1
|
Sklute EC, Leopo DA, Neat KA, Livi KJT, Dyar MD, Holden JF. Fe(III) (oxyhydr)oxide reduction by the thermophilic iron-reducing bacterium Desulfovulcanus ferrireducens. Front Microbiol 2023; 14:1272245. [PMID: 37928658 PMCID: PMC10622975 DOI: 10.3389/fmicb.2023.1272245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/19/2023] [Indexed: 11/07/2023] Open
Abstract
Some thermophilic bacteria from deep-sea hydrothermal vents grow by dissimilatory iron reduction, but our understanding of their biogenic mineral transformations is nascent. Mineral transformations catalyzed by the thermophilic iron-reducing bacterium Desulfovulcanus ferrireducens during growth at 55°C were examined using synthetic nanophase ferrihydrite, akaganeite, and lepidocrocite separately as terminal electron acceptors. Spectral analyses using visible-near infrared (VNIR), Fourier-transform infrared attenuated total reflectance (FTIR-ATR), and Mössbauer spectroscopies were complemented with x-ray diffraction (XRD) and transmission electron microscopy (TEM) using selected area electron diffraction (SAED) and energy dispersive X-ray (EDX) analyses. The most extensive biogenic mineral transformation occurred with ferrihydrite, which produced a magnetic, visibly dark mineral with spectral features matching cation-deficient magnetite. Desulfovulcanus ferrireducens also grew on akaganeite and lepidocrocite and produced non-magnetic, visibly dark minerals that were poorly soluble in the oxalate solution. Bioreduced mineral products from akaganeite and lepidocrocite reduction were almost entirely absorbed in the VNIR spectroscopy in contrast to both parent minerals and the abiotic controls. However, FTIR-ATR and Mössbauer spectra and XRD analyses of both biogenic minerals were almost identical to the parent and control minerals. The TEM of these biogenic minerals showed the presence of poorly crystalline iron nanospheres (50-200 nm in diameter) of unknown mineralogy that were likely coating the larger parent minerals and were absent from the controls. The study demonstrated that thermophilic bacteria transform different types of Fe(III) (oxyhydr)oxide minerals for growth with varying mineral products. These mineral products are likely formed through dissolution-reprecipitation reactions but are not easily predictable through chemical equilibrium reactions alone.
Collapse
Affiliation(s)
- Elizabeth C Sklute
- Planetary Science Institute, Tucson, AZ, United States
- Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Deborah A Leopo
- Department of Microbiology, University of Massachusetts, Amherst, MA, United States
| | - Kaylee A Neat
- Department of Astronomy, Mount Holyoke College, South Hadley, MA, United States
| | - Kenneth J T Livi
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - M Darby Dyar
- Planetary Science Institute, Tucson, AZ, United States
- Department of Astronomy, Mount Holyoke College, South Hadley, MA, United States
| | - James F Holden
- Department of Microbiology, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
2
|
Kashyap S, Sklute EC, Wang P, Tague TJ, Dyar MD, Holden JF. Spectral Detection of Nanophase Iron Minerals Produced by Fe(III)-Reducing Hyperthermophilic Crenarchaea. ASTROBIOLOGY 2023; 23:43-59. [PMID: 36070586 PMCID: PMC9810357 DOI: 10.1089/ast.2022.0042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Mineral transformations by two hyperthermophilic Fe(III)-reducing crenarchaea, Pyrodictium delaneyi and Pyrobaculum islandicum, were examined using synthetic nanophase ferrihydrite, lepidocrocite, and akaganeite separately as terminal electron acceptors and compared with abiotic mineral transformations under similar conditions. Spectral analyses using visible-near-infrared, Fourier-transform infrared attenuated total reflectance (FTIR-ATR), Raman, and Mössbauer spectroscopies were complementary and revealed formation of various biomineral assemblages distinguishable from abiotic phases. The most extensive biogenic mineral transformation occurred with ferrihydrite, which formed primarily magnetite with spectral features similar to biomagnetite relative to a synthetic magnetite standard. The FTIR-ATR spectra of ferrihydrite bioreduced by P. delaneyi also showed possible cell-associated organics such as exopolysaccharides. Such combined detections of biomineral assemblages and organics might serve as biomarkers for hyperthermophilic Fe(III) reduction. With lepidocrocite, P. delaneyi produced primarily a ferrous carbonate phase reminiscent of siderite, and with akaganeite, magnetite and a ferrous phosphate phase similar to vivianite were formed. P. islandicum showed minor biogenic production of a ferrous phosphate similar to vivianite when grown on lepidocrocite, and a mixed valent phosphate or sulfate mineral when grown on akaganeite. These results expand the range of biogenic mineral transformations at high temperatures and identify spacecraft-relevant spectroscopies suitable for discriminating mineral biogenicity.
Collapse
Affiliation(s)
- Srishti Kashyap
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | | | - Peng Wang
- Bruker Optics, Inc., Billerica, Massachusetts, USA
| | | | - M. Darby Dyar
- Planetary Science Institute, Tucson, Arizona, USA
- Department of Astronomy, Mount Holyoke College, South Hadley, Massachusetts, USA
| | - James F. Holden
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
3
|
Kashyap S, Musa M, Neat KA, Leopo DA, Holden JF. Desulfovulcanus ferrireducens gen. nov., sp. nov., a thermophilic autotrophic iron and sulfate-reducing bacterium from subseafloor basalt that grows on akaganéite and lepidocrocite minerals. Extremophiles 2022; 26:13. [PMID: 35190935 PMCID: PMC8860800 DOI: 10.1007/s00792-022-01263-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/10/2022] [Indexed: 11/24/2022]
Abstract
A deep-sea thermophilic bacterium, strain Ax17T, was isolated from 25 °C hydrothermal fluid at Axial Seamount. It was obligately anaerobic and autotrophic, oxidized molecular hydrogen and formate, and reduced synthetic nanophase Fe(III) (oxyhydr)oxide minerals, sulfate, sulfite, thiosulfate, and elemental sulfur for growth. It produced up to 20 mM Fe2+ when grown on ferrihydrite but < 5 mM Fe2+ when grown on akaganéite, lepidocrocite, hematite, and goethite. It was a straight to curved rod that grew at temperatures ranging from 35 to 70 °C (optimum 65 °C) and a minimum doubling time of 7.1 h, in the presence of 1.5-6% NaCl (optimum 3%) and pH 5-9 (optimum 8.0). Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain was 90-92% identical to other genera of the family Desulfonauticaceae in the phylum Pseudomonadota. The genome of Ax17T was sequenced, which yielded 2,585,834 bp and contained 2407 protein-coding sequences. Based on overall genome relatedness index analyses and its unique phenotypic characteristics, strain Ax17T is suggested to represent a novel genus and species, for which the name Desulfovulcanus ferrireducens is proposed. The type strain is Ax17T (= DSM 111878T = ATCC TSD-233T).
Collapse
Affiliation(s)
- Srishti Kashyap
- Department of Microbiology, University of Massachusetts, N418 Morrill IV North; 639 N. Pleasant St., Amherst, MA, 01003, USA
- Department of Geological Sciences, University of Colorado, Boulder, CO, 80309, USA
| | - Masroque Musa
- Department of Microbiology, University of Massachusetts, N418 Morrill IV North; 639 N. Pleasant St., Amherst, MA, 01003, USA
| | - Kaylee A Neat
- Department of Astronomy, Mount Holyoke College, South Hadley, MA, 01075, USA
| | - Deborah A Leopo
- Department of Microbiology, University of Massachusetts, N418 Morrill IV North; 639 N. Pleasant St., Amherst, MA, 01003, USA
| | - James F Holden
- Department of Microbiology, University of Massachusetts, N418 Morrill IV North; 639 N. Pleasant St., Amherst, MA, 01003, USA.
| |
Collapse
|
4
|
Gorlas A, Mariotte T, Morey L, Truong C, Bernard S, Guigner JM, Oberto J, Baudin F, Landrot G, Baya C, Le Pape P, Morin G, Forterre P, Guyot F. Precipitation of greigite and pyrite induced by Thermococcales: an advantage to live in Fe- and S-rich environments? Environ Microbiol 2022; 24:626-642. [PMID: 35102700 PMCID: PMC9306673 DOI: 10.1111/1462-2920.15915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 11/29/2022]
Abstract
Thermococcales, a major order of archaea inhabiting the iron- and sulfur-rich anaerobic parts of hydrothermal deep-sea vents, have been shown to rapidly produce abundant quantities of pyrite FeS2 in iron-sulfur-rich fluids at 85°C, suggesting that they may contribute to the formation of 'low temperature' FeS2 in their ecosystem. We show that this process operates in Thermococcus kodakarensis only when zero-valent sulfur is directly available as intracellular sulfur vesicles. Whether in the presence or absence of zero-valent sulfur, significant amounts of Fe3 S4 greigite nanocrystals are formed extracellularly. We also show that mineralization of iron sulfides induces massive cell mortality but that concomitantly with the formation of greigite and/or pyrite, a new generation of cells can grow. This phenomenon is observed for Fe concentrations of 5 mM but not higher suggesting that above a threshold in the iron pulse all cells are lysed. We hypothesize that iron sulfides precipitation on former cell materials might induce the release of nutrients in the mineralization medium further used by a fraction of surviving non-mineralized cells allowing production of new alive cells. This suggests that biologically induced mineralization of iron-sulfides could be part of a survival strategy employed by Thermococcales to cope with mineralizing high-temperature hydrothermal environments.
Collapse
Affiliation(s)
- A Gorlas
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - T Mariotte
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - L Morey
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - C Truong
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 - CNRS, Sorbonne Université, Museum National d'Histoire Naturelle, Paris Cedex 05, 75252, France
| | - S Bernard
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 - CNRS, Sorbonne Université, Museum National d'Histoire Naturelle, Paris Cedex 05, 75252, France
| | - J-M Guigner
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 - CNRS, Sorbonne Université, Museum National d'Histoire Naturelle, Paris Cedex 05, 75252, France
| | - J Oberto
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - F Baudin
- Institut des Sciences de la Terre de Paris, UMR 7193 - Sorbonne Université - CNRS, Paris, 75005, France
| | - G Landrot
- Synchrotron SOLEIL - SAMBA beamline, Saint-Aubin, 91190, France
| | - C Baya
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 - CNRS, Sorbonne Université, Museum National d'Histoire Naturelle, Paris Cedex 05, 75252, France
| | - P Le Pape
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 - CNRS, Sorbonne Université, Museum National d'Histoire Naturelle, Paris Cedex 05, 75252, France
| | - G Morin
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 - CNRS, Sorbonne Université, Museum National d'Histoire Naturelle, Paris Cedex 05, 75252, France
| | - P Forterre
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - F Guyot
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 - CNRS, Sorbonne Université, Museum National d'Histoire Naturelle, Paris Cedex 05, 75252, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
5
|
Zeng X, Alain K, Shao Z. Microorganisms from deep-sea hydrothermal vents. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:204-230. [PMID: 37073341 PMCID: PMC10077256 DOI: 10.1007/s42995-020-00086-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/17/2020] [Indexed: 05/03/2023]
Abstract
With a rich variety of chemical energy sources and steep physical and chemical gradients, hydrothermal vent systems offer a range of habitats to support microbial life. Cultivation-dependent and independent studies have led to an emerging view that diverse microorganisms in deep-sea hydrothermal vents live their chemolithoautotrophic, heterotrophic, or mixotrophic life with versatile metabolic strategies. Biogeochemical processes are mediated by microorganisms, and notably, processes involving or coupling the carbon, sulfur, hydrogen, nitrogen, and metal cycles in these unique ecosystems. Here, we review the taxonomic and physiological diversity of microbial prokaryotic life from cosmopolitan to endemic taxa and emphasize their significant roles in the biogeochemical processes in deep-sea hydrothermal vents. According to the physiology of the targeted taxa and their needs inferred from meta-omics data, the media for selective cultivation can be designed with a wide range of physicochemical conditions such as temperature, pH, hydrostatic pressure, electron donors and acceptors, carbon sources, nitrogen sources, and growth factors. The application of novel cultivation techniques with real-time monitoring of microbial diversity and metabolic substrates and products are also recommended. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-020-00086-4.
Collapse
Affiliation(s)
- Xiang Zeng
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 China
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| | - Karine Alain
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E UMR6197, Univ Brest, CNRS, IFREMER, F-29280 Plouzané, France
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 China
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| |
Collapse
|
6
|
Microbe-Mineral Interaction and Novel Proteins for Iron Oxide Mineral Reduction in the Hyperthermophilic Crenarchaeon Pyrodictium delaneyi. Appl Environ Microbiol 2021; 87:AEM.02330-20. [PMID: 33419739 PMCID: PMC8105010 DOI: 10.1128/aem.02330-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/17/2020] [Indexed: 11/24/2022] Open
Abstract
Understanding iron reduction in the hyperthermophilic crenarchaeon Pyrodictium delaneyi provides insight into the diversity of mechanisms used for this process and its potential impact in geothermal environments. The ability of P. delaneyi to reduce Fe(III) oxide minerals through direct contact potentially using a novel cytochrome respiratory complex and a membrane-bound molybdopterin respiratory complex sets iron reduction in this organism apart from previously described iron reduction processes. Dissimilatory iron reduction by hyperthermophilic archaea occurs in many geothermal environments and generally relies on microbe-mineral interactions that transform various iron oxide minerals. In this study, the physiology of dissimilatory iron and nitrate reduction was examined in the hyperthermophilic crenarchaeon type strain Pyrodictium delaneyi Su06. Iron barrier experiments showed that P. delaneyi required direct contact with the Fe(III) oxide mineral ferrihydrite for reduction. The separate addition of an exogenous electron shuttle (anthraquinone-2,6-disulfonate), a metal chelator (nitrilotriacetic acid), and 75% spent cell-free supernatant did not stimulate growth with or without the barrier. Protein electrophoresis showed that the c-type cytochrome and general protein compositions of P. delaneyi changed when grown on ferrihydrite relative to nitrate. Differential proteomic analyses using tandem mass tagged protein fragments and mass spectrometry detected 660 proteins and differential production of 127 proteins. Among these, two putative membrane-bound molybdopterin-dependent oxidoreductase complexes increased in relative abundance 60- to 3,000-fold and 50- to 100-fold in cells grown on iron oxide. A putative 8-heme c-type cytochrome was 60-fold more abundant in iron-grown cells and was unique to the Pyrodictiaceae. There was also a >14,700-fold increase in a membrane transport protein in iron-grown cells. For flagellin proteins and a putative nitrate reductase, there were no changes in abundance, but a membrane nitric oxide reductase was more abundant on nitrate. These data help to elucidate the mechanisms by which hyperthermophilic crenarchaea generate energy and transfer electrons across the membrane to iron oxide minerals. IMPORTANCE Understanding iron reduction in the hyperthermophilic crenarchaeon Pyrodictium delaneyi provides insight into the diversity of mechanisms used for this process and its potential impact in geothermal environments. The ability of P. delaneyi to reduce Fe(III) oxide minerals through direct contact potentially using a novel cytochrome respiratory complex and a membrane-bound molybdopterin respiratory complex sets iron reduction in this organism apart from previously described iron reduction processes. A model is presented where obligatory H2 oxidation on the membrane coupled with electron transport and either Fe(III) oxide or nitrate reduction leads to the generation of a proton motive force and energy generation by oxidative phosphorylation. However, P. delaneyi cannot fix CO2 and relies on organic compounds from its environment for biosynthesis.
Collapse
|
7
|
Stewart LC, Houghton K, Carere CR, Power JF, Chambefort I, Stott MB. Interaction between ferruginous clay sediment and an iron-reducing hyperthermophilic Pyrobaculum sp. in a terrestrial hot spring. FEMS Microbiol Ecol 2018; 94:5074396. [DOI: 10.1093/femsec/fiy160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/12/2018] [Indexed: 01/04/2023] Open
Affiliation(s)
- Lucy C Stewart
- Marine Geoscience, GNS Science, 1 Fairway Dr, Lower Hutt 5010, New Zealand
| | - Karen Houghton
- Geothermal Science, GNS Science, Wairakei Research Centre, 114 Karetoto Rd, Taupō 3384, New Zealand
- School of Science, University of Waikato, 21 Ruakura Rd, Hamilton 3240, New Zealand
| | - Carlo R Carere
- Geothermal Science, GNS Science, Wairakei Research Centre, 114 Karetoto Rd, Taupō 3384, New Zealand
- Department of Chemical and Process Engineering, University of Canterbury, 20 Kirkwood Ave, Upper Riccarton, Christchurch 8041, New Zealand
| | - Jean F Power
- Geothermal Science, GNS Science, Wairakei Research Centre, 114 Karetoto Rd, Taupō 3384, New Zealand
- School of Science, University of Waikato, 21 Ruakura Rd, Hamilton 3240, New Zealand
| | - Isabelle Chambefort
- Geothermal Science, GNS Science, Wairakei Research Centre, 114 Karetoto Rd, Taupō 3384, New Zealand
| | - Matthew B Stott
- Geothermal Science, GNS Science, Wairakei Research Centre, 114 Karetoto Rd, Taupō 3384, New Zealand
- School of Biological Sciences, University of Canterbury, 20 Kirkwood Ave, Upper Riccarton, Christchurch 8041, New Zealand
| |
Collapse
|
8
|
Kashyap S, Sklute EC, Dyar MD, Holden JF. Reduction and Morphological Transformation of Synthetic Nanophase Iron Oxide Minerals by Hyperthermophilic Archaea. Front Microbiol 2018; 9:1550. [PMID: 30050524 PMCID: PMC6050373 DOI: 10.3389/fmicb.2018.01550] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/21/2018] [Indexed: 11/24/2022] Open
Abstract
Fe(III) (oxyhydr)oxides are electron acceptors for some hyperthermophilic archaea in mildly reducing geothermal environments. However, the kinds of iron oxides that can be used, growth rates, extent of iron reduction, and the morphological changes that occur to minerals are poorly understood. The hyperthermophilic iron-reducing crenarchaea Pyrodictium delaneyi and Pyrobaculum islandicum were grown separately on six different synthetic nanophase Fe(III) (oxyhydr)oxides. For both organisms, growth on ferrihydrite produced the highest growth rates and the largest amounts of Fe(II), although P. delaneyi produced four times more Fe(II) (25 mM) than P. islandicum (6 mM). Both organisms grew on lepidocrocite and akaganéite and produced 2 and 3 mM Fe(II). Modest growth occurred for both organisms on goethite, hematite, and maghemite where ≤1 mM Fe(II) was produced. The diameters of the spherical mineral end-products following P. delaneyi growth increased by 30 nm for ferrihydrite and 50–150 nm for lepidocrocite relative to heated abiotic controls. For akaganéite, spherical particle sizes were the same for P. delaneyi-reacted samples and heated abiotic controls, but the spherical particles were more numerous in the P. delaneyi samples. For P. islandicum, there was no increase in grain size for the mineral end-products following growth on ferrihydrite, lepidocrocite, or akaganéite relative to the heated abiotic controls. High-resolution transmission electron microscopy of lattice fringes and selected-area electron diffraction of the minerals produced by both organisms when grown on ferrihydrite showed that magnetite and/or possibly maghemite were the end-products while the heated abiotic controls only contained ferrihydrite. These results expand the current view of bioavailable Fe(III) (oxyhydr)oxides for reduction by hyperthermophilic archaea when presented as synthetic nanophase minerals. They show that growth and reduction rates are inversely correlated with the iron (oxyhydr)oxide crystallinity and that iron (oxyhydr)oxide mineral transformation takes different forms for these two organisms.
Collapse
Affiliation(s)
- Srishti Kashyap
- Department of Microbiology, University of Massachusetts, Amherst, MA, United States
| | - Elizabeth C Sklute
- Department of Astronomy, Mount Holyoke College, South Hadley, MA, United States.,Planetary Science Institute, Tucson, AZ, United States
| | - M Darby Dyar
- Department of Astronomy, Mount Holyoke College, South Hadley, MA, United States.,Planetary Science Institute, Tucson, AZ, United States
| | - James F Holden
- Department of Microbiology, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
9
|
Lin TJ, El Sebae G, Jung JH, Jung DH, Park CS, Holden JF. Pyrodictium delaneyi sp. nov., a hyperthermophilic autotrophic archaeon that reduces Fe(III) oxide and nitrate. Int J Syst Evol Microbiol 2016; 66:3372-3376. [PMID: 27260263 DOI: 10.1099/ijsem.0.001201] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A hyperthermophilic, autotrophic iron and nitrate reducer, strain Su06T, was isolated from an active deep-sea hydrothermal vent chimney on the Endeavour Segment in the north-eastern Pacific Ocean. It was obligately anaerobic, hydrogenotrophic and reduced Fe(III) oxide to magnetite and NO3- to N2. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain was more than 97 % similar to other species of the genera Pyrodictium and Hyperthermus. Therefore, overall genome relatedness index analyses were performed to establish whether strain Su06T represents a novel species. For each analysis, strain Su06T was most similar to Pyrodictium occultum PL-19T. Relative to this strain, the average nucleotide identity score for strain Su06T was 72 %, the genome-to-genome direct comparison score was 13-19 % and the species identification score at the protein level was 89 %. For each analysis, strain Su06T was below the species delineation cutoff. Based on its whole genome sequence and its unique phenotypic characteristics, strain Su06T is suggested to represent a novel species of the genus Pyrodictium, for which the name Pyrodictium delaneyi is proposed. The type strain is Su06T (=DSM 28599T=ATCC BAA-2559T).
Collapse
Affiliation(s)
- T Jennifer Lin
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Gabriel El Sebae
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Jong-Hyun Jung
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | - Dong-Hyun Jung
- Graduate School of Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Cheon-Seok Park
- Graduate School of Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - James F Holden
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|