A-deficient mice and human cerebral organoids. Mol Psychiatry 2024; 29:2424-2437. [PMID: 38499656 DOI: 10.1038/s41380-024-02518-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
Autism spectrum disorder (ASD) is a major neurodevelopmental disorder affecting 1 in 36 children in the United States. While neurons have been the focus of understanding ASD, an altered neuro-immune response in the brain may be closely associated with ASD, and a neuro-immune interaction could play a role in the disease progression. As the resident immune cells of the brain, microglia regulate brain development and homeostasis via core functions including phagocytosis of synapses. While ASD has been traditionally considered a polygenic disorder, recent large-scale human genetic studies have identified SCN2A deficiency as a leading monogenic cause of ASD and intellectual disability. We generated a Scn2a-deficient mouse model, which displays major behavioral and neuronal phenotypes. However, the role of microglia in this disease model is unknown. Here, we reported that Scn2a-deficient mice have impaired learning and memory, accompanied by reduced synaptic transmission and lower spine density in neurons of the hippocampus. Microglia in Scn2a-deficient mice are partially activated, exerting excessive phagocytic pruning of post-synapses related to the complement C3 cascades during selective developmental stages. The ablation of microglia using PLX3397 partially restores synaptic transmission and spine density. To extend our findings from rodents to human cells, we established a microglia-incorporated human cerebral organoid model carrying an SCN2A protein-truncating mutation identified in children with ASD. We found that human microglia display increased elimination of post-synapse in cerebral organoids carrying the SCN2A mutation. Our study establishes a key role of microglia in multi-species autism-associated models of SCN2A deficiency from mouse to human cells.
Collapse
Affiliation(s)
- Jiaxiang Wu
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Jingliang Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Xiaoling Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Kyle Wettschurack
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Zhefu Que
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Brody A Deming
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Maria I Olivero-Acosta
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Ningren Cui
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Muriel Eaton
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Yuanrui Zhao
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Sophia M Li
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Matthew Suzuki
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Ian Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Tiange Xiao
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Manasi S Halurkar
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Purba Mandal
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Ranjie Xu
- College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Wendy A Koss
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Dongshu Du
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Fuxue Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yang Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
3
|
Hudac CM, Friedman NR, Ward VR, Estreicher RE, Dorsey GC, Bernier RA, Kurtz-Nelson EC, Earl RK, Eichler EE, Neuhaus E. Characterizing Sensory Phenotypes of Subgroups with a Known Genetic Etiology Pertaining to Diagnoses of Autism Spectrum Disorder and Intellectual Disability. J Autism Dev Disord 2024; 54:2386-2401. [PMID: 37031308 PMCID: PMC10083138 DOI: 10.1007/s10803-023-05897-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 04/10/2023]
Abstract
We aimed to identify unique constellations of sensory phenotypes for genetic etiologies associated with diagnoses of autism spectrum disorder (ASD) and intellectual disability (ID). Caregivers reported on sensory behaviors via the Sensory Profile for 290 participants (younger than 25 years of age) with ASD and/or ID diagnoses, of which ~ 70% have a known pathogenic genetic etiology. Caregivers endorsed poor registration (i.e., high sensory threshold, passive behaviors) for all genetic subgroups relative to an "idiopathic" comparison group with an ASD diagnosis and without a known genetic etiology. Genetic profiles indicated prominent sensory seeking in ADNP, CHD8, and DYRK1A, prominent sensory sensitivities in SCN2A, and fewer sensation avoidance behaviors in GRIN2B (relative to the idiopathic ASD comparison group).
Collapse
Affiliation(s)
- Caitlin M Hudac
- Department of Psychology, University of South Carolina, 1800 Gervais Street, Columbia, SC, 29201, USA.
- Department of Psychology, University of Alabama, Tuscaloosa, AL, USA.
- Carolina Autism and Neurodevelopment Research Center, University of South Carolina, Columbia, SC, USA.
| | - Nicole R Friedman
- Center for Youth Development and Intervention, University of Alabama, Tuscaloosa, AL, USA
- Department of Psychology, University of Alabama, Tuscaloosa, AL, USA
| | - Victoria R Ward
- Center for Youth Development and Intervention, University of Alabama, Tuscaloosa, AL, USA
- Department of Psychology, University of Alabama, Tuscaloosa, AL, USA
| | - Rachel E Estreicher
- Center for Youth Development and Intervention, University of Alabama, Tuscaloosa, AL, USA
- Department of Psychology, University of Alabama, Tuscaloosa, AL, USA
| | - Grace C Dorsey
- Center for Youth Development and Intervention, University of Alabama, Tuscaloosa, AL, USA
- Department of Psychology, University of Alabama, Tuscaloosa, AL, USA
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | | | - Rachel K Earl
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Emily Neuhaus
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
- Seattle Children's Research Institute, Seattle, WA, USA
| |
Collapse
|
4
|
Wang C, Derderian KD, Hamada E, Zhou X, Nelson AD, Kyoung H, Ahituv N, Bouvier G, Bender KJ. Impaired cerebellar plasticity hypersensitizes sensory reflexes in SCN2A-associated ASD. Neuron 2024; 112:1444-1455.e5. [PMID: 38412857 PMCID: PMC11065582 DOI: 10.1016/j.neuron.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Children diagnosed with autism spectrum disorder (ASD) commonly present with sensory hypersensitivity or abnormally strong reactions to sensory stimuli. Such hypersensitivity can be overwhelming, causing high levels of distress that contribute markedly to the negative aspects of the disorder. Here, we identify a mechanism that underlies hypersensitivity in a sensorimotor reflex found to be altered in humans and in mice with loss of function in the ASD risk-factor gene SCN2A. The cerebellum-dependent vestibulo-ocular reflex (VOR), which helps maintain one's gaze during movement, was hypersensitized due to deficits in cerebellar synaptic plasticity. Heterozygous loss of SCN2A-encoded NaV1.2 sodium channels in granule cells impaired high-frequency transmission to Purkinje cells and long-term potentiation, a form of synaptic plasticity important for modulating VOR gain. VOR plasticity could be rescued in mice via a CRISPR-activator approach that increases Scn2a expression, demonstrating that evaluation of a simple reflex can be used to assess and quantify successful therapeutic intervention.
Collapse
Affiliation(s)
- Chenyu Wang
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Kimberly D Derderian
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Elizabeth Hamada
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Xujia Zhou
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew D Nelson
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Henry Kyoung
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Nadav Ahituv
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Guy Bouvier
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA; Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France.
| | - Kevin J Bender
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
5
|
Chen GT, Nair G, Osorio AJ, Holley SM, Ghassemzadeh K, Gonzalez J, Lu C, Sanjana NE, Cepeda C, Geschwind DH. Enhancer-targeted CRISPR-Activation Rescues Haploinsufficient Autism Susceptibility Genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584921. [PMID: 38559217 PMCID: PMC10980046 DOI: 10.1101/2024.03.13.584921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Autism Spectrum Disorder (ASD) is a highly heritable condition with diverse clinical presentations. Approximately 20% of ASD's genetic susceptibility is imparted by de novo mutations of major effect, most of which cause haploinsufficiency. We mapped enhancers of two high confidence autism genes - CHD8 and SCN2A and used CRISPR-based gene activation (CRISPR-A) in hPSC-derived excitatory neurons and cerebral forebrain organoids to correct the effects of haploinsufficiency, taking advantage of the presence of a wildtype allele of each gene and endogenous gene regulation. We found that CRISPR-A induced a sustained increase in CHD8 and SCN2A expression in treated neurons and organoids, with rescue of gene expression levels and mutation-associated phenotypes, including gene expression and physiology. These data support gene activation via targeting enhancers of haploinsufficient genes, as a therapeutic intervention in ASD and other neurodevelopmental disorders.
Collapse
|
6
|
Schamiloglu S, Wu H, Zhou M, Kwan AC, Bender KJ. Dynamic Foraging Behavior Performance Is Not Affected by Scn2a Haploinsufficiency. eNeuro 2023; 10:ENEURO.0367-23.2023. [PMID: 38151324 PMCID: PMC10755640 DOI: 10.1523/eneuro.0367-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 11/14/2023] [Indexed: 12/29/2023] Open
Abstract
Dysfunction in the gene SCN2A, which encodes the voltage-gated sodium channel Nav1.2, is strongly associated with neurodevelopmental disorders including autism spectrum disorder and intellectual disability (ASD/ID). This dysfunction typically manifests in these disorders as a haploinsufficiency, where loss of one copy of a gene cannot be compensated for by the other allele. Scn2a haploinsufficiency affects a range of cells and circuits across the brain, including associative neocortical circuits that are important for cognitive flexibility and decision-making behaviors. Here, we tested whether Scn2a haploinsufficiency has any effect on a dynamic foraging task that engages such circuits. Scn2a +/- mice and wild-type (WT) littermates were trained on a choice behavior where the probability of reward between two options varied dynamically across trials and where the location of the high reward underwent uncued reversals. Despite impairments in Scn2a-related neuronal excitability, we found that both male and female Scn2a +/- mice performed these tasks as well as wild-type littermates, with no behavioral difference across genotypes in learning or performance parameters. Varying the number of trials between reversals or probabilities of receiving reward did not result in an observable behavioral difference, either. These data suggest that, despite heterozygous loss of Scn2a, mice can perform relatively complex foraging tasks that make use of higher-order neuronal circuits.
Collapse
Affiliation(s)
- Selin Schamiloglu
- Neuroscience Graduate Program, University of California, San Francisco, CA 94158
- Center for Integrative Neuroscience, Department of Neurology, University of California, San Francisco, CA 94158
| | - Hao Wu
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06511
| | - Mingkang Zhou
- Neuroscience Graduate Program, University of California, San Francisco, CA 94158
- Center for Integrative Neuroscience, Department of Neurology, University of California, San Francisco, CA 94158
| | - Alex C Kwan
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06511
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Kevin J Bender
- Center for Integrative Neuroscience, Department of Neurology, University of California, San Francisco, CA 94158
| |
Collapse
|
7
|
Li M, Eltabbal M, Tran HD, Kuhn B. Scn2a insufficiency alters spontaneous neuronal Ca 2+ activity in somatosensory cortex during wakefulness. iScience 2023; 26:108138. [PMID: 37876801 PMCID: PMC10590963 DOI: 10.1016/j.isci.2023.108138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/22/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023] Open
Abstract
SCN2A protein-truncating variants (PTV) can result in neurological disorders such as autism spectrum disorder and intellectual disability, but they are less likely to cause epilepsy in comparison to missense variants. While in vitro studies showed PTV reduce action potential firing, consequences at in vivo network level remain elusive. Here, we generated a mouse model of Scn2a insufficiency using antisense oligonucleotides (Scn2a ASO mice), which recapitulated key clinical feature of SCN2A PTV disorders. Simultaneous two-photon Ca2+ imaging and electrocorticography (ECoG) in awake mice showed that spontaneous Ca2+ transients in somatosensory cortical neurons, as well as their pairwise co-activities were generally decreased in Scn2a ASO mice during spontaneous awake state and induced seizure state. The reduction of neuronal activities and paired co-activity are mechanisms associated with motor, social and cognitive deficits observed in our mouse model of severe Scn2a insufficiency, indicating these are likely mechanisms driving SCN2A PTV pathology.
Collapse
Affiliation(s)
- Melody Li
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Mohamed Eltabbal
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Hoang-Dai Tran
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Bernd Kuhn
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
8
|
Dongol Y, Wilson DT, Daly NL, Cardoso FC, Lewis RJ. Structure-function and rational design of a spider toxin Ssp1a at human voltage-gated sodium channel subtypes. Front Pharmacol 2023; 14:1277143. [PMID: 38034993 PMCID: PMC10682951 DOI: 10.3389/fphar.2023.1277143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
The structure-function and optimization studies of NaV-inhibiting spider toxins have focused on developing selective inhibitors for peripheral pain-sensing NaV1.7. With several NaV subtypes emerging as potential therapeutic targets, structure-function analysis of NaV-inhibiting spider toxins at such subtypes is warranted. Using the recently discovered spider toxin Ssp1a, this study extends the structure-function relationships of NaV-inhibiting spider toxins beyond NaV1.7 to include the epilepsy target NaV1.2 and the pain target NaV1.3. Based on these results and docking studies, we designed analogues for improved potency and/or subtype-selectivity, with S7R-E18K-rSsp1a and N14D-P27R-rSsp1a identified as promising leads. S7R-E18K-rSsp1a increased the rSsp1a potency at these three NaV subtypes, especially at NaV1.3 (∼10-fold), while N14D-P27R-rSsp1a enhanced NaV1.2/1.7 selectivity over NaV1.3. This study highlights the challenge of developing subtype-selective spider toxin inhibitors across multiple NaV subtypes that might offer a more effective therapeutic approach. The findings of this study provide a basis for further rational design of Ssp1a and related NaSpTx1 homologs targeting NaV1.2, NaV1.3 and/or NaV1.7 as research tools and therapeutic leads.
Collapse
Affiliation(s)
- Yashad Dongol
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - David T. Wilson
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Norelle L. Daly
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Fernanda C. Cardoso
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Richard J. Lewis
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Yang Y, Wu J, Zhang J, Chen X, Que Z, Wettschurack K, Deming B, Acosta M, Cui N, Eaton M, Zhao Y, Halurkar M, Purba M, Chen I, Xiao T, Suzuki M, Yuan C, Xu R, Koss W, Du D, Chen F, Wu LJ, Clinic M. Microglial over-pruning of synapses during development in autism-associated SCN2A-deficient mice and human cerebral organoids. RESEARCH SQUARE 2023:rs.3.rs-3270664. [PMID: 37841865 PMCID: PMC10571631 DOI: 10.21203/rs.3.rs-3270664/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Autism spectrum disorder (ASD) is a major neurodevelopmental disorder affecting 1 in 36 children in the United States. While neurons have been the focus to understand ASD, an altered neuro-immune response in the brain may be closely associated with ASD, and a neuro-immune interaction could play a role in the disease progression. As the resident immune cells of the brain, microglia regulate brain development and homeostasis via core functions including phagocytosis of synapses. While ASD has been traditionally considered a polygenic disorder, recent large-scale human genetic studies have identified SCN2A deficiency as a leading monogenic cause of ASD and intellectual disability. We generated a Scn2a-deficient mouse model, which displays major behavioral and neuronal phenotypes. However, the role of microglia in this disease model is unknown. Here, we reported that Scn2a-deficient mice have impaired learning and memory, accompanied by reduced synaptic transmission and lower spine density in neurons of the hippocampus. Microglia in Scn2a-deficient mice are partially activated, exerting excessive phagocytic pruning of post-synapses related to the complement C3 cascades during selective developmental stages. The ablation of microglia using PLX3397 partially restores synaptic transmission and spine density. To extend our findings from rodents to human cells, we established a microglial-incorporated human cerebral organoid model carrying an SCN2A protein-truncating mutation identified in children with ASD. We found that human microglia display increased elimination of post-synapse in cerebral organoids carrying the SCN2A mutation. Our study establishes a key role of microglia in multi-species autism-associated models of SCN2A deficiency from mouse to human cells.
Collapse
Affiliation(s)
- Yang Yang
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Jiaxiang Wu
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Jingliang Zhang
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Xiaoling Chen
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Zhefu Que
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Kyle Wettschurack
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Brody Deming
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Maria Acosta
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Ningren Cui
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Muriel Eaton
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Yuanrui Zhao
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Manasi Halurkar
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Mandal Purba
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Ian Chen
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ma Z, Eaton M, Liu Y, Zhang J, Chen X, Tu X, Shi Y, Que Z, Wettschurack K, Zhang Z, Shi R, Chen Y, Kimbrough A, Lanman NA, Schust L, Huang Z, Yang Y. Deficiency of autism-related Scn2a gene in mice disrupts sleep patterns and circadian rhythms. Neurobiol Dis 2022; 168:105690. [PMID: 35301122 PMCID: PMC9018617 DOI: 10.1016/j.nbd.2022.105690] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/21/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) affects ~2% of the population in the US, and monogenic forms of ASD often result in the most severe manifestation of the disorder. Recently, SCN2A has emerged as a leading gene associated with ASD, of which abnormal sleep pattern is a common comorbidity. SCN2A encodes the voltage-gated sodium channel NaV1.2. Predominantly expressed in the brain, NaV1.2 mediates the action potential firing of neurons. Clinical studies found that a large portion of children with SCN2A deficiency have sleep disorders, which severely impact the quality of life of affected individuals and their caregivers. The underlying mechanism of sleep disturbances related to NaV1.2 deficiency, however, is not known. Using a gene-trap Scn2a-deficient mouse model (Scn2atrap), we found that Scn2a deficiency results in increased wakefulness and reduced non-rapid-eye-movement (NREM) sleep. Brain region-specific Scn2a deficiency in the suprachiasmatic nucleus (SCN) containing region, which is involved in circadian rhythms, partially recapitulates the sleep disturbance phenotypes. At the cellular level, we found that Scn2a deficiency disrupted the firing pattern of spontaneously firing neurons in the SCN region. At the molecular level, RNA-sequencing analysis revealed differentially expressed genes in the circadian entrainment pathway including core clock genes Per1 and Per2. Performing a transcriptome-based compound discovery, we identified dexanabinol (HU-211), a putative glutamate receptor modulator, that can partially reverse the sleep disturbance in mice. Overall, our study reveals possible molecular and cellular mechanisms underlying Scn2a deficiency-related sleep disturbances, which may inform the development of potential pharmacogenetic interventions for the affected individuals.
Collapse
Affiliation(s)
- Zhixiong Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China; Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy & Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47906, USA
| | - Muriel Eaton
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy & Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47906, USA
| | - Yushuang Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy & Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47906, USA
| | - Jingliang Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy & Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47906, USA
| | - Xiaoling Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy & Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47906, USA
| | - Xinyu Tu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yiqiang Shi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhefu Que
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy & Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47906, USA
| | - Kyle Wettschurack
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy & Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47906, USA
| | - Zaiyang Zhang
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA
| | - Riyi Shi
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA
| | - Yueyi Chen
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA
| | - Adam Kimbrough
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA
| | - Nadia A Lanman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA
| | - Leah Schust
- FamilieSCN2A Foundation, P.O. Box 82, East Longmeadow, MA 01028, USA
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Yang Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy & Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47906, USA.
| |
Collapse
|
11
|
Antoine MW. Paradoxical Hyperexcitability in Disorders of Neurodevelopment. Front Mol Neurosci 2022; 15:826679. [PMID: 35571370 PMCID: PMC9102973 DOI: 10.3389/fnmol.2022.826679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/14/2022] [Indexed: 01/29/2023] Open
Abstract
Autism Spectrum Disorder (ASD), Rett syndrome (RTT) and Angelman Syndrome (AS) are neurodevelopmental disorders (NDDs) that share several clinical characteristics, including displays of repetitive movements, developmental delays, language deficits, intellectual disability, and increased susceptibility to epilepsy. While several reviews address the biological basis of non-seizure-related ASD phenotypes, here, I highlight some shared biological mechanisms that may contribute to increased seizure susceptibility. I focus on genetic studies identifying the anatomical origin of the seizure phenotype in loss-of-function, monogenic, mouse models of these NDDs, combined with insights gained from complementary studies quantifying levels of synaptic excitation and inhibition. Epilepsy is characterized by a sudden, abnormal increase in synchronous activity within neuronal networks, that is posited to arise from excess excitation, largely driven by reduced synaptic inhibition. Primarily for this reason, elevated network excitability is proposed to underlie the causal basis for the ASD, RTT, and AS phenotypes. Although, mouse models of these disorders replicate aspects of the human condition, i.e., hyperexcitability discharges or seizures on cortical electroencephalograms, measures at the synaptic level often reveal deficits in excitatory synaptic transmission, rather than too much excitation. Resolving this apparent paradox has direct implications regarding expected outcomes of manipulating GABAergic tone. In particular, in NDDs associated with seizures, cortical circuits can display reduced, rather than normal or increased levels of synaptic excitation, and therefore suggested treatments aimed at increasing inhibition could further promote hypoactivity instead of normality. In this review, I highlight shared mechanisms across animal models for ASD, RTT, and AS with reduced synaptic excitation that nevertheless promote hyperexcitability in cortical circuits.
Collapse
Affiliation(s)
- Michelle W. Antoine
- Section on Neural Circuits, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
12
|
Echevarria-Cooper DM, Hawkins NA, Misra SN, Huffman AM, Thaxton T, Thompson CH, Ben-Shalom R, Nelson AD, Lipkin AM, George AL, Bender KJ, Kearney JA. Cellular and behavioral effects of altered NaV1.2 sodium channel ion permeability in Scn2aK1422E mice. Hum Mol Genet 2022; 31:2964-2988. [PMID: 35417922 PMCID: PMC9433730 DOI: 10.1093/hmg/ddac087] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/28/2022] [Accepted: 04/09/2022] [Indexed: 11/13/2022] Open
Abstract
Genetic variants in SCN2A, encoding the NaV1.2 voltage-gated sodium channel, are associated with a range of neurodevelopmental disorders with overlapping phenotypes. Some variants fit into a framework wherein gain-of-function missense variants that increase neuronal excitability lead to developmental and epileptic encephalopathy, while loss-of-function variants that reduce neuronal excitability lead to intellectual disability and/or autism spectrum disorder (ASD) with or without co-morbid seizures. One unique case less easily classified using this framework is the de novo missense variant SCN2A-p.K1422E, associated with infant-onset developmental delay, infantile spasms and features of ASD. Prior structure–function studies demonstrated that K1422E substitution alters ion selectivity of NaV1.2, conferring Ca2+ permeability, lowering overall conductance and conferring resistance to tetrodotoxin (TTX). Based on heterologous expression of K1422E, we developed a compartmental neuron model incorporating variant channels that predicted reductions in peak action potential (AP) speed. We generated Scn2aK1422E mice and characterized effects on neurons and neurological/neurobehavioral phenotypes. Cultured cortical neurons from heterozygous Scn2aK1422E/+ mice exhibited lower current density with a TTX-resistant component and reversal potential consistent with mixed ion permeation. Recordings from Scn2aK1442E/+ cortical slices demonstrated impaired AP initiation and larger Ca2+ transients at the axon initial segment during the rising phase of the AP, suggesting complex effects on channel function. Scn2aK1422E/+ mice exhibited rare spontaneous seizures, interictal electroencephalogram abnormalities, altered induced seizure thresholds, reduced anxiety-like behavior and alterations in olfactory-guided social behavior. Overall, Scn2aK1422E/+ mice present with phenotypes similar yet distinct from other Scn2a models, consistent with complex effects of K1422E on NaV1.2 channel function.
Collapse
Affiliation(s)
- Dennis M Echevarria-Cooper
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine; Chicago, IL, USA 60611.,Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL, USA, 60611
| | - Nicole A Hawkins
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine; Chicago, IL, USA 60611
| | - Sunita N Misra
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine; Chicago, IL, USA 60611.,Departments of Pediatrics, Northwestern University Feinberg School of Medicine; Chicago, IL, USA 60611.,Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA 60611
| | - Alexandra M Huffman
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine; Chicago, IL, USA 60611
| | - Tyler Thaxton
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine; Chicago, IL, USA 60611
| | - Christopher H Thompson
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine; Chicago, IL, USA 60611
| | - Roy Ben-Shalom
- Mind Institute and Department of Neurology, University of California, Davis, Sacramento, CA, United States 95817
| | - Andrew D Nelson
- Department of Neurology, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA 94158
| | - Anna M Lipkin
- Department of Neurology, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA 94158.,Neuroscience Graduate Program, University of California, San Francisco, CA, USA 94158
| | - Alfred L George
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine; Chicago, IL, USA 60611.,Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL, USA, 60611
| | - Kevin J Bender
- Department of Neurology, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA 94158
| | - Jennifer A Kearney
- Departments of Pharmacology, Northwestern University Feinberg School of Medicine; Chicago, IL, USA 60611.,Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL, USA, 60611
| |
Collapse
|
13
|
Zhang J, Chen X, Eaton M, Wu J, Ma Z, Lai S, Park A, Ahmad TS, Que Z, Lee JH, Xiao T, Li Y, Wang Y, Olivero-Acosta MI, Schaber JA, Jayant K, Yuan C, Huang Z, Lanman NA, Skarnes WC, Yang Y. Severe deficiency of the voltage-gated sodium channel Na V1.2 elevates neuronal excitability in adult mice. Cell Rep 2021; 36:109495. [PMID: 34348148 PMCID: PMC8382316 DOI: 10.1016/j.celrep.2021.109495] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/30/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
Scn2a encodes the voltage-gated sodium channel NaV1.2, a main mediator of neuronal action potential firing. The current paradigm suggests that NaV1.2 gain-of-function variants enhance neuronal excitability, resulting in epilepsy, whereas NaV1.2 deficiency impairs neuronal excitability, contributing to autism. However, this paradigm does not explain why ∼20%-30% of individuals with NaV1.2 deficiency still develop seizures. Here, we report the counterintuitive finding that severe NaV1.2 deficiency results in increased neuronal excitability. Using a NaV1.2-deficient mouse model, we show enhanced intrinsic excitability of principal neurons in the prefrontal cortex and striatum, brain regions known to be involved in Scn2a-related seizures. This increased excitability is autonomous and reversible by genetic restoration of Scn2a expression in adult mice. RNA sequencing reveals downregulation of multiple potassium channels, including KV1.1. Correspondingly, KV channel openers alleviate the hyperexcitability of NaV1.2-deficient neurons. This unexpected neuronal hyperexcitability may serve as a cellular basis underlying NaV1.2 deficiency-related seizures.
Collapse
Affiliation(s)
- Jingliang Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Xiaoling Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Muriel Eaton
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Jiaxiang Wu
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Zhixiong Ma
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Shirong Lai
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Anthony Park
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Talha S Ahmad
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Zhefu Que
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Ji Hea Lee
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Tiange Xiao
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Yuansong Li
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Yujia Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Maria I Olivero-Acosta
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - James A Schaber
- Bioscience Imaging Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Krishna Jayant
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Zhuo Huang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Nadia A Lanman
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA; Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - William C Skarnes
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Yang Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|