1
|
Retter A, Griebler C, Nilsson RH, Haas J, Birk S, Breyer E, Baltar F, Karwautz C. Metabarcoding reveals ecologically distinct fungal assemblages in river and groundwater along an Austrian alpine to lowland gradient. FEMS Microbiol Ecol 2024; 100:fiae139. [PMID: 39390678 PMCID: PMC11523079 DOI: 10.1093/femsec/fiae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/04/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024] Open
Abstract
Biodiversity, the source of origin, and ecological roles of fungi in groundwater are to this day a largely neglected field in fungal and freshwater ecology. We used DNA-based Illumina high-throughput sequence analysis of both fungal gene markers 5.8S and internal transcribed spacers region 2 (ITS2), improving taxonomic classification. This study focused on the groundwater and river mycobiome along an altitudinal and longitudinal transect of a pre-alpine valley in Austria in two seasons. Using Bayesian network modeling approaches, we identified patterns in fungal community assemblages that were mostly shaped by differences in landscape (climatic, topological, and geological) and environmental conditions. While river fungi were comparatively more diverse, unique fungal assemblages could be recovered from groundwater, including typical aquatic lineages such as Rozellomycota and Olpidiomycota. The most specious assemblages in groundwater were not linked to the input of organic material from the surface, and as such, seem to be sustained by characteristic groundwater conditions. Based on what is known from closely related fungi, our results suggest that the present fungal communities potentially contribute to mineral weathering, carbon cycling, and denitrification in groundwater. Furthermore, we were able to observe the effects of varying land cover due to agricultural practices on fungal biodiversity in groundwater ecosystems. This study contributes to improving our understanding of fungi in the subsurface aquatic biogeosphere.
Collapse
Affiliation(s)
- Alice Retter
- Leibniz Institute for Freshwater Ecology and Inland Fisheries, IGB, Zur alten Fischerhuette 2, 16775 Neuglobsow, Germany
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Christian Griebler
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - R Henrik Nilsson
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530 Göteborg, Sweden
| | - Johannes Haas
- Department of Earth Sciences, NAWI Graz Geocenter, University of Graz, 8010 Graz, Austria
| | - Steffen Birk
- Department of Earth Sciences, NAWI Graz Geocenter, University of Graz, 8010 Graz, Austria
| | - Eva Breyer
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Federico Baltar
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- College of Oceanography and Ecological Science, Shanghai Ocean University, 1104 Pingliang Rd, Yangpu District, 200082 Shanghai, China
| | - Clemens Karwautz
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| |
Collapse
|
2
|
Cheng X, Zhao R, Bodelier PLE, Song Y, Yang K, Tuovinen OH, Wang H. Differential response of subterranean microbiome to exogenous organic matter input in a cave ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176584. [PMID: 39349195 DOI: 10.1016/j.scitotenv.2024.176584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
As a recurrent climatic phenomenon in the context of climate change, extreme rainstorms induce vertical translocation of organic matter and increase moisture content in terrestrial ecosystems. However, it remains unclear whether heavy rainstorms can impact microbial communities in the deep biosphere by modulating organic matter input. In this study, we present findings on the different responses of bacterial and fungal communities in a subsurface cave to rainstorms and moisture variations through field surveys and microcosm experiments. During periods of rainstorms, the influx of dissolved organic matter (DOM) from soil overlying the cave into cave sediments significantly enhanced the correlation between core bacteria and environmental factors, particularly fluorescence spectral indices. The resource utilization of core bacteria was diminished, while the functional diversity of core fungi remained relatively unaltered. We also performed simulated experiments with restricted external DOM inputs, in which DOM content was observed to decrease and microbial diversity increase in response to artificially increased moisture content (MC). The niche breadth of core bacteria decreased and became more closely associated with DOM as the MC increased, while the niche breadth of core fungi remained predominantly unchanged. Compared to fungi, cave bacteria exhibited higher sensitivity towards variations in DOM. The core microbiome can efficiently utilize the available organic matter and participate in nitrogen- and sulfur-related metabolic processes. The study systematically revealed distinct microbial responses to rainstorm events, thereby providing valuable insights for future investigations into energy utilization within deep biospheres.
Collapse
Affiliation(s)
- Xiaoyu Cheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, the Netherlands
| | - Rui Zhao
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Paul L E Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, the Netherlands
| | - Yuyang Song
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Kang Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Olli H Tuovinen
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
3
|
Hoque E, Fritscher J. Are anaerobic fungi crucial hidden players of microbiomes in anoxic environment? Crit Rev Microbiol 2024; 50:540-563. [PMID: 37452612 DOI: 10.1080/1040841x.2023.2224425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 07/18/2023]
Abstract
Anaerobic fungi are known to migrate and establish a 3D network of biofilms (microbiomes) and live invisible in the rumen and terrestrial subsurface, deep-sea - marine, and anoxic environment. They deserve our attention to understand anoxic fungal ecology and functions and develop new products and solutions. Such fungi activate unique genes to produce various polysaccharidases deemed essential for degrading plants' lignocellulosic materials. Nutrient release, recycling, and physical support by anaerobic fungi are crucial for microbiome formation. Multiple reports point to the ability of strictly anaerobic and facultative fungi to adapt and live in anoxic subsurface. Deep-sea sediments and natural anoxic methane-emitting salty waters of sulfidic springs offer suitable habitats for developing prokaryotic-fungal microbiomes. Researchers found a billion-year-old fossil of the fungus-prokaryotic sulfate-reducing consortium buried in deep-sea biospheres. Fungal spores' ability to migrate, even after germination, through sandy layers demonstrates their potential to move up and down porous geological layers or rock fissures. Selective fungal affinity to specific wood in wood chip arrays might help differentiate viable anaerobic fungi from an anoxic environment for their rapid collection and investigation. New collection methods, cultivation, gene expression, and drug and enzyme activity analyses can boost anaerobic fungal research.
Collapse
Affiliation(s)
- Enamul Hoque
- Department of Biotechnology, University of Science and Technology, Foy's Lake, Chittagong, Bangladesh
- International Virtual Institute for Advanced Science and Technology (IVAST), Section Microbial Technology, Munich, Germany
- Department of Environmental Science, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Neuherberg, Germany
| | - Johannes Fritscher
- Department of Biotechnology, University of Science and Technology, Foy's Lake, Chittagong, Bangladesh
- International Virtual Institute for Advanced Science and Technology (IVAST), Section Microbial Technology, Munich, Germany
- Department of Environmental Science, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
4
|
Li Z, Sun L, Liu S, Lei P, Wang R, Li S, Gu Y. Interkingdom network analyses reveal microalgae and protostomes as keystone taxa involved in nutrient cycling in large freshwater lake sediment. FEMS Microbiol Ecol 2023; 99:fiad111. [PMID: 37715306 DOI: 10.1093/femsec/fiad111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/26/2023] [Accepted: 09/14/2023] [Indexed: 09/17/2023] Open
Abstract
Few studies have explored the role of interkingdom interactions between bacteria and microeukaryotes in nutrient cycling in lake ecosystems. We conducted sediment sampling from 40 locations covering Hongze Lake and analyzed their chemical properties. Intra- and interkingdom networks were constructed using 16S and 18S rRNA gene amplicon sequencing. Microeukaryotic intranetworks were more complex in spring than in autumn, while no clear variation in the complexity of bacterial intranetworks was found between autumn and spring. Larger and more complex bacterial-microeukaryotic bipartite networks emerged in spring than in autumn, correlated with lower carbon, nitrogen, and phosphorus levels in spring, likely resulting in intense microbial competition. Bacteria and microeukaryotes played different topological roles in interkingdom networks, with microeukaryotes contributing to the networks' greater complexity. Seven keystone modules were identified in spring and autumn nutrient cycling. Importantly, keystone taxa in these modules belonged to photoautotrophic microalgae or predatory protostomes, indicating that these organisms are key drivers in lake sediment nutrient cycling. Our results suggested that nutrient content variation in autumn and spring changes interkingdom networks' topological structure between bacteria and microeukaryotes. Microalgae and protostomes are essential in freshwater lake nutrient cycling and may be targeted to modulate nutrient cycling in large freshwater ecosystems.
Collapse
Affiliation(s)
- Zhidan Li
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Liang Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Sijie Liu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Peng Lei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Rui Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Yian Gu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P.R. China
| |
Collapse
|
5
|
Jiang JP, Liu X, Liao YF, Shan J, Zhu YP, Liu CH. Genomic insights into Aspergillus sydowii 29R-4-F02: unraveling adaptive mechanisms in subseafloor coal-bearing sediment environments. Front Microbiol 2023; 14:1216714. [PMID: 37455735 PMCID: PMC10339353 DOI: 10.3389/fmicb.2023.1216714] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Aspergillussydowii is an important filamentous fungus that inhabits diverse environments. However, investigations on the biology and genetics of A. sydowii in subseafloor sediments remain limited. Methods Here, we performed de novo sequencing and assembly of the A. sydowii 29R-4-F02 genome, an isolate obtained from approximately 2.4 km deep, 20-million-year-old coal-bearing sediments beneath the seafloor by employing the Nanopore sequencing platform. Results and Discussion The generated genome was 37.19 Mb with GC content of 50.05%. The final assembly consisted of 11 contigs with N50 of 4.6 Mb, encoding 12,488 putative genes. Notably, the subseafloor strain 29R-4-F02 showed a higher number of carbohydrate-active enzymes (CAZymes) and distinct genes related to vesicular fusion and autophagy compared to the terrestrial strain CBS593.65. Furthermore, 257 positively selected genes, including those involved in DNA repair and CAZymes were identified in subseafloor strain 29R-4-F02. These findings suggest that A. sydowii possesses a unique genetic repertoire enabling its survival in the extreme subseafloor environments over tens of millions of years.
Collapse
Affiliation(s)
- Jun-Peng Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Xuan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Yi-Fan Liao
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yu-Ping Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Chang-Hong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Sobol MS, Hoshino T, Delgado V, Futagami T, Kadooka C, Inagaki F, Kiel Reese B. Genome characterization of two novel deep-sea sediment fungi, Penicillium pacificagyrus sp. nov. and Penicillium pacificasedimenti sp. nov., from South Pacific Gyre subseafloor sediments, highlights survivability. BMC Genomics 2023; 24:249. [PMID: 37165355 PMCID: PMC10173653 DOI: 10.1186/s12864-023-09320-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/18/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Marine deep subsurface sediments were once thought to be devoid of eukaryotic life, but advances in molecular technology have unlocked the presence and activity of well-known closely related terrestrial and marine fungi. Commonly detected fungi in deep marine sediment environments includes Penicillium, Aspergillus, Cladosporium, Fusarium, and Schizophyllum, which could have important implications in carbon and nitrogen cycling in this isolated environment. In order to determine the diversity and unknown metabolic capabilities of fungi in deep-sea sediments, their genomes need to be fully analyzed. In this study, two Penicillium species were isolated from South Pacific Gyre sediment enrichments during Integrated Ocean Drilling Program Expedition 329. The inner gyre has very limited productivity, organic carbon, and nutrients. RESULTS Here, we present high-quality genomes of two proposed novel Penicillium species using Illumina HiSeq and PacBio sequencing technologies. Single-copy homologues within the genomes were compared to other closely related genomes using OrthoMCL and maximum-likelihood estimation, which showed that these genomes were novel species within the genus Penicillium. We propose to name isolate SPG-F1 as Penicillium pacificasedimenti sp. nov. and SPG-F15 as Penicillium pacificagyrus sp. nov. The resulting genome sizes were 32.6 Mbp and 36.4 Mbp, respectively, and both genomes were greater than 98% complete as determined by the presence of complete single-copy orthologs. The transposable elements for each genome were 4.87% for P. pacificasedimenti and 10.68% for P. pacificagyrus. A total of 12,271 genes were predicted in the P. pacificasedimenti genome and 12,568 genes in P. pacificagyrus. Both isolates contained genes known to be involved in the degradation of recalcitrant carbon, amino acids, and lignin-derived carbon. CONCLUSIONS Our results provide the first constructed genomes of novel Penicillium isolates from deep marine sediments, which will be useful for future studies of marine subsurface fungal diversity and function. Furthermore, these genomes shed light on the potential impact fungi in marine sediments and the subseafloor could have on global carbon and nitrogen biogeochemical cycles and how they may be persisting in the most energy-limited sedimentary biosphere.
Collapse
Affiliation(s)
- Morgan S Sobol
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Baden-Württemberg, Germany
| | - Tatsuhiko Hoshino
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi, 783-8502, Japan
| | - Victor Delgado
- Department of Life Sciences, TX A&M University, Corpus Christi, Texas, USA
| | - Taiki Futagami
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Chihiro Kadooka
- Department of Biotechnology and Life Science, Faculty of Biotechnology and Life Science, Sojo University, Ikeda, Nishiku, Kumamoto, 860-0082, Japan
| | - Fumio Inagaki
- Mantle Drilling Promotion Office, Institute for Marine Earth Exploration and Engineering (MarE3), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, 236- 0001, Japan
- Department of Earth Sciences, Graduate School of Science, Tohoku University, Sendai, 980-8574, Japan
| | - Brandi Kiel Reese
- Dauphin Island Sea Lab, Dauphin Island, Alabama, USA.
- Stokes School of Marine and Environmental Sciences, University of South Alabama, Mobile, AL, USA.
| |
Collapse
|
7
|
Genomics discovery of giant fungal viruses from subsurface oceanic crustal fluids. ISME COMMUNICATIONS 2023; 3:10. [PMID: 36732595 PMCID: PMC9894930 DOI: 10.1038/s43705-022-00210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 02/04/2023]
Abstract
The oceanic igneous crust is a vast reservoir for microbial life, dominated by diverse and active bacteria, archaea, and fungi. Archaeal and bacterial viruses were previously detected in oceanic crustal fluids at the Juan de Fuca Ridge (JdFR). Here we report the discovery of two eukaryotic Nucleocytoviricota genomes from the same crustal fluids by sorting and sequencing single virions. Both genomes have a tRNATyr gene with an intron (20 bps) at the canonical position between nucleotide 37 and 38, a common feature in eukaryotic and archaeal tRNA genes with short introns (<100 bps), and fungal genes acquired through horizontal gene transfer (HGT) events. The dominance of Ascomycota fungi as the main eukaryotes in crustal fluids and the evidence for HGT point to these fungi as the putative hosts, making these the first putative fungi-Nucleocytoviricota specific association. Our study suggests active host-viral dynamics for the only eukaryotic group found in the subsurface oceanic crust and raises important questions about the impact of viral infection on the productivity and biogeochemical cycling in this ecosystem.
Collapse
|
8
|
Roik A, Reverter M, Pogoreutz C. A roadmap to understanding diversity and function of coral reef-associated fungi. FEMS Microbiol Rev 2022; 46:fuac028. [PMID: 35746877 PMCID: PMC9629503 DOI: 10.1093/femsre/fuac028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 01/09/2023] Open
Abstract
Tropical coral reefs are hotspots of marine productivity, owing to the association of reef-building corals with endosymbiotic algae and metabolically diverse bacterial communities. However, the functional importance of fungi, well-known for their contribution to shaping terrestrial ecosystems and global nutrient cycles, remains underexplored on coral reefs. We here conceptualize how fungal functional traits may have facilitated the spread, diversification, and ecological adaptation of marine fungi on coral reefs. We propose that functions of reef-associated fungi may be diverse and go beyond their hitherto described roles of pathogens and bioeroders, including but not limited to reef-scale biogeochemical cycles and the structuring of coral-associated and environmental microbiomes via chemical mediation. Recent technological and conceptual advances will allow the elucidation of the physiological, ecological, and chemical contributions of understudied marine fungi to coral holobiont and reef ecosystem functioning and health and may help provide an outlook for reef management actions.
Collapse
Affiliation(s)
- Anna Roik
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Ammerländer Heerstraße 231, 26129 Oldenburg, Germany
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, 26046, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Miriam Reverter
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, 26046, Germany
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom
| | - Claudia Pogoreutz
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
9
|
McMahon S, Ivarsson M, Wacey D, Saunders M, Belivanova V, Muirhead D, Knoll P, Steinbock O, Frost DA. Dubiofossils from a Mars-analogue subsurface palaeoenvironment: The limits of biogenicity criteria. GEOBIOLOGY 2021; 19:473-488. [PMID: 33951268 DOI: 10.1111/gbi.12445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/12/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
The search for a fossil record of Earth's deep biosphere, partly motivated by potential analogies with subsurface habitats on Mars, has uncovered numerous assemblages of inorganic microfilaments and tubules inside ancient pores and fractures. Although these enigmatic objects are morphologically similar to mineralized microorganisms (and some contain organic carbon), they also resemble some abiotic structures. Palaeobiologists have responded to this ambiguity by evaluating problematic filaments against checklists of "biogenicity criteria". Here, we describe material that tests the limits of this approach. We sampled Jurassic calcite veins formed through subseafloor serpentinization, a water-rock reaction that can fuel the deep biosphere and is known to have occurred widely on Mars. At two localities ~4 km apart, veins contained curving, branched microfilaments composed of Mg-silicate and Fe-oxide minerals. Using a wide range of analytical techniques including synchrotron X-ray microtomography and scanning transmission electron microscopy, we show that these features meet many published criteria for biogenicity and are comparable to fossilized cryptoendolithic fungi or bacteria. However, we argue that abiotic processes driven by serpentinization could account for the same set of lifelike features, and report a chemical garden experiment that supports this view. These filaments are, therefore, most objectively described as dubiofossils, a designation we here defend from criticism and recommend over alternative approaches, but which nevertheless signifies an impasse. Similar impasses can be anticipated in the future exploration of subsurface palaeo-habitats on Earth and Mars. To avoid them, further studies are required in biomimetic geochemical self-organization, microbial taphonomy and micro-analytical techniques, with a focus on subsurface habitats.
Collapse
Affiliation(s)
- Sean McMahon
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
- School of Geosciences, Grant Institute, University of Edinburgh, Edinburgh, UK
| | - Magnus Ivarsson
- Department of Paleobiology, Swedish Museum of Natural History, Stockholm, Sweden
| | - David Wacey
- Centre for Microscopy Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia
| | - Martin Saunders
- Centre for Microscopy Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia
| | - Veneta Belivanova
- Department of Paleobiology, Swedish Museum of Natural History, Stockholm, Sweden
| | - David Muirhead
- School of Geosciences, King's College, University of Aberdeen, Aberdeen, UK
| | - Pamela Knoll
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Daniel A Frost
- Department of Earth & Planetary Science, University of California, Berkeley, CA, USA
| |
Collapse
|
10
|
Keeler E, Burgaud G, Teske A, Beaudoin D, Mehiri M, Dayras M, Cassand J, Edgcomb V. Deep-sea hydrothermal vent sediments reveal diverse fungi with antibacterial activities. FEMS Microbiol Ecol 2021; 97:6318858. [PMID: 34245561 DOI: 10.1093/femsec/fiab103] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022] Open
Abstract
Relatively little is known about the diversity of fungi in deep-sea, hydrothermal sediments. Less thoroughly explored environments are likely untapped reservoirs of unique biodiversity with the potential to augment our current arsenal of microbial compounds with biomedical and/or industrial applications. In this study, we applied traditional culture-based methods to examine a subset of the morphological and phylogenetic diversity of filamentous fungi and yeasts present in 11 hydrothermally influenced sediment samples collected from eight sites on the seafloor of Guaymas Basin, Mexico. A total of 12 unique isolates affiliating with Ascomycota and Basidiomycota were obtained and taxonomically identified on the basis of morphological features and analyses of marker genes including actin, β-tubulin, small subunit ribosomal DNA (18S rRNA), internal transcribed spacer (ITS) and large subunit ribosomal DNA (26S rRNA) D1/D2 domain sequences (depending on taxon). A total of 11 isolates possess congeners previously detected in, or recovered from, deep-sea environments. A total of seven isolates exhibited antibacterial activity against human bacterial pathogens Staphylococcus aureus ATCC-35556 and/or Escherichia coli ATCC-25922. This first investigation suggests that hydrothermal environments may serve as promising reservoirs of much greater fungal diversity, some of which may produce biomedically useful metabolites.
Collapse
Affiliation(s)
- Emma Keeler
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, 220 McLean, Mail Stop 08, Woods Hole, MA 02543, USA
| | - Gaëtan Burgaud
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne, ESIAB, Université de Brest, EA 3882, Technopôle Brest-Iroise, Plouzané, France
| | - Andreas Teske
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Murray Hall 3117B, Chapel Hill, NC 27599, USA
| | - David Beaudoin
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, 220 McLean, Mail Stop 08, Woods Hole, MA 02543, USA
| | - Mohamed Mehiri
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272, Marine Natural Products Team, 06108 Nice, France
| | - Marie Dayras
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272, Marine Natural Products Team, 06108 Nice, France
| | - Jacquelin Cassand
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272, Marine Natural Products Team, 06108 Nice, France
| | - Virginia Edgcomb
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, 220 McLean, Mail Stop 08, Woods Hole, MA 02543, USA
| |
Collapse
|
11
|
Phylogenomic Analyses of Nucleotide-Sugar Biosynthetic and Interconverting Enzymes Illuminate Cell Wall Composition in Fungi. mBio 2021; 12:mBio.03540-20. [PMID: 33849982 PMCID: PMC8092308 DOI: 10.1128/mbio.03540-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fungi are an enormously successful eukaryotic lineage that has colonized every aerobic habitat on Earth. This spectacular expansion is reflected in the dynamism and diversity of the fungal cell wall, a matrix of polysaccharides and glycoproteins pivotal to fungal life history strategies and a major target in the development of antifungal compounds. Cell wall polysaccharides are typically synthesized by Leloir glycosyltransferases, enzymes that are notoriously difficult to characterize, but their nucleotide-sugar substrates are well known and provide the opportunity to inspect the monosaccharides available for incorporation into cell wall polysaccharides and glycoproteins. In this work, we have used phylogenomic analyses of the enzymatic pathways that synthesize and interconvert nucleotide-sugars to predict potential cell wall monosaccharide composition across 491 fungal taxa. The results show a complex evolutionary history of these cell wall enzyme pathways and, by association, of the fungal cell wall. In particular, we see a significant reduction in monosaccharide diversity during fungal evolution, most notably in the colonization of terrestrial habitats. However, monosaccharide distribution is also shown to be varied across later-diverging fungal lineages.IMPORTANCE This study provides new insights into the complex evolutionary history of the fungal cell wall. We analyzed fungal enzymes that convert sugars acquired from the environment into the diverse sugars that make up the fundamental building blocks of the cell wall. Species-specific profiles of these nucleotide-sugar interconverting (NSI) enzymes for 491 fungi demonstrated multiple losses and gains of NSI proteins, revealing the rich diversity of cell wall architecture across the kingdom. Pragmatically, because cell walls are essential to fungi, our observations of variation in sugar diversity have important implications for the development of antifungal compounds that target the sugar profiles of specific pathogens.
Collapse
|
12
|
Gan T, Luo T, Pang K, Zhou C, Zhou G, Wan B, Li G, Yi Q, Czaja AD, Xiao S. Cryptic terrestrial fungus-like fossils of the early Ediacaran Period. Nat Commun 2021; 12:641. [PMID: 33510166 PMCID: PMC7843733 DOI: 10.1038/s41467-021-20975-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023] Open
Abstract
The colonization of land by fungi had a significant impact on the terrestrial ecosystem and biogeochemical cycles on Earth surface systems. Although fungi may have diverged ~1500-900 million years ago (Ma) or even as early as 2400 Ma, it is uncertain when fungi first colonized the land. Here we report pyritized fungus-like microfossils preserved in the basal Ediacaran Doushantuo Formation (~635 Ma) in South China. These micro-organisms colonized and were preserved in cryptic karstic cavities formed via meteoric water dissolution related to deglacial isostatic rebound after the terminal Cryogenian snowball Earth event. They are interpreted as eukaryotes and probable fungi, thus providing direct fossil evidence for the colonization of land by fungi and offering a key constraint on fungal terrestrialization.
Collapse
Affiliation(s)
- Tian Gan
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
- Department of Geosciences, Virginia Tech, Blacksburg, VA, USA
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Taiyi Luo
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China.
| | - Ke Pang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Chuanming Zhou
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China
| | - Guanghong Zhou
- School of Geography and Resources, Guizhou Education University, Guiyang, China
| | - Bin Wan
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China
| | - Gang Li
- Institute of High Energy Physics, CAS, Beijing, China
| | - Qiru Yi
- University of Chinese Academy of Sciences, Beijing, China
| | - Andrew D Czaja
- Department of Geology, University of Cincinnati, Cincinnati, OH, USA
| | - Shuhai Xiao
- Department of Geosciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
13
|
Quemener M, Mara P, Schubotz F, Beaudoin D, Li W, Pachiadaki M, Sehein TR, Sylvan JB, Li J, Barbier G, Edgcomb V, Burgaud G. Meta-omics highlights the diversity, activity and adaptations of fungi in deep oceanic crust. Environ Microbiol 2020; 22:3950-3967. [PMID: 32743889 DOI: 10.1111/1462-2920.15181] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 02/03/2023]
Abstract
The lithified oceanic crust, lower crust gabbros in particular, has remained largely unexplored by microbiologists. Recently, evidence for heterogeneously distributed viable and transcriptionally active autotrophic and heterotrophic microbial populations within low-biomass communities was found down to 750 m below the seafloor at the Atlantis Bank Gabbro Massif, Indian Ocean. Here, we report on the diversity, activity and adaptations of fungal communities in the deep oceanic crust from ~10 to 780 mbsf by combining metabarcoding analyses with mid/high-throughput culturing approaches. Metabarcoding along with culturing indicate a low diversity of viable fungi, mostly affiliated to ubiquitous (terrestrial and aquatic environments) taxa. Ecophysiological analyses coupled with metatranscriptomics point to viable and transcriptionally active fungal populations engaged in cell division, translation, protein modifications and other vital cellular processes. Transcript data suggest possible adaptations for surviving in the nutrient-poor, lithified deep biosphere that include the recycling of organic matter. These active communities appear strongly influenced by the presence of cracks and veins in the rocks where fluids and resulting rock alteration create micro-niches.
Collapse
Affiliation(s)
- Maxence Quemener
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Technopôle Brest-Iroise, Plouzané, France
| | - Paraskevi Mara
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA.,Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Florence Schubotz
- MARUM-Center for Marine Environmental Sciences, University Bremen, Leobener Strasse 8, Bremen, 28359, Germany
| | - David Beaudoin
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA.,Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Wei Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Maria Pachiadaki
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA.,Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Taylor R Sehein
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA.,Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Jason B Sylvan
- Department of Oceanography, Texas A&M University, College Station, TX, 77845, USA
| | - Jiangtao Li
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Georges Barbier
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Technopôle Brest-Iroise, Plouzané, France
| | - Virginia Edgcomb
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA.,Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Gaëtan Burgaud
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Technopôle Brest-Iroise, Plouzané, France
| |
Collapse
|
14
|
Cullings K, Stott MB, Marinkovich N, DeSimone J, Bhardwaj S. Phylum-level diversity of the microbiome of the extremophilic basidiomycete fungus Pisolithus arhizus (Scop.) Rauschert: An island of biodiversity in a thermal soil desert. Microbiologyopen 2020; 9:e1062. [PMID: 32478485 PMCID: PMC7424252 DOI: 10.1002/mbo3.1062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 11/16/2022] Open
Abstract
We used high‐throughput DNA sequencing methods combined with bio‐geochemical profiles to characterize the internal environment and community structure of the microbiome of the basidiomycete fungus Pisolithus arhizus (Scop.) Rauschert from soils within a geothermal feature of Yellowstone National Park. Pisolithus arhizus is unique in that it forms closed fruiting bodies that sequester visible sulfur within. Fourier transform infrared spectroscopy (FTIR) analysis demonstrates that the P. arhizus fruiting body also concentrates copper, manganese, nickel, and zinc and contains pure granular silica. Gas chromatography‐mass spectrometry (GC‐MS) analysis indicates an environment rich in hydrocarbons. Oxygen probe analysis reveals that zones of up to 4× atmospheric oxygen exist within nanometers of zones of near anoxia. Analysis of microbial community structure using high‐throughput DNA sequencing methods shows that the fruiting body supports a microbiome that reflects the physiochemical environment of the fruiting body. Diversity and richness measures indicate a microbiome that is significantly richer and more diverse than that of the soils in which P. arhizus grows. Further, P. arhizus sporocarps are enriched significantly in Proteobacteria (primarily Burkholderia) Gemmatimonadetes, Bacteroidetes, Verrucomicrobia, Nitrospirae, Elusimicrobia, and Latescibacteria (WS3) while soils are enriched in Actinobacteria (primarily Mycobacterium), Dormibacteraeota (AD3), and Eremiobacteraeota (WPS‐2). Finally, pairwise % similarity comparisons indicate that P. arhizus harbors two lineages that may represent new groups in the candidate phylum radiation (CPR). Together, these results demonstrate that P. arhizus provides a novel environment for microbiome studies and provides for interesting hypotheses regarding the evolution, origins, and functions of symbioses and novel microbes.
Collapse
Affiliation(s)
- Ken Cullings
- JQ Division, NASA-Ames Research Center, Moffett Field, California, USA
| | - Matthew B Stott
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | | | - Julia DeSimone
- JQ Division, NASA-Ames Research Center, Moffett Field, California, USA
| | - Shilpa Bhardwaj
- JQ Division, NASA-Ames Research Center, Moffett Field, California, USA
| |
Collapse
|
15
|
Ivarsson M, Drake H, Bengtson S, Rasmussen B. A Cryptic Alternative for the Evolution of Hyphae. Bioessays 2020; 42:e1900183. [DOI: 10.1002/bies.201900183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/03/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Magnus Ivarsson
- Department of BiologyUniversity of Southern Denmark Campusvej 55 Odense M DK 5230 Denmark
- Department of PaleobiologySwedish Museum of Natural History Box 50007 Stockholm SE‐104 05 Sweden
| | - Henrik Drake
- Department of Biology and Environmental ScienceLinnaeus University Kalmar 391 82 Sweden
| | - Stefan Bengtson
- Department of PaleobiologySwedish Museum of Natural History Box 50007 Stockholm SE‐104 05 Sweden
| | - Birger Rasmussen
- School of Earth SciencesThe University of Western Australia Nedlands WA 6009 Australia
| |
Collapse
|
16
|
Johannessen KC, McLoughlin N, Vullum PE, Thorseth IH. On the biogenicity of Fe-oxyhydroxide filaments in silicified low-temperature hydrothermal deposits: Implications for the identification of Fe-oxidizing bacteria in the rock record. GEOBIOLOGY 2020; 18:31-53. [PMID: 31532578 DOI: 10.1111/gbi.12363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 08/02/2019] [Accepted: 08/31/2019] [Indexed: 06/10/2023]
Abstract
Microaerophilic Fe(II)-oxidizing bacteria produce biomineralized twisted and branched stalks, which are promising biosignatures of microbial Fe oxidation in ancient jaspers and iron formations. Extracellular Fe stalks retain their morphological characteristics under experimentally elevated temperatures, but the extent to which natural post-depositional processes affect fossil integrity remains to be resolved. We examined siliceous Fe deposits from laminated mounds and chimney structures from an extinct part of the Jan Mayen Vent Fields on the Arctic Mid-Ocean Ridge. Our aims were to determine how early seafloor diagenesis affects morphological and chemical signatures of Fe-oxyhydroxide biomineralization and how extracellular stalks differ from abiogenic features. Optical and scanning electron microscopy in combination with focused ion beam-transmission electron microscopy (FIB-TEM) was used to study the filamentous textures and cross sections of individual stalks. Our results revealed directional, dendritic, and radial arrangements of biogenic twisted stalks and randomly organized networks of hollow tubes. Stalks were encrusted by concentric Fe-oxyhydroxide laminae and silica casings. Element maps produced by energy dispersive X-ray spectroscopy (EDS) in TEM showed variations in the content of Si, P, and S within filaments, demonstrating that successive hydrothermal fluid pulses mediate early diagenetic alteration and modify the chemical composition and surface features of stalks through Fe-oxyhydroxide mineralization. The carbon content of the stalks was generally indistinguishable from background levels, suggesting that organic compounds were either scarce initially or lost due to percolating hydrothermal fluids. Dendrites and thicker abiotic filaments from a nearby chimney were composed of nanometer-sized microcrystalline iron particles and silica and showed Fe growth bands indicative of inorganic precipitation. Our study suggests that the identification of fossil stalks and sheaths of Fe-oxidizing bacteria in hydrothermal paleoenvironments may not rely on the detection of organic carbon and demonstrates that abiogenic filaments differ from stalks and sheaths of Fe-oxidizing bacteria with respect to width distribution, ultrastructure, and textural context.
Collapse
Affiliation(s)
- Karen C Johannessen
- K. G. Jebsen Centre for Deep Sea Research and Department of Earth Science, University of Bergen, Bergen, Norway
| | - Nicola McLoughlin
- Department of Geology and the Albany Museum, Rhodes University, Grahamstown, South Africa
| | - Per Erik Vullum
- Department of Materials and Nanotechnology, SINTEF Industry, Trondheim, Norway
- Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ingunn H Thorseth
- K. G. Jebsen Centre for Deep Sea Research and Department of Earth Science, University of Bergen, Bergen, Norway
| |
Collapse
|
17
|
Exceptional Preservation of Fungi as H2-Bearing Fluid Inclusions in an Early Quaternary Paleo-Hydrothermal System at Cape Vani, Milos, Greece. MINERALS 2019. [DOI: 10.3390/min9120749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The production of H2 in hydrothermal systems and subsurface settings is almost exclusively assumed a result of abiotic processes, particularly serpentinization of ultramafic rocks. The origin of H2 in environments not hosted in ultramafic rocks is, as a rule, unjustifiably linked to abiotic processes. Additionally, multiple microbiological processes among both prokaryotes and eukaryotes are known to involve H2-production, of which anaerobic fungi have been put forward as a potential source of H2 in subsurface environments, which is still unconfirmed. Here, we report fungal remains exceptionally preserved as fluid inclusions in hydrothermal quartz from feeder quartz-barite veins from the Cape Vani Fe-Ba-Mn ore on the Greek island of Milos. The inclusions possess filamentous or near-spheroidal morphologies interpreted as remains of fungal hyphae and spores, respectively. They were characterized by microthermometry, Raman spectroscopy, and staining of exposed inclusions with WGA-FITC under fluorescence microscopy. The spheroidal aqueous inclusions interpreted as fungal spores are unique by their coating of Mn-oxide birnessite, and gas phase H2. A biological origin of the H2 resulting from anaerobic fungal respiration is suggested. We propose that biologically produced H2 by micro-eukaryotes is an unrecognized source of H2 in hydrothermal systems that may support communities of H2-dependent prokaryotes.
Collapse
|
18
|
Fossilized Endolithic Microorganisms in Pillow Lavas from the Troodos Ophiolite, Cyprus. GEOSCIENCES 2019. [DOI: 10.3390/geosciences9110456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The last decade has revealed the igneous oceanic crust to host a more abundant and diverse biota than previously expected. These underexplored rock-hosted deep ecosystems dominated Earth’s biosphere prior to plants colonized land in the Ordovician, thus the fossil record of deep endoliths holds invaluable clues to early life and the work to decrypt them needs to be intensified. Here, we present fossilized microorganisms found in open and sealed pore spaces in pillow lavas from the Troodos Ophiolite (91 Ma) on Cyprus. A fungal interpretation is inferred upon the microorganisms based on characteristic morphological features. Geochemical conditions are reconstructed using data from mineralogy, fluid inclusions and the fossils themselves. Mineralogy indicates at least three hydrothermal events and a continuous increase of temperature and pH. Precipitation of 1) celadonite and saponite together with the microbial introduction was followed by 2) Na and Ca zeolites resulting in clay adherence on the microorganisms as protection, and finally 3) Ca carbonates resulted in final fossilization and preservation of the organisms in-situ. Deciphering the fossil record of the deep subseafloor biosphere is a challenging task, but when successful, can unlock doors to life’s cryptic past.
Collapse
|
19
|
Onstott T, Ehlmann B, Sapers H, Coleman M, Ivarsson M, Marlow J, Neubeck A, Niles P. Paleo-Rock-Hosted Life on Earth and the Search on Mars: A Review and Strategy for Exploration. ASTROBIOLOGY 2019; 19:1230-1262. [PMID: 31237436 PMCID: PMC6786346 DOI: 10.1089/ast.2018.1960] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 04/25/2019] [Indexed: 05/19/2023]
Abstract
Here we review published studies on the abundance and diversity of terrestrial rock-hosted life, the environments it inhabits, the evolution of its metabolisms, and its fossil biomarkers to provide guidance in the search for life on Mars. Key findings are (1) much terrestrial deep subsurface metabolic activity relies on abiotic energy-yielding fluxes and in situ abiotic and biotic recycling of metabolic waste products rather than on buried organic products of photosynthesis; (2) subsurface microbial cell concentrations are highest at interfaces with pronounced chemical redox gradients or permeability variations and do not correlate with bulk host rock organic carbon; (3) metabolic pathways for chemolithoautotrophic microorganisms evolved earlier in Earth's history than those of surface-dwelling phototrophic microorganisms; (4) the emergence of the former occurred at a time when Mars was habitable, whereas the emergence of the latter occurred at a time when the martian surface was not continually habitable; (5) the terrestrial rock record has biomarkers of subsurface life at least back hundreds of millions of years and likely to 3.45 Ga with several examples of excellent preservation in rock types that are quite different from those preserving the photosphere-supported biosphere. These findings suggest that rock-hosted life would have been more likely to emerge and be preserved in a martian context. Consequently, we outline a Mars exploration strategy that targets subsurface life and scales spatially, focusing initially on identifying rocks with evidence for groundwater flow and low-temperature mineralization, then identifying redox and permeability interfaces preserved within rock outcrops, and finally focusing on finding minerals associated with redox reactions and associated traces of carbon and diagnostic chemical and isotopic biosignatures. Using this strategy on Earth yields ancient rock-hosted life, preserved in the fossil record and confirmable via a suite of morphologic, organic, mineralogical, and isotopic fingerprints at micrometer scale. We expect an emphasis on rock-hosted life and this scale-dependent strategy to be crucial in the search for life on Mars.
Collapse
Affiliation(s)
- T.C. Onstott
- Department of Geosciences, Princeton University, Princeton, New Jersey, USA
- Address correspondence to: T.C. Onstott, Department of Geosciences, Princeton University,, Princeton, NJ 008544
| | - B.L. Ehlmann
- Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- B.L. Ehlmann, Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| | - H. Sapers
- Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - M. Coleman
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- NASA Astrobiology Institute, Pasadena, California, USA
| | - M. Ivarsson
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - J.J. Marlow
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - A. Neubeck
- Department of Earth Sciences, Uppsala University, Uppsala, Sweden
| | - P. Niles
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, Texas, USA
| |
Collapse
|
20
|
Abstract
Clay authigenesis associated with the activity of microorganisms is an important process for biofilm preservation and may provide clues to the formation of biominerals on the ancient Earth. Fossilization of fungal biofilms attached to vesicles or cracks in igneous rock, is characterized by fungal-induced clay mineralization and can be tracked in deep rock and deep time, from late Paleoproterozoic (2.4 Ga), to the present. Here we briefly review the current data on clay mineralization by fossil fungal biofilms from oceanic and continental subsurface igneous rock. The aim of this study was to compare the nature of subsurface fungal clays from different igneous settings to evaluate the importance of host rock and ambient redox conditions for clay speciation related to fossil microorganisms. Our study suggests that the most common type of authigenic clay associated with pristine fossil fungal biofilms in both oxic (basaltic) and anoxic (granitic) settings are montmorillonite-like smectites and confirms a significant role of fungal biofilms in the cycling of elements between host rock, ocean and secondary precipitates. The presence of life in the deep subsurface may thus prove more significant than host rock geochemistry in directing the precipitation of authigenic clays in the igneous crust, the extent of which remains to be fully understood.
Collapse
|
21
|
Marine Fungi: Biotechnological Perspectives from Deep-Hypersaline Anoxic Basins. DIVERSITY 2019. [DOI: 10.3390/d11070113] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Deep-sea hypersaline anoxic basins (DHABs) are one of the most hostile environments on Earth. Even though DHABs have hypersaline conditions, anoxia and high hydrostatic pressure, they host incredible microbial biodiversity. Among eukaryotes inhabiting these systems, recent studies demonstrated that fungi are a quantitatively relevant component. Here, fungi can benefit from the accumulation of large amounts of organic material. Marine fungi are also known to produce bioactive molecules. In particular, halophilic and halotolerant fungi are a reservoir of enzymes and secondary metabolites with valuable applications in industrial, pharmaceutical, and environmental biotechnology. Here we report that among the fungal taxa identified from the Mediterranean and Red Sea DHABs, halotolerant halophilic species belonging to the genera Aspergillus and Penicillium can be used or screened for enzymes and bioactive molecules. Fungi living in DHABs can extend our knowledge about the limits of life, and the discovery of new species and molecules from these environments can have high biotechnological potential.
Collapse
|
22
|
McMahon S, Ivarsson M. A New Frontier for Palaeobiology: Earth's Vast Deep Biosphere. Bioessays 2019; 41:e1900052. [PMID: 31241200 DOI: 10.1002/bies.201900052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/29/2019] [Indexed: 11/11/2022]
Abstract
Diverse micro-organisms populate a global deep biosphere hosted by rocks and sediments beneath land and sea, containing more biomass than any other biome except forests. This paper reviews an emerging palaeobiological archive of these dark habitats: microfossils preserved in ancient pores and fractures in the crust. This archive, seemingly dominated by mineralized filaments (although rods and coccoids are also reported), is presently far too sparsely sampled and poorly understood to reveal trends in the abundance, distribution, or diversity of deep life through time. New research is called for to establish the nature and extent of the fossil record of Earth's deep biosphere by combining systematic exploration, rigorous microanalysis, and experimental studies of both microbial preservation and the formation of abiotic pseudofossils within the crust. It is concluded that the fossil record of Earth's largest microbial habitat may still have much to tell us about the history of life, the evolution of biogeochemical cycles, and the search for life on Mars.
Collapse
Affiliation(s)
- Sean McMahon
- School of Geosciences, University of Edinburgh, Edinburgh, EH8 9XP, UK.,UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - Magnus Ivarsson
- Department of Biology, University of Southern Denmark, DK-5230, Odense, Denmark.,Department of Palaeobiology, Swedish Museum of Natural History, Stockholm, SE-104 05, Sweden
| |
Collapse
|
23
|
Ferrier J, Yang Y, Csetenyi L, Gadd GM. Colonization, penetration and transformation of manganese oxide nodules by Aspergillus niger. Environ Microbiol 2019; 21:1821-1832. [PMID: 30884070 PMCID: PMC6849720 DOI: 10.1111/1462-2920.14591] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/13/2019] [Indexed: 11/28/2022]
Abstract
In this study, the ability of the geoactive fungus Aspergillus niger to colonize and transform manganese nodules from the Clarion-Clipperton Zone in both solid and liquid media was investigated. Aspergillus niger was able to colonize and penetrate manganese nodules embedded in solid medium and effect extensive transformation of the mineral in both fragmented and powder forms, precipitating manganese and calcium oxalates. Transformation of manganese nodule powder also occurred in a liquid medium in which A. niger was able to remove the fine particles from suspension which were accumulated within the central region of the resulting mycelial pellets and transformed into manganese oxalate dihydrate (lindbergite) and calcium oxalate dihydrate (weddellite). These findings contribute to an understanding of environmental processes involving insoluble manganese oxides, with practical relevance to chemoorganotrophic mineral bioprocessing applications, and, to the best of our knowledge, represent the first demonstration of fundamental direct and indirect interactions between geoactive fungi and manganese nodules.
Collapse
Affiliation(s)
- John Ferrier
- Geomicrobiology GroupSchool of Life Sciences, University of DundeeDundee, DD1 5EHScotland, UK
| | - Yuyi Yang
- Geomicrobiology GroupSchool of Life Sciences, University of DundeeDundee, DD1 5EHScotland, UK
| | - Laszlo Csetenyi
- Concrete Technology Group, Department of Civil EngineeringUniversity of DundeeDundee, DD1 4HNScotland, UK
| | - Geoffrey Michael Gadd
- Geomicrobiology GroupSchool of Life Sciences, University of DundeeDundee, DD1 5EHScotland, UK
| |
Collapse
|
24
|
Purvis G, van der Land C, Sano N, Cockell C, Barlow A, Cumpson P, Lopez-Capel E, Gray N. The organic stratigraphy of Ontong Java Plateau Tuff correlated with the depth-related presence and absence of putative microbial alteration structures. GEOBIOLOGY 2019; 17:281-293. [PMID: 30525281 DOI: 10.1111/gbi.12326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/27/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Structures in geological samples are often interpreted as fossilised life; however, such interpretations are equivocal, as abiotic processes can be invoked to explain their presence. Thus, additional lines of chemical evidence are invaluable in confirming or refuting such morphological evidence. Glass shards in tuff from the Ontong Java Plateau (OJP) contain microtubular structures that are in close proximity to functionalised nitrogen substituted aromatic compounds that may be indicative of the chemical remnants of biological activity. The organic composition of the OJP tuff containing microtubular alteration structures was compared with tuff without such features. In addition, organic matter associated with horizons with compacted remnants of woody material buried in the OJP tuff and overlying pelagic calcareous foraminifer sediment were also characterised, to ascertain the provenance of the organic matter found in the OJP tuff. As a further control, the organic material in submarine and terrestrial basalts from other locations were also characterised providing further evidence to support the view that the organic matter in the OJP tuff is authigenic. Carbon-nitrogen chemistry was detected across all OJP tuff samples irrespective of the presence or absence of microtubular features, but was not detected in either the wood material, the overlying pelagic sediments or in the basalts from other locations. The results indicate no direct link between the OJP nitrogenous organic compounds and the presence or absence of microtubular features.
Collapse
Affiliation(s)
- Graham Purvis
- Earth, Ocean & Planetary Science Research, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Cees van der Land
- Earth, Ocean & Planetary Science Research, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Naoko Sano
- National ESCA and XPS Users' Service (NEXUS), Newcastle University, Newcastle-upon-Tyne, UK
| | - Charles Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Anders Barlow
- Centre for Materials and Surface Science, Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria, Australia
| | - Peter Cumpson
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Elisa Lopez-Capel
- Earth, Ocean & Planetary Science Research, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Neil Gray
- Earth, Ocean & Planetary Science Research, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
25
|
Amend A, Burgaud G, Cunliffe M, Edgcomb VP, Ettinger CL, Gutiérrez MH, Heitman J, Hom EFY, Ianiri G, Jones AC, Kagami M, Picard KT, Quandt CA, Raghukumar S, Riquelme M, Stajich J, Vargas-Muñiz J, Walker AK, Yarden O, Gladfelter AS. Fungi in the Marine Environment: Open Questions and Unsolved Problems. mBio 2019; 10:e01189-18. [PMID: 30837337 PMCID: PMC6401481 DOI: 10.1128/mbio.01189-18] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Terrestrial fungi play critical roles in nutrient cycling and food webs and can shape macroorganism communities as parasites and mutualists. Although estimates for the number of fungal species on the planet range from 1.5 to over 5 million, likely fewer than 10% of fungi have been identified so far. To date, a relatively small percentage of described species are associated with marine environments, with ∼1,100 species retrieved exclusively from the marine environment. Nevertheless, fungi have been found in nearly every marine habitat explored, from the surface of the ocean to kilometers below ocean sediments. Fungi are hypothesized to contribute to phytoplankton population cycles and the biological carbon pump and are active in the chemistry of marine sediments. Many fungi have been identified as commensals or pathogens of marine animals (e.g., corals and sponges), plants, and algae. Despite their varied roles, remarkably little is known about the diversity of this major branch of eukaryotic life in marine ecosystems or their ecological functions. This perspective emerges from a Marine Fungi Workshop held in May 2018 at the Marine Biological Laboratory in Woods Hole, MA. We present the state of knowledge as well as the multitude of open questions regarding the diversity and function of fungi in the marine biosphere and geochemical cycles.
Collapse
Affiliation(s)
- Anthony Amend
- Department of Botany, University of Hawai'i at Manoa, Honolulu, Hawaii, USA
| | - Gaetan Burgaud
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise, Plouzané, France
| | - Michael Cunliffe
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, United Kingdom
| | - Virginia P Edgcomb
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | | | - M H Gutiérrez
- Departamento de Oceanografía, Centro de Investigación Oceanográfica COPAS Sur-Austral, Universidad de Concepción, Concepción, Chile
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Erik F Y Hom
- Department of Biology, University of Mississippi, Oxford, Mississippi, USA
| | - Giuseppe Ianiri
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Adam C Jones
- Gordon and Betty Moore Foundation, Palo Alto, California, USA
| | - Maiko Kagami
- Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Japan
| | - Kathryn T Picard
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - C Alisha Quandt
- Ecology and Evolutionary Biology Department, University of Colorado, Boulder, Colorado, USA
| | | | - Mertixell Riquelme
- Department of Microbiology, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, Baja California, Mexico
| | - Jason Stajich
- Department of Microbiology & Plant Pathology and Institute for Integrative Genome Biology, University of California-Riverside, Riverside, California, USA
| | - José Vargas-Muñiz
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Allison K Walker
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| |
Collapse
|
26
|
Ivarsson M, Skogby H, Phichaikamjornwut B, Bengtson S, Siljeström S, Ounchanum P, Boonsoong A, Kruachanta M, Marone F, Belivanova V, Holmström S. Intricate tunnels in garnets from soils and river sediments in Thailand - Possible endolithic microborings. PLoS One 2018; 13:e0200351. [PMID: 30089115 PMCID: PMC6082506 DOI: 10.1371/journal.pone.0200351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 06/25/2018] [Indexed: 11/30/2022] Open
Abstract
Garnets from disparate geographical environments and origins such as oxidized soils and river sediments in Thailand host intricate systems of microsized tunnels that significantly decrease the quality and value of the garnets as gems. The origin of such tunneling has previously been attributed to abiotic processes. Here we present physical and chemical remains of endolithic microorganisms within the tunnels and discuss a probable biological origin of the tunnels. Extensive investigations with synchrotron-radiation X-ray tomographic microscopy (SRXTM) reveal morphological indications of biogenicity that further support a euendolithic interpretation. We suggest that the production of the tunnels was initiated by a combination of abiotic and biological processes, and that at later stages biological processes came to dominate. In environments such as river sediments and oxidized soils garnets are among the few remaining sources of bio-available Fe2+, thus it is likely that microbially mediated boring of the garnets has trophic reasons. Whatever the reason for garnet boring, the tunnel system represents a new endolithic habitat in a hard silicate mineral otherwise known to be resistant to abrasion and chemical attack.
Collapse
Affiliation(s)
- Magnus Ivarsson
- University of Southern Denmark, Department of Biology and Nordic Center for Earth Evolution, Odense M, Denmark
- Swedish Museum of Natural History, Department of Palaeobiology, Stockholm, Sweden
- * E-mail:
| | - Henrik Skogby
- Swedish Museum of Natural History, Department of Geosciences, Stockholm, Sweden
| | | | - Stefan Bengtson
- Swedish Museum of Natural History, Department of Palaeobiology, Stockholm, Sweden
| | - Sandra Siljeström
- RISE Research Institutes of Sweden, Bioscience and Materials/Chemistry and Materials, Stockholm, Sweden
| | - Prayote Ounchanum
- Department of Geological Sciences, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Apichet Boonsoong
- Department of Geological Sciences, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Mingkhwan Kruachanta
- Department of Geological Sciences, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Federica Marone
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Veneta Belivanova
- Swedish Museum of Natural History, Department of Palaeobiology, Stockholm, Sweden
| | - Sara Holmström
- Stockholm University, Department of Geological Sciences, Stockholm, Sweden
| |
Collapse
|
27
|
Rangel DE, Finlay RD, Hallsworth JE, Dadachova E, Gadd GM. Fungal strategies for dealing with environment- and agriculture-induced stresses. Fungal Biol 2018; 122:602-612. [DOI: 10.1016/j.funbio.2018.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/05/2018] [Accepted: 02/09/2018] [Indexed: 01/21/2023]
|
28
|
|
29
|
Ivarsson M, Bengtson S, Drake H, Francis W. Fungi in Deep Subsurface Environments. ADVANCES IN APPLIED MICROBIOLOGY 2018; 102:83-116. [PMID: 29680127 DOI: 10.1016/bs.aambs.2017.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The igneous crust of the oceans and the continents represents the major part of Earth's lithosphere and has recently been recognized as a substantial, yet underexplored, microbial habitat. While prokaryotes have been the focus of most investigations, microeukaryotes have been surprisingly neglected. However, recent work acknowledges eukaryotes, and in particular fungi, as common inhabitants of the deep biosphere, including the deep igneous provinces. The fossil record of the subseafloor igneous crust, and to some extent the continental bedrock, establishes fungi or fungus-like organisms as inhabitants of deep rock since at least the Paleoproterozoic, which challenges the present notion of early fungal evolution. Additionally, deep fungi have been shown to play an important ecological role engaging in symbiosis-like relationships with prokaryotes, decomposing organic matter, and being responsible for mineral weathering and formation, thus mediating mobilization of biogeochemically important elements. In this review, we aim at covering the abundance and diversity of fungi in the various igneous rock provinces on Earth as well as describing the ecological impact of deep fungi. We further discuss what consequences recent findings might have for the understanding of the fungal distribution in extensive anoxic environments and for early fungal evolution.
Collapse
Affiliation(s)
- Magnus Ivarsson
- Nordic Center for Earth Evolution, University of Southern Denmark, Odense, Denmark; Swedish Museum of Natural History, Stockholm, Sweden.
| | | | | | - Warren Francis
- Nordic Center for Earth Evolution, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
30
|
Hoque E, Fritscher J. Ecology, adaptation, and function of methane-sulfidic spring water biofilm microorganisms, including a strain of anaerobic fungus Mucor hiemalis. Microbiologyopen 2017; 6:e00483. [PMID: 28544612 PMCID: PMC5552911 DOI: 10.1002/mbo3.483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 02/27/2017] [Accepted: 03/13/2017] [Indexed: 11/11/2022] Open
Abstract
Ecological aspects, adaptation, and some functions of a special biofilm and its unique key anaerobic fungus Mucor hiemalis strain EH11 isolated from a pristine spring (Künzing, Bavaria, Germany) are described. The spring's pure nature is characterized by, for example, bubbling methane, marine-salinity, mild hydrothermal (~19.1°C), sulfidic, and reductive-anoxic (Eh : -241 to -253 mV, O2 : ≤ 0.1 mg/L) conditions. It is geoecologically located at the border zone between Bavarian Forest (crystalline rocky mountains) and the moor-like Danube River valley, where geological displacements bring the spring's water from the deeper layers of former marine sources up to the surface. In the spring's outflow, a special biofilm with selective microorganisms consisting of archaea, bacteria, protozoa (ciliate), and fungus was found. Typical sulfidic-spring bryophyta and macrozoobenthos were missing, but many halo- and anaerotolerant diatoms and ciliate Vorticella microstoma beside EH11 were identified. Phase contrast and scanning electron microscopy revealed the existence of a stabilizing matrix in the biofilm formed by the sessile fungal hyphae and the exopolysaccharide substance (EPS) structures, which harbors other microorganisms. In response to ecological adaptation pressure caused by methane bubbles, EH11 developed an atypical spring-like hyphal morphology, similar to the spiral stalk of ciliate V. microstoma, to rise up with methane bubbles. For the first time, it was also demonstrated that under strict anaerobic conditions EH11 changes its asexual reproduction process by forming pseudosporangia via hyphal cell divisions as well as switching its metabolism to chemoautotrophic bacteria-like anaerobic life using acetate as an e-donor and ferrihydrite as an e-acceptor, all without fermentation. EH11 can be suggested to be useful for the microbial community in the Künzing biofilm not only due to its physical stabilization of the biofilm's matrix but also due to its ecological functions in element recycling as well as a remover of toxic metals.
Collapse
Affiliation(s)
- Enamul Hoque
- Helmholtz Zentrum München GmbH – German Research Center for Environmental HealthInstitute of Groundwater EcologyNeuherbergGermany
| | - Johannes Fritscher
- Helmholtz Zentrum München GmbH – German Research Center for Environmental HealthInstitute of Groundwater EcologyNeuherbergGermany
| |
Collapse
|
31
|
Gleason FH, Gadd GM, Pitt JI, Larkum AWD. The roles of endolithic fungi in bioerosion and disease in marine ecosystems. I. General concepts. Mycology 2017; 8:205-215. [PMID: 30123641 PMCID: PMC6059151 DOI: 10.1080/21501203.2017.1352049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/03/2017] [Indexed: 01/30/2023] Open
Abstract
Endolithic true fungi and fungus-like microorganisms penetrate calcareous substrates formed by living organisms, cause significant bioerosion and are involved in diseases of many host animals in marine ecosystems. A theoretical interactive model for the ecology of reef-building corals is proposed in this review. This model includes five principle partners that exist in a dynamic equilibrium: polyps of a colonial coelenterate, endosymbiotic zooxanthellae, endolithic algae (that penetrate coral skeletons), endolithic fungi (that attack the endolithic algae, the zooxanthellae and the polyps) and prokaryotic and eukaryotic microorganisms (which live in the coral mucus). Endolithic fungi and fungus-like boring microorganisms are important components of the marine calcium carbonate cycle because they actively contribute to the biodegradation of shells of animals composed of calcium carbonate and calcareous geological substrates.
Collapse
Affiliation(s)
- Frank H. Gleason
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Geoffrey M Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, Scotland
| | - John I Pitt
- Food, Safety and Quality, CSIRO, Ryde, NSW, Australia
| | - Anthony W. D Larkum
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
32
|
Drake H, Ivarsson M, Bengtson S, Heim C, Siljeström S, Whitehouse MJ, Broman C, Belivanova V, Åström ME. Anaerobic consortia of fungi and sulfate reducing bacteria in deep granite fractures. Nat Commun 2017; 8:55. [PMID: 28676652 PMCID: PMC5496868 DOI: 10.1038/s41467-017-00094-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/31/2017] [Indexed: 11/08/2022] Open
Abstract
The deep biosphere is one of the least understood ecosystems on Earth. Although most microbiological studies in this system have focused on prokaryotes and neglected microeukaryotes, recent discoveries have revealed existence of fossil and active fungi in marine sediments and sub-seafloor basalts, with proposed importance for the subsurface energy cycle. However, studies of fungi in deep continental crystalline rocks are surprisingly few. Consequently, the characteristics and processes of fungi and fungus-prokaryote interactions in this vast environment remain enigmatic. Here we report the first findings of partly organically preserved and partly mineralized fungi at great depth in fractured crystalline rock (-740 m). Based on environmental parameters and mineralogy the fungi are interpreted as anaerobic. Synchrotron-based techniques and stable isotope microanalysis confirm a coupling between the fungi and sulfate reducing bacteria. The cryptoendolithic fungi have significantly weathered neighboring zeolite crystals and thus have implications for storage of toxic wastes using zeolite barriers.Deep subsurface microorganisms play an important role in nutrient cycling, yet little is known about deep continental fungal communities. Here, the authors show organically preserved and partly mineralized fungi at 740 m depth, and find evidence of an anaerobic fungi and sulfate reducing bacteria consortium.
Collapse
Affiliation(s)
- Henrik Drake
- Department of Biology and Environmental Science, Linnæus University, Kalmar, 39182, Sweden.
| | - Magnus Ivarsson
- Department of Palaeobiology and Nordic Center for Earth Evolution (NordCEE), Swedish Museum of Natural History, P.O. Box 50 007, Stockholm, 10405, Sweden
| | - Stefan Bengtson
- Department of Palaeobiology and Nordic Center for Earth Evolution (NordCEE), Swedish Museum of Natural History, P.O. Box 50 007, Stockholm, 10405, Sweden
| | - Christine Heim
- Geoscience Centre Göttingen of the Georg-August University (Department of Geobiology), Goldschmidtstr. 3, Göttingen, 37077, Germany
| | - Sandra Siljeström
- Department of Surfaces, Chemistry and Materials, SP Technical Research Institute of Sweden, P.O. Box 857, Borås, 50115, Sweden
| | - Martin J Whitehouse
- Department of Geosciences and Nordic Center for Earth Evolution (NordCEE), Swedish Museum of Natural History, P.O. Box 50007, Stockholm, 10405, Sweden
| | - Curt Broman
- Department of Geological Sciences, Stockholm University, Stockholm, 106 91, Sweden
| | - Veneta Belivanova
- Department of Palaeobiology and Nordic Center for Earth Evolution (NordCEE), Swedish Museum of Natural History, P.O. Box 50 007, Stockholm, 10405, Sweden
| | - Mats E Åström
- Department of Biology and Environmental Science, Linnæus University, Kalmar, 39182, Sweden
| |
Collapse
|
33
|
Fungus-like mycelial fossils in 2.4-billion-year-old vesicular basalt. Nat Ecol Evol 2017; 1:141. [PMID: 28812648 DOI: 10.1038/s41559-017-0141] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/15/2017] [Indexed: 11/09/2022]
Abstract
Fungi have recently been found to comprise a significant part of the deep biosphere in oceanic sediments and crustal rocks. Fossils occupying fractures and pores in Phanerozoic volcanics indicate that this habitat is at least 400 million years old, but its origin may be considerably older. A 2.4-billion-year-old basalt from the Palaeoproterozoic Ongeluk Formation in South Africa contains filamentous fossils in vesicles and fractures. The filaments form mycelium-like structures growing from a basal film attached to the internal rock surfaces. Filaments branch and anastomose, touch and entangle each other. They are indistinguishable from mycelial fossils found in similar deep-biosphere habitats in the Phanerozoic, where they are attributed to fungi on the basis of chemical and morphological similarities to living fungi. The Ongeluk fossils, however, are two to three times older than current age estimates of the fungal clade. Unless they represent an unknown branch of fungus-like organisms, the fossils imply that the fungal clade is considerably older than previously thought, and that fungal origin and early evolution may lie in the oceanic deep biosphere rather than on land. The Ongeluk discovery suggests that life has inhabited submarine volcanics for more than 2.4 billion years.
Collapse
|
34
|
Abstract
ABSTRACT
Geomicrobiology addresses the roles of microorganisms in geological and geochemical processes, and geomycology is a part of this topic focusing on the fungi. Geoactive roles of fungi include organic and inorganic transformations important in nutrient and element cycling, rock and mineral bioweathering, mycogenic biomineral formation, and metal-fungal interactions. Lichens and mycorrhizas are significant geoactive agents. Organic matter decomposition is important for cycling of major biomass-associated elements, e.g., C, H, N, O, P, and S, as well as all other elements found in lower concentrations. Transformations of metals and minerals are central to geomicrobiology, and fungi affect changes in metal speciation, as well as mediate mineral formation or dissolution. Such mechanisms are components of biogeochemical cycles for metals as well as associated elements in biomass, soil, rocks, and minerals, e.g., S, P, and metalloids. Fungi may have the greatest geochemical influence within the terrestrial environment. However, they are also important in the aquatic environment and are significant components of the deep subsurface, extreme environments, and habitats polluted by xenobiotics, metals, and radionuclides. Applications of geomycology include metal and radionuclide bioleaching, biorecovery, detoxification, bioremediation, and the production of biominerals or metal(loid) elements with catalytic or other properties. Adverse effects include biodeterioration of natural and synthetic materials, rock and mineral-based building materials (e.g., concrete), cultural heritage, metals, alloys, and related substances and adverse effects on radionuclide mobility and containment. The ubiquity and importance of fungi in the biosphere underline the importance of geomycology as a conceptual framework encompassing the environmental activities of fungi.
Collapse
|
35
|
Pachiadaki MG, Rédou V, Beaudoin DJ, Burgaud G, Edgcomb VP. Fungal and Prokaryotic Activities in the Marine Subsurface Biosphere at Peru Margin and Canterbury Basin Inferred from RNA-Based Analyses and Microscopy. Front Microbiol 2016; 7:846. [PMID: 27375571 PMCID: PMC4899926 DOI: 10.3389/fmicb.2016.00846] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/22/2016] [Indexed: 11/13/2022] Open
Abstract
The deep sedimentary biosphere, extending 100s of meters below the seafloor harbors unexpected diversity of Bacteria, Archaea, and microbial eukaryotes. Far less is known about microbial eukaryotes in subsurface habitats, albeit several studies have indicated that fungi dominate microbial eukaryotic communities and fungal molecular signatures (of both yeasts and filamentous forms) have been detected in samples as deep as 1740 mbsf. Here, we compare and contrast fungal ribosomal RNA gene signatures and whole community metatranscriptomes present in sediment core samples from 6 and 95 mbsf from Peru Margin site 1229A and from samples from 12 and 345 mbsf from Canterbury Basin site U1352. The metatranscriptome analyses reveal higher relative expression of amino acid and peptide transporters in the less nutrient rich Canterbury Basin sediments compared to the nutrient rich Peru Margin, and higher expression of motility genes in the Peru Margin samples. Higher expression of genes associated with metals transporters and antibiotic resistance and production was detected in Canterbury Basin sediments. A poly-A focused metatranscriptome produced for the Canterbury Basin sample from 345 mbsf provides further evidence for active fungal communities in the subsurface in the form of fungal-associated transcripts for metabolic and cellular processes, cell and membrane functions, and catalytic activities. Fungal communities at comparable depths at the two geographically separated locations appear dominated by distinct taxa. Differences in taxonomic composition and expression of genes associated with particular metabolic activities may be a function of sediment organic content as well as oceanic province. Microscopic analysis of Canterbury Basin sediment samples from 4 and 403 mbsf produced visualizations of septate fungal filaments, branching fungi, conidiogenesis, and spores. These images provide another important line of evidence supporting the occurrence and activity of fungi in the deep subseafloor biosphere.
Collapse
Affiliation(s)
- Maria G Pachiadaki
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution Woods Hole, MA, USA
| | - Vanessa Rédou
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, EA 3882, ESIAB, Technopôle de Brest Iroise, Université de Brest Plouzané, France
| | - David J Beaudoin
- Department of Biology, Woods Hole Oceanographic Institution Woods Hole, MA, USA
| | - Gaëtan Burgaud
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, EA 3882, ESIAB, Technopôle de Brest Iroise, Université de Brest Plouzané, France
| | - Virginia P Edgcomb
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution Woods Hole, MA, USA
| |
Collapse
|
36
|
Ivarsson M, Schnürer A, Bengtson S, Neubeck A. Anaerobic Fungi: A Potential Source of Biological H2 in the Oceanic Crust. Front Microbiol 2016; 7:674. [PMID: 27433154 PMCID: PMC4922220 DOI: 10.3389/fmicb.2016.00674] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/25/2016] [Indexed: 11/23/2022] Open
Abstract
The recent recognition of fungi in the oceanic igneous crust challenges the understanding of this environment as being exclusively prokaryotic and forces reconsiderations of the ecology of the deep biosphere. Anoxic provinces in the igneous crust are abundant and increase with age and depth of the crust. The presence of anaerobic fungi in deep-sea sediments and on the seafloor introduces a type of organism with attributes of geobiological significance not previously accounted for. Anaerobic fungi are best known from the rumen of herbivores where they produce molecular hydrogen, which in turn stimulates the growth of methanogens. The symbiotic cooperation between anaerobic fungi and methanogens in the rumen enhance the metabolic rate and growth of both. Methanogens and other hydrogen-consuming anaerobic archaea are known from subseafloor basalt; however, the abiotic production of hydrogen is questioned to be sufficient to support such communities. Alternatively, biologically produced hydrogen could serve as a continuous source. Here, we propose anaerobic fungi as a source of bioavailable hydrogen in the oceanic crust, and a close interplay between anaerobic fungi and hydrogen-driven prokaryotes.
Collapse
Affiliation(s)
- Magnus Ivarsson
- Department of Palaeobiology and Nordic Center for Earth Evolution, Swedish Museum of Natural History Stockholm, Sweden
| | - Anna Schnürer
- Department of Microbiology, Uppsala BioCenter, Swedish University of Agricultural Sciences Uppsala, Sweden
| | - Stefan Bengtson
- Department of Palaeobiology and Nordic Center for Earth Evolution, Swedish Museum of Natural History Stockholm, Sweden
| | - Anna Neubeck
- Department of Geological Sciences, Stockholm University Stockholm, Sweden
| |
Collapse
|
37
|
|
38
|
Engelhardt T, Orsi WD, Jørgensen BB. Viral activities and life cycles in deep subseafloor sediments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:868-873. [PMID: 26109514 DOI: 10.1111/1758-2229.12316] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 06/19/2015] [Indexed: 06/04/2023]
Abstract
Viruses are highly abundant in marine subsurface sediments and can even exceed the number of prokaryotes. However, their activity and quantitative impact on microbial populations are still poorly understood. Here, we use gene expression data from published continental margin subseafloor metatranscriptomes to qualitatively assess viral diversity and activity in sediments up to 159 metres below seafloor (mbsf). Mining of the metatranscriptomic data revealed 4651 representative viral homologues (RVHs), representing 2.2% of all metatranscriptome sequence reads, which have close translated homology (average 77%, range 60-97% amino acid identity) to viral proteins. Archaea-infecting RVHs are exclusively detected in the upper 30 mbsf, whereas RVHs for filamentous inoviruses predominate in the deepest sediment layers. RVHs indicative of lysogenic phage-host interactions and lytic activity, notably cell lysis, are detected at all analysed depths and suggest a dynamic virus-host association in the marine deep biosphere studied here. Ongoing lytic viral activity is further indicated by the expression of clustered, regularly interspaced, short palindromic repeat-associated cascade genes involved in cellular defence against viral attacks. The data indicate the activity of viruses in subsurface sediment of the Peruvian margin and suggest that viruses indeed cause cell mortality and may play an important role in the turnover of subseafloor microbial biomass.
Collapse
Affiliation(s)
- Tim Engelhardt
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Ny Munkegade 116, Aarhus, 8000, Denmark
| | - William D Orsi
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA, 02543, USA
| | - Bo Barker Jørgensen
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Ny Munkegade 116, Aarhus, 8000, Denmark
| |
Collapse
|
39
|
A Fungal-Prokaryotic Consortium at the Basalt-Zeolite Interface in Subseafloor Igneous Crust. PLoS One 2015; 10:e0140106. [PMID: 26488482 PMCID: PMC4619311 DOI: 10.1371/journal.pone.0140106] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/22/2015] [Indexed: 11/19/2022] Open
Abstract
We have after half a century of coordinated scientific drilling gained insight into Earth´s largest microbial habitat, the subseafloor igneous crust, but still lack substantial understanding regarding its abundance, diversity and ecology. Here we describe a fossilized microbial consortium of prokaryotes and fungi at the basalt-zeolite interface of fractured subseafloor basalts from a depth of 240 m below seafloor (mbsf). The microbial consortium and its relationship with the surrounding physical environment are revealed by synchrotron-based X-ray tomographic microscopy (SRXTM), environmental scanning electron microscopy (ESEM), and Raman spectroscopy. The base of the consortium is represented by microstromatolites—remains of bacterial communities that oxidized reduced iron directly from the basalt. The microstromatolites and the surrounding basalt were overlaid by fungal cells and hyphae. The consortium was overgrown by hydrothermally formed zeolites but remained alive and active during this event. After its formation, fungal hyphae bored in the zeolite, producing millimetre-long tunnels through the mineral substrate. The dissolution could either serve to extract metals like Ca, Na and K essential for fungal growth and metabolism, or be a response to environmental stress owing to the mineral overgrowth. Our results show how microbial life may be maintained in a nutrient-poor and extreme environment by close ecological interplay and reveal an effective strategy for nutrient extraction from minerals. The prokaryotic portion of the consortium served as a carbon source for the eukaryotic portion. Such an approach may be a prerequisite for prokaryotic-eukaryotic colonisation of, and persistence in, subseafloor igneous crust.
Collapse
|
40
|
Ivarsson M, Peckmann J, Tehler A, Broman C, Bach W, Behrens K, Reitner J, Böttcher ME, Norbäck Ivarsson L. Zygomycetes in Vesicular Basanites from Vesteris Seamount, Greenland Basin--A New Type of Cryptoendolithic Fungi. PLoS One 2015; 10:e0133368. [PMID: 26181773 PMCID: PMC4504512 DOI: 10.1371/journal.pone.0133368] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/26/2015] [Indexed: 11/18/2022] Open
Abstract
Fungi have been recognized as a frequent colonizer of subseafloor basalt but a substantial understanding of their abundance, diversity and ecological role in this environment is still lacking. Here we report fossilized cryptoendolithic fungal communities represented by mainly Zygomycetes and minor Ascomycetes in vesicles of dredged volcanic rocks (basanites) from the Vesteris Seamount in the Greenland Basin. Zygomycetes had not been reported from subseafloor basalt previously. Different stages in zygospore formation are documented in the studied samples, representing a reproduction cycle. Spore structures of both Zygomycetes and Ascomycetes are mineralized by romanechite-like Mn oxide phases, indicating an involvement in Mn(II) oxidation to form Mn(III,VI) oxides. Zygospores still exhibit a core of carbonaceous matter due to their resistance to degradation. The fungi are closely associated with fossiliferous marine sediments that have been introduced into the vesicles. At the contact to sediment infillings, fungi produced haustoria that penetrated and scavenged on the remains of fragmented marine organisms. It is most likely that such marine debris is the main carbon source for fungi in shallow volcanic rocks, which favored the establishment of vital colonies.
Collapse
Affiliation(s)
- Magnus Ivarsson
- Department of Palaeobiology and the Center for Earth Evolution (NordCEE), Swedish Museum of Natural History, Stockholm, Sweden
- * E-mail:
| | - Jörn Peckmann
- Department of Geodynamics and Sedimentology, Center for Earth Sciences, University of Vienna, Vienna, Austria
| | - Anders Tehler
- Department of Botany, Swedish Museum of Natural History, Stockholm, Sweden
| | - Curt Broman
- Department of Geological Sciences, Stockholm University, Svante Arrheniusväg 8, Stockholm, Sweden
| | - Wolfgang Bach
- MARUM–Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Katharina Behrens
- MARUM–Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Joachim Reitner
- Geobiology Group, Geoscience Centre, Georg-August University, Göttingen, Germany
| | - Michael E. Böttcher
- Geochemistry & Isotope Biogeochemistry Group, Department for Marine Geology, Leibniz Institute for Baltic Sea Research (IOW), Warnemünde, Germany
| | - Lena Norbäck Ivarsson
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Alfred Nobels Allé 7, Stockholm, Sweden
| |
Collapse
|
41
|
Ivarsson M, Broman C, Gustafsson H, Holm NG. Biogenic Mn-Oxides in Subseafloor Basalts. PLoS One 2015; 10:e0128863. [PMID: 26107948 PMCID: PMC4479566 DOI: 10.1371/journal.pone.0128863] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/03/2015] [Indexed: 11/18/2022] Open
Abstract
The deep biosphere of the subseafloor basalts is recognized as a major scientific frontier in disciplines like biology, geology, and oceanography. Recently, the presence of fungi in these environments has involved a change of view regarding diversity and ecology. Here, we describe fossilized fungal communities in vugs in subseafloor basalts from a depth of 936.65 metres below seafloor at the Detroit Seamount, Pacific Ocean. These fungal communities are closely associated with botryoidal Mn oxides composed of todorokite. Analyses of the Mn oxides by Electron Paramagnetic Resonance spectroscopy (EPR) indicate a biogenic signature. We suggest, based on mineralogical, morphological and EPR data, a biological origin of the botryoidal Mn oxides. Our results show that fungi are involved in Mn cycling at great depths in the seafloor and we introduce EPR as a means to easily identify biogenic Mn oxides in these environments.
Collapse
Affiliation(s)
- Magnus Ivarsson
- Department of Palaeobiology and the Nordic Center for Earth Evolution (NordCEE), Swedish Museum of Natural History, Stockholm, Sweden
- * E-mail:
| | - Curt Broman
- Department of Geological Sciences, Stockholm University, Stockholm, Sweden
| | - Håkan Gustafsson
- Department of Biomedical Engineering (MTÖ), County Council of Östergötland, Radiation Physics, Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Nils G. Holm
- Department of Geological Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
42
|
The Deep Biosphere of the Subseafloor Igneous Crust. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2015. [DOI: 10.1007/698_2015_5014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|