1
|
Kaçar B. Reconstructing Early Microbial Life. Annu Rev Microbiol 2024; 78:463-492. [PMID: 39163590 DOI: 10.1146/annurev-micro-041522-103400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
For more than 3.5 billion years, life experienced dramatic environmental extremes on Earth. These include shifts from oxygen-less to overoxygenated atmospheres and cycling between hothouse conditions and global glaciations. Meanwhile, an ecological revolution took place. Earth evolved from one dominated by microbial life to one containing the plants and animals that are most familiar today. Many key cellular features evolved early in the history of life, collectively defining the nature of our biosphere and underpinning human survival. Recent advances in molecular biology and bioinformatics have greatly improved our understanding of microbial evolution across deep time. However, the incorporation of molecular genetics, population biology, and evolutionary biology approaches into the study of Precambrian biota remains a significant challenge. This review synthesizes our current knowledge of early microbial life with an emphasis on ancient metabolisms. It also outlines the foundations of an emerging interdisciplinary area that integrates microbiology, paleobiology, and evolutionary synthetic biology to reconstruct ancient biological innovations.
Collapse
Affiliation(s)
- Betül Kaçar
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| |
Collapse
|
2
|
Anderson RP, Mughal S, Wedlake GO. Proterozoic microfossils continue to provide new insights into the rise of complex eukaryotic life. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240154. [PMID: 39170929 PMCID: PMC11336685 DOI: 10.1098/rsos.240154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/23/2024]
Abstract
Eukaryotes have evolved to dominate the biosphere today, accounting for most documented living species and the vast majority of the Earth's biomass. Consequently, understanding how these biologically complex organisms initially diversified in the Proterozoic Eon over 539 million years ago is a foundational question in evolutionary biology. Over the last 70 years, palaeontologists have sought to document the rise of eukaryotes with fossil evidence. However, the delicate and microscopic nature of their sub-cellular features affords early eukaryotes diminished preservation potential. Chemical biomarker signatures of eukaryotes and the genetics of living eukaryotes have emerged as complementary tools for reconstructing eukaryote ancestry. In this review, we argue that exceptionally preserved Proterozoic microfossils are critical to interpreting these complementary tools, providing crucial calibrations to molecular clocks and testing hypotheses of palaeoecology. We highlight recent research on their preservation and biomolecular composition that offers new ways to enhance their utility.
Collapse
Affiliation(s)
- Ross P. Anderson
- Museum of Natural History, University of Oxford, OxfordOX1 3PW, UK
- All Souls College, University of Oxford, OxfordOX1 4AL, UK
| | - Sanaa Mughal
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AlbertaT6G 2E3, Canada
| | - George O. Wedlake
- Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK
| |
Collapse
|
3
|
Hoshino Y, Gaucher EA. Impact of steroid biosynthesis on the aerobic adaptation of eukaryotes. GEOBIOLOGY 2024; 22:e12612. [PMID: 38967402 PMCID: PMC11234327 DOI: 10.1111/gbi.12612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Steroids are indispensable components of the eukaryotic cellular membrane and the acquisition of steroid biosynthesis was a key factor that enabled the evolution of eukaryotes. The polycyclic carbon structures of steroids can be preserved in sedimentary rocks as chemical fossils for billions of years and thus provide invaluable clues to trace eukaryotic evolution from the distant past. Steroid biosynthesis consists of (1) the production of protosteroids and (2) the subsequent modifications toward "modern-type" steroids such as cholesterol and stigmasterol. While protosteroid biosynthesis requires only two genes for the cyclization of squalene, complete modification of protosteroids involves ~10 additional genes. Eukaryotes universally possess at least some of those additional genes and thus produce modern-type steroids as major final products. The geological biomarker records suggest a prolonged period of solely protosteroid production in the mid-Proterozoic before the advent of modern-type steroids in the Neoproterozoic. It has been proposed that mid-Proterozoic protosteroids were produced by hypothetical stem-group eukaryotes that presumably possessed genes only for protosteroid production, even though in modern environments protosteroid production as a final product is found exclusively in bacteria. The host identity of mid-Proterozoic steroid producers is crucial for understanding the early evolution of eukaryotes. In this perspective, we discuss how geological biomarker data and genetic data complement each other and potentially provide a more coherent scenario for the evolution of steroids and associated early eukaryotes. We further discuss the potential impacts that steroids had on the evolution of aerobic metabolism in eukaryotes, which may have been an important factor for the eventual ecological dominance of eukaryotes in many modern environments.
Collapse
Affiliation(s)
- Yosuke Hoshino
- GFZ German Research Centre for Geosciences, Potsdam, Germany
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
- Synchrotron Radiation Research Center, Nagoya University, Nagoya, Japan
| | - Eric A Gaucher
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Yu Y, Li YP, Ren K, Hao X, Fru EC, Rønn R, Rivera WL, Becker K, Feng R, Yang J, Rensing C. A brief history of metal recruitment in protozoan predation. Trends Microbiol 2024; 32:465-476. [PMID: 38103995 DOI: 10.1016/j.tim.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/19/2023]
Abstract
Metals and metalloids are used as weapons for predatory feeding by unicellular eukaryotes on prokaryotes. This review emphasizes the role of metal(loid) bioavailability over the course of Earth's history, coupled with eukaryogenesis and the evolution of the mitochondrion to trace the emergence and use of the metal(loid) prey-killing phagosome as a feeding strategy. Members of the genera Acanthamoeba and Dictyostelium use metals such as zinc (Zn) and copper (Cu), and possibly metalloids, to kill their bacterial prey after phagocytosis. We provide a potential timeline on when these capacities first evolved and how they correlate with perceived changes in metal(loid) bioavailability through Earth's history. The origin of phagotrophic eukaryotes must have postdated the Great Oxidation Event (GOE) in agreement with redox-dependent modification of metal(loid) bioavailability for phagotrophic poisoning. However, this predatory mechanism is predicted to have evolved much later - closer to the origin of the multicellular metazoans and the evolutionary development of the immune systems.
Collapse
Affiliation(s)
- Yanshuang Yu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yuan-Ping Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Kexin Ren
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiuli Hao
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Ernest Chi Fru
- Centre for Geobiology and Geochemistry, School of Earth and Ocean Sciences, Cardiff University, CF10 3AT Cardiff, UK
| | - Regin Rønn
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Windell L Rivera
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Karsten Becker
- Friedrich Loeffler-Institute for Medical Microbiology, University Medicine Greifswald, D-17489 Greifswald, Germany
| | - Renwei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
5
|
Selden CR, Schilling K, Godfrey L, Yee N. Metal-binding amino acid ligands commonly found in metalloproteins differentially fractionate copper isotopes. Sci Rep 2024; 14:1902. [PMID: 38253574 PMCID: PMC11229503 DOI: 10.1038/s41598-024-52091-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Copper (Cu) is a cofactor in numerous key proteins and, thus, an essential element for life. In biological systems, Cu isotope abundances shift with metabolic and homeostatic state. However, the mechanisms underpinning these isotopic shifts remain poorly understood, hampering use of Cu isotopes as biomarkers. Computational predictions suggest that isotope fractionation occurs when proteins bind Cu, with the magnitude of this effect dependent on the identity and arrangement of the coordinating amino acids. This study sought to constrain equilibrium isotope fractionation values for Cu bound by common amino acids at protein metal-binding sites. Free and bound metal ions were separated via Donnan dialysis using a cation-permeable membrane. Isotope ratios of pre- and post-dialysis solutions were measured by MC-ICP-MS following purification. Sulfur ligands (cysteine) preferentially bound the light isotope (63Cu) relative to water (Δ65Cucomplex-free = - 0.48 ± 0.18‰) while oxygen ligands favored the heavy isotope (65Cu; + 0.26 ± 0.04‰ for glutamate and + 0.16 ± 0.10‰ for aspartate). Binding by nitrogen ligands (histidine) imparted no isotope effect (- 0.01 ± 0.04‰). This experimental work unequivocally demonstrates that amino acids differentially fractionate Cu isotopes and supports the hypothesis that metalloprotein biosynthesis affects the distribution of transition metal isotopes in biological systems.
Collapse
Affiliation(s)
- Corday R Selden
- Department of Marine and Coastal Sciences, Rutgers, University, New Brunswick, NJ, USA.
- Department of Earth and Planetary Sciences, Rutgers University, Piscataway, NJ, USA.
| | - Kathrin Schilling
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Linda Godfrey
- Department of Earth and Planetary Sciences, Rutgers University, Piscataway, NJ, USA
| | - Nathan Yee
- Department of Earth and Planetary Sciences, Rutgers University, Piscataway, NJ, USA
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
6
|
Crockford PW, Bar On YM, Ward LM, Milo R, Halevy I. The geologic history of primary productivity. Curr Biol 2023; 33:4741-4750.e5. [PMID: 37827153 DOI: 10.1016/j.cub.2023.09.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023]
Abstract
The rate of primary productivity is a keystone variable in driving biogeochemical cycles today and has been throughout Earth's past.1 For example, it plays a critical role in determining nutrient stoichiometry in the oceans,2 the amount of global biomass,3 and the composition of Earth's atmosphere.4 Modern estimates suggest that terrestrial and marine realms contribute near-equal amounts to global gross primary productivity (GPP).5 However, this productivity balance has shifted significantly in both recent times6 and through deep time.7,8 Combining the marine and terrestrial components, modern GPP fixes ≈250 billion tonnes of carbon per year (Gt C year-1).5,9,10,11 A grand challenge in the study of the history of life on Earth has been to constrain the trajectory that connects present-day productivity to the origin of life. Here, we address this gap by piecing together estimates of primary productivity from the origin of life to the present day. We estimate that ∼1011-1012 Gt C has cumulatively been fixed through GPP (≈100 times greater than Earth's entire carbon stock). We further estimate that 1039-1040 cells have occupied the Earth to date, that more autotrophs than heterotrophs have ever existed, and that cyanobacteria likely account for a larger proportion than any other group in terms of the number of cells. We discuss implications for evolutionary trajectories and highlight the early Proterozoic, which encompasses the Great Oxidation Event (GOE), as the time where most uncertainty exists regarding the quantitative census presented here.
Collapse
Affiliation(s)
- Peter W Crockford
- Department of Earth Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada; Department of Earth and Planetary Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel; Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| | - Yinon M Bar On
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel; Division of Geological Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Luce M Ward
- Department of Geosciences, Smith College, Northampton, MA 01063, USA
| | - Ron Milo
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Itay Halevy
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
7
|
Hoefs J, Harmon RS. Isotopic history of seawater: the stable isotope character of the global ocean at present and in the geological past. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2023; 59:349-411. [PMID: 37877261 DOI: 10.1080/10256016.2023.2271127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/10/2023] [Indexed: 10/26/2023]
Abstract
After the atmosphere, the ocean is the most well-mixed and homogeneous global geochemical reservoir. Both physical and biological processes generate elemental and isotope variations in seawater. Contrasting geochemical behaviors cause elements to be susceptible to different fractionation mechanisms, with their isotopes providing unique insights into the composition and evolution of the ocean over the course of geological history. Supplementing the traditional stable isotopes (H, C, O, N, S) that provide information about ocean processes and past environmental conditions, radiogenic isotope (Sr, Nd, Os, Pb, U) systems can be used as time markers, indicators of terrestrial weathering, and ocean water mass mixing. Recent instrumentation advances have made possible the measurement of natural stable isotope variations produced by both mass-dependent and mass-independent fractionation for an ever-increasing number of metal elements (e.g. Li, B, Mg, Si, Ca, V, Cr, Fe, Ni, Cu, Zn, Se, Mo, Cd, Tl, U). The major emphasis in this review is on the isotopic composition of the light elements based on a comparatively large literature. Unlike O, H and S, the stable isotopes of C, N and Si do not have a constant isotopic composition in the modern ocean. The major cations Ca, Mg, and Sr fixed in carbonate shells provide the best proxies for reconstruction of the composition of the ocean in the past. Exhibiting large isotope enrichments in ocean water, B and Li are suitable for the investigation of water/rock interactions and can act as monitors of former oceanic pH. The bioessential elements Zn, Cd, and Ni are indicators of paleoproductivity in the ocean. Characteristic isotope enrichments or depletions of the multivalent elements V, Cr, Fe, Se, Mo, and U record the past redox state of the ocean/atmosphere system. Case studies describe how isotopes have been used to define the seawater composition in the geological past.
Collapse
Affiliation(s)
- Jochen Hoefs
- Geowissenschaftliches Zentrum, Universität Göttingen, Göttingen, Germany
| | - Russell S Harmon
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
8
|
Sweere TC, Dickson AJ, Vance D. Nickel and zinc micronutrient availability in Phanerozoic oceans. GEOBIOLOGY 2023; 21:310-322. [PMID: 36536606 DOI: 10.1111/gbi.12541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/19/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Nickel and zinc are both bio-essential micronutrients with a nutrient-like distribution in the modern ocean, but show key differences in their biological functions and geochemical behavior. Eukaryotic phytoplankton, and especially diatoms, have high Zn quotas, whereas cyanobacteria generally require relatively more Ni. Secular changes in the relative availability of these micronutrients may, therefore, have affected the evolution and diversification of phytoplankton. In this study, we use a large compilation of Ni and Zn concentration data for Phanerozoic sediments to evaluate long-term changes in Ni and Zn availability and possible links to phytoplankton evolution. Modern data suggest that organic-rich sediments capture the dissolved deep ocean Ni/Zn ratio, regardless of local depositional conditions. We use this observation to constrain Ni/Zn ratios for past oceans, based on data from the sedimentary record. This record highlights long-term changes in the relative availability of these micronutrients that can be linked to the (bio)geochemical conditions on the Earth's surface. Early Palaeozoic oceans were likely relatively Ni rich, with sedimentary Ni/Zn ratios for this interval mostly being around ~1 or higher. A comparison with Phanerozoic strontium-, carbon-, and sulfur-isotopic records suggests that the late Palaeozoic decrease in sulfidic conditions and increase in hydrothermal inputs and organic-carbon burial rates caused a shift towards more Zn-rich conditions. Mesozoic and Cenozoic sediments show relatively Zn-rich oceans for these time intervals, with sedimentary Ni/Zn ratios mostly being around ~1 or lower. These observations imply that the diversification of the dominant groups of modern eukaryotic phytoplankton occurred in relatively Zn-rich oceans and that these organisms still carry this signature in their stoichiometries. However, the Phanerozoic transition to a more Zn-rich ocean pre-dates the origin and diversification of modern eukaryotes and, therefore, this transition was likely not the main direct cause for eukaryotic diversification in the Mesozoic and Cenozoic Eras.
Collapse
Affiliation(s)
- Tim C Sweere
- Department of Earth Sciences, ETH Zürich, Zürich, Switzerland
| | - Alexander J Dickson
- Centre of Climate, Ocean and Atmosphere, Department of Earth Sciences, Royal Holloway University of London, Surrey, UK
| | - Derek Vance
- Department of Earth Sciences, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
9
|
Kang J, Gill B, Reid R, Zhang F, Xiao S. Nitrate limitation in early Neoproterozoic oceans delayed the ecological rise of eukaryotes. SCIENCE ADVANCES 2023; 9:eade9647. [PMID: 36947611 PMCID: PMC10032604 DOI: 10.1126/sciadv.ade9647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The early Neoproterozoic Era witnessed the initial ecological rise of eukaryotes at ca. 800 Ma. To assess whether nitrate availability played an important role in this evolutionary event, we measured nitrogen isotope compositions (δ15N) of marine carbonates from the early Tonian (ca. 1000 Ma to ca. 800 Ma) Huaibei Group in North China. The data reported here fill a critical gap in the δ15N record and indicate nitrate limitation in early Neoproterozoic oceans. A compilation of Proterozoic sedimentary δ15N data reveals a stepwise increase in δ15N values at ~800 Ma. Box model simulations indicate that this stepwise increase likely represents a ~50% increase in marine nitrate availability. Limited nitrate availability in early Neoproterozoic oceans may have delayed the ecological rise of eukaryotes until ~800 Ma when increased nitrate supply, together with other environmental and ecological factors, may have contributed to the transition from prokaryote-dominant to eukaryote-dominant marine ecosystems.
Collapse
Affiliation(s)
- Junyao Kang
- Department of Geosciences, Virginia Tech, Blacksburg, VA, USA
- Global Change Center, Virginia Tech, Blacksburg, VA, USA
| | - Benjamin Gill
- Department of Geosciences, Virginia Tech, Blacksburg, VA, USA
- Global Change Center, Virginia Tech, Blacksburg, VA, USA
| | - Rachel Reid
- Department of Geosciences, Virginia Tech, Blacksburg, VA, USA
- Global Change Center, Virginia Tech, Blacksburg, VA, USA
| | - Feifei Zhang
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, China
| | - Shuhai Xiao
- Department of Geosciences, Virginia Tech, Blacksburg, VA, USA
- Global Change Center, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
10
|
Planavsky NJ, Asael D, Rooney AD, Robbins LJ, Gill BC, Dehler CM, Cole DB, Porter SM, Love GD, Konhauser KO, Reinhard CT. A sedimentary record of the evolution of the global marine phosphorus cycle. GEOBIOLOGY 2023; 21:168-174. [PMID: 36471206 DOI: 10.1111/gbi.12536] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 08/25/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Phosphorus (P) is typically considered to be the ultimate limiting nutrient for Earth's biosphere on geologic timescales. As P is monoisotopic, its sedimentary enrichment can provide some insights into how the marine P cycle has changed through time. A previous compilation of shale P enrichments argued for a significant change in P cycling during the Ediacaran Period (635-541 Ma). Here, using an updated P compilation-with more than twice the number of samples-we bolster the case that there was a significant transition in P cycling moving from the Precambrian into the Phanerozoic. However, our analysis suggests this state change may have occurred earlier than previously suggested. Specifically in the updated database, there is evidence for a transition ~35 million years before the onset of the Sturtian Snowball Earth glaciation in the Visingsö Group, potentially divorcing the climatic upheavals of the Neoproterozoic from changes in the Earth's P cycle. We attribute the transition in Earth's sedimentary P record to the onset of a more modern-like Earth system state characterized by less reducing marine conditions, higher marine P concentrations, and a greater predominance of eukaryotic organisms encompassing both primary producers and consumers. This view is consistent with organic biomarker evidence for a significant eukaryotic contribution to the preserved sedimentary organic matter in this succession and other contemporaneous Tonian marine sedimentary rocks. However, we stress that, even with an expanded dataset, we are likely far from pinpointing exactly when this transition occurred or whether Earth's history is characterized by a single or multiple transitions in the P cycle.
Collapse
Affiliation(s)
- Noah J Planavsky
- The Department of Earth & Planetary Sciences, Yale University, New Haven, Connecticut, USA
| | - Dan Asael
- The Department of Earth & Planetary Sciences, Yale University, New Haven, Connecticut, USA
| | - Alan D Rooney
- The Department of Earth & Planetary Sciences, Yale University, New Haven, Connecticut, USA
| | - Leslie J Robbins
- The Department of Earth & Planetary Sciences, Yale University, New Haven, Connecticut, USA
| | - Benjamin C Gill
- Department of Geosciences, Virginia Institute of Technology, Blacksburg, Virginia, USA
| | - Carol M Dehler
- Department of Geology, Utah State University, Logan, Utah, USA
| | - Devon B Cole
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Susannah M Porter
- Department of Earth Sciences, University of California, Santa Barbara, California, USA
| | - Gordon D Love
- Department of Earth Sciences, University of California, Riverside, California, USA
| | - Kurt O Konhauser
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Christopher T Reinhard
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Liang B, Han G, Zeng J, Qu R, Liu M, Liu J, Zhao Y. Zn isotope fractionation in laterites from Yunnan province, southwest China: Implications for the Zn cycles and its environmental impacts in (sub-) tropics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157245. [PMID: 35817097 DOI: 10.1016/j.scitotenv.2022.157245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/23/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
The weathering and development of laterites can influence trace element cycling in (sub-) tropics. Zinc (Zn) is a ubiquitous trace metal that involves both abiotic and biotic processes in soils. To explore Zn behavior in laterites, Zn cycling in (sub-) tropics, and the environmental impacts, Zn isotope systematics were presented for two laterite profiles from Yunnan province, southwest China. The laterite samples exhibit the δ66Zn of 0.02 ‰-0.56 ‰, indicating a light shift of Zn isotope ratios (Δ66Znlaterite-parent rock = -0.47 ‰-0.07 ‰) relative to bulk parent granite. This observation is attributed to the preferential preservation of light Zn isotopes on the surface of secondary Fe oxides. As a result, laterites are likely to control the instantaneous riverine δ66Zn in (sub-) tropical regions heavier than unweathered rocks. The isotopic signature of different vegetation covered soils show that shrub-covered soils are stronger leached (average τZn = -0.61) and have a smaller Δ66Znlaterite-parent rock (=-0.15 ‰), relative to forest-covered soils (=-0.20 ‰). Due to the strong loss of Zn (average τZn = -0.61 to -0.12) and large amounts of low-bioavailable Zn preserved in oxides, the micronutrient supplies for plant growth are difficult to maintain and need more fertilization. This study is helpful for a better understanding of global Zn cycling and the management of micronutrients in (sub-) tropical soil-plant systems.
Collapse
Affiliation(s)
- Bin Liang
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Guilin Han
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Jie Zeng
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Rui Qu
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Man Liu
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Jinke Liu
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Ye Zhao
- Nu Instruments, 74 Clywedog Road South, Wrexham Industrial Estate, Wresham LL 13 9XS, United Kingdom.
| |
Collapse
|
12
|
Liang B, Han G, Zhao Y. Zinc isotopic signature in tropical soils: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153303. [PMID: 35066042 DOI: 10.1016/j.scitotenv.2022.153303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The micronutrient cycling in tropical latitudes is an issue of great concern because tropical soils are not only suffering micronutrient deficiency, but also influencing the global cycling of trace metals. With the development of stable isotope techniques, Zn isotopic composition (δ66Zn) has been an powerful tool to interpret the Zn behaviour, signature, and cycling in soils. This review compiles δ66Zn ratios of ten types of soils from both tropical and non-tropical latitudes, to (i) discuss the Zn isotopic signature in tropical soils and at the interfaces of soil-plant-river-ocean, (ii) disclose the Zn mass balance in tropical latitudes, and (iii) provide an implication for the eco-environmental effects of Zn cycling in tropical latitudes. Zinc isotopic signature is constrained by soil constituents. Our review summarized that the precipitation of secondary Fe oxides and organic complexation in the aqueous phases are likely to result in the preferential preservation of light Zn isotopes in tropical soils. The extreme weathering and material leaching of tropical soils can remove large amounts of Zn and thus result in Zn deficiency in tropical latitudes and pose risks to plant growth. The removed Zn is likely to influence the instantaneous riverine δ66Zn heavier than that of the crustal average. However, the modern oceanic δ66Zn will ultimately approach those of the parent materials by mass balance, at large geological timescales. Future direction should be concerned with the isotopic studies on Zn speciation in tropical soils and the association of isotopic ratios with the flux of Zn to quantitatively estimate of the Zn mass balance in tropical regions. The prospect of this review is to help solve the issue of plant micronutrition, as well as riverine and marine bio-availablity.
Collapse
Affiliation(s)
- Bin Liang
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China
| | - Guilin Han
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Ye Zhao
- Nu Instruments, Wrexham Industrial Estate, 74 Clywedog Road South, Wresham LL 13 9XS, United Kingdom
| |
Collapse
|
13
|
Maloney KM, Schiffbauer JD, Halverson GP, Xiao S, Laflamme M. Preservation of early Tonian macroalgal fossils from the Dolores Creek Formation, Yukon. Sci Rep 2022; 12:6222. [PMID: 35418588 PMCID: PMC9007953 DOI: 10.1038/s41598-022-10223-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 04/04/2022] [Indexed: 11/30/2022] Open
Abstract
The rise of eukaryotic macroalgae in the late Mesoproterozoic to early Neoproterozoic was a critical development in Earth’s history that triggered dramatic changes in biogeochemical cycles and benthic habitats, ultimately resulting in ecosystems habitable to animals. However, evidence of the diversification and expansion of macroalgae is limited by a biased fossil record. Non-mineralizing organisms are rarely preserved, occurring only in exceptional environments that favor fossilization. Investigating the taphonomy of well-preserved macroalgae will aid in identifying these target environments, allowing ecological trends to be disentangled from taphonomic overprints. Here we describe the taphonomy of macroalgal fossils from the Tonian Dolores Creek Formation (ca. 950 Ma) of northwestern Canada (Yukon Territory) that preserves cm-scale macroalgae. Analytical microscopy, including scanning electron microscopy and tomographic x-ray microscopy, was used to investigate fossil preservation, which was the result of a combination of pyritization and aluminosilicification, similar to accessory mineralization observed in Paleozoic Burgess Shale-type fossils. These new Neoproterozoic fossils help to bridge a gap in the fossil record of early algae, offer a link between the fossil and molecular record, and provide new insights into evolution during the Tonian Period, when many eukaryotic lineages are predicted to have diversified.
Collapse
Affiliation(s)
- Katie M Maloney
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
| | - James D Schiffbauer
- Department of Geological Sciences, University of Missouri, Columbia, MO, 65211, USA.,X-Ray Microanalysis Core, University of Missouri, Columbia, MO, 65211, USA
| | - Galen P Halverson
- Department of Earth and Planetary Sciences/GEOTOP, McGill University, Montréal, QC, H3A 0E8, Canada
| | - Shuhai Xiao
- Department of Geosciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Marc Laflamme
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
14
|
A largely invariant marine dissolved organic carbon reservoir across Earth's history. Proc Natl Acad Sci U S A 2021; 118:2103511118. [PMID: 34580216 DOI: 10.1073/pnas.2103511118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 11/18/2022] Open
Abstract
Marine dissolved organic carbon (DOC), the largest pool of reduced carbon in the oceans, plays an important role in the global carbon cycle and contributes to the regulation of atmospheric oxygen and carbon dioxide abundances. Despite its importance in global biogeochemical cycles, the long-term history of the marine DOC reservoir is poorly constrained. Nonetheless, significant changes to the size of the oceanic DOC reservoir through Earth's history have been commonly invoked to explain changes to ocean chemistry, carbon cycling, and marine ecology. Here, we present a revised view of the evolution of marine DOC concentrations using a mechanistic carbon cycle model that can reproduce DOC concentrations in both oxic and anoxic modern environments. We use this model to demonstrate that the overall size of the marine DOC reservoir has likely undergone very little variation through Earth's history, despite major changes in the redox state of the ocean-atmosphere system and the nature and efficiency of the biological carbon pump. A relatively static marine DOC reservoir across Earth's history renders it unlikely that major changes in marine DOC concentrations have been responsible for driving massive repartitioning of surface carbon or the large carbon isotope excursions observed in Earth's stratigraphic record and casts doubt on previously hypothesized links between marine DOC levels and the emergence and radiation of early animals.
Collapse
|
15
|
Lyons TW, Diamond CW, Planavsky NJ, Reinhard CT, Li C. Oxygenation, Life, and the Planetary System during Earth's Middle History: An Overview. ASTROBIOLOGY 2021; 21:906-923. [PMID: 34314605 PMCID: PMC8403206 DOI: 10.1089/ast.2020.2418] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The long history of life on Earth has unfolded as a cause-and-effect relationship with the evolving amount of oxygen (O2) in the oceans and atmosphere. Oxygen deficiency characterized our planet's first 2 billion years, yet evidence for biological O2 production and local enrichments in the surface ocean appear long before the first accumulations of O2 in the atmosphere roughly 2.4 to 2.3 billion years ago. Much has been written about this fundamental transition and the related balance between biological O2 production and sinks coupled to deep Earth processes that could buffer against the accumulation of biogenic O2. However, the relationship between complex life (eukaryotes, including animals) and later oxygenation is less clear. Some data suggest O2 was higher but still mostly low for another billion and a half years before increasing again around 800 million years ago, potentially setting a challenging course for complex life during its initial development and ecological expansion. The apparent rise in O2 around 800 million years ago is coincident with major developments in complex life. Multiple geochemical and paleontological records point to a major biogeochemical transition at that time, but whether rising and still dynamic biospheric oxygen triggered or merely followed from innovations in eukaryotic ecology, including the emergence of animals, is still debated. This paper focuses on the geochemical records of Earth's middle history, roughly 1.8 to 0.5 billion years ago, as a backdrop for exploring possible cause-and-effect relationships with biological evolution and the primary controls that may have set its pace, including solid Earth/tectonic processes, nutrient limitation, and their possible linkages. A richer mechanistic understanding of the interplay between coevolving life and Earth surface environments can provide a template for understanding and remotely searching for sustained habitability and even life on distant exoplanets.
Collapse
Affiliation(s)
- Timothy W. Lyons
- Department of Earth and Planetary Sciences, University of California, Riverside, California, USA
- Address correspondence to: Timothy W. Lyons, Department of Earth and Planetary Sciences, University of California, Riverside, CA 92521, USA
| | - Charles W. Diamond
- Department of Earth and Planetary Sciences, University of California, Riverside, California, USA
| | - Noah J. Planavsky
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
| | - Christopher T. Reinhard
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Chao Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|
16
|
Zinc isotopes from archaeological bones provide reliable tropic level information for marine mammals. Commun Biol 2021; 4:683. [PMID: 34083709 PMCID: PMC8175341 DOI: 10.1038/s42003-021-02212-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/12/2021] [Indexed: 02/04/2023] Open
Abstract
In marine ecology, dietary interpretations of faunal assemblages often rely on nitrogen isotopes as the main or only applicable trophic level tracer. We investigate the geographic variability and trophic level isotopic discrimination factors of bone zinc 66Zn/64Zn ratios (δ66Zn value) and compared it to collagen nitrogen and carbon stable isotope (δ15N and δ13C) values. Focusing on ringed seals (Pusa hispida) and polar bears (Ursus maritimus) from multiple Arctic archaeological sites, we investigate trophic interactions between predator and prey over a broad geographic area. All proxies show variability among sites, influenced by the regional food web baselines. However, δ66Zn shows a significantly higher homogeneity among different sites. We observe a clear trophic spacing for δ15N and δ66Zn values in all locations, yet δ66Zn analysis allows a more direct dietary comparability between spatially and temporally distinct locations than what is possible by δ15N and δ13C analysis alone. When combining all three proxies, a more detailed and refined dietary analysis is possible.
Collapse
|
17
|
Parsons C, Stüeken EE, Rosen CJ, Mateos K, Anderson RE. Radiation of nitrogen-metabolizing enzymes across the tree of life tracks environmental transitions in Earth history. GEOBIOLOGY 2021; 19:18-34. [PMID: 33108025 PMCID: PMC7894544 DOI: 10.1111/gbi.12419] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 05/03/2023]
Abstract
Nitrogen is an essential element to life and exerts a strong control on global biological productivity. The rise and spread of nitrogen-utilizing microbial metabolisms profoundly shaped the biosphere on the early Earth. Here, we reconciled gene and species trees to identify birth and horizontal gene transfer events for key nitrogen-cycling genes, dated with a time-calibrated tree of life, in order to examine the timing of the proliferation of these metabolisms across the tree of life. Our results provide new insights into the evolution of the early nitrogen cycle that expand on geochemical reconstructions. We observed widespread horizontal gene transfer of molybdenum-based nitrogenase back to the Archean, minor horizontal transfer of genes for nitrate reduction in the Archean, and an increase in the proliferation of genes metabolizing nitrite around the time of the Mesoproterozoic (~1.5 Ga). The latter coincides with recent geochemical evidence for a mid-Proterozoic rise in oxygen levels. Geochemical evidence of biological nitrate utilization in the Archean and early Proterozoic may reflect at least some contribution of dissimilatory nitrate reduction to ammonium (DNRA) rather than pure denitrification to N2 . Our results thus help unravel the relative dominance of two metabolic pathways that are not distinguishable with current geochemical tools. Overall, our findings thus provide novel constraints for understanding the evolution of the nitrogen cycle over time and provide insights into the bioavailability of various nitrogen sources in the early Earth with possible implications for the emergence of eukaryotic life.
Collapse
Affiliation(s)
- Chris Parsons
- Carleton CollegeNorthfieldMNUSA
- Massachusetts Institute of TechnologyCambridgeMAUSA
| | | | | | | | - Rika E. Anderson
- Carleton CollegeNorthfieldMNUSA
- NASA NExSS Virtual Planetary LaboratoryUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
18
|
Porter SM. Insights into eukaryogenesis from the fossil record. Interface Focus 2020; 10:20190105. [PMID: 32642050 PMCID: PMC7333905 DOI: 10.1098/rsfs.2019.0105] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2020] [Indexed: 12/17/2022] Open
Abstract
Eukaryogenesis-the process by which the eukaryotic cell emerged-has long puzzled scientists. It has been assumed that the fossil record has little to say about this process, in part because important characters such as the nucleus and mitochondria are rarely preserved, and in part because the prevailing model of early eukaryotes implies that eukaryogenesis occurred before the appearance of the first eukaryotes recognized in the fossil record. Here, I propose a different scenario for early eukaryote evolution than is widely assumed. Rather than crown group eukaryotes originating in the late Paleoproterozoic and remaining ecologically minor components for more than half a billion years in a prokaryote-dominated world, I argue for a late Mesoproterozoic origin of the eukaryotic crown group, implying that eukaryogenesis can be studied using the fossil record. I review the proxy records of four crown group characters: the capacity to form cysts as evidenced by the presence of excystment structures; a complex cytoskeleton as evidenced by spines or pylomes; sterol synthesis as evidenced by steranes; and aerobic respiration-and therefore mitochondria-as evidenced by eukaryotes living in oxic environments, and argue that it might be possible to use these proxy records to infer the order in which these characters evolved. The records indicate that both cyst formation and a complex cytoskeleton appeared by late Paleoproterozoic time, and sterol synthesis appeared in the late Mesoproterozioc or early Neoproterozoic. The origin of aerobic respiration cannot as easily be pinned down, but current evidence permits the possibility that it evolved sometime in the Mesoproterozoic.
Collapse
Affiliation(s)
- Susannah M. Porter
- Department of Earth Science, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
19
|
|
20
|
Cole DB, Mills DB, Erwin DH, Sperling EA, Porter SM, Reinhard CT, Planavsky NJ. On the co-evolution of surface oxygen levels and animals. GEOBIOLOGY 2020; 18:260-281. [PMID: 32175670 DOI: 10.1111/gbi.12382] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/04/2020] [Accepted: 01/22/2020] [Indexed: 05/22/2023]
Abstract
Few topics in geobiology have been as extensively debated as the role of Earth's oxygenation in controlling when and why animals emerged and diversified. All currently described animals require oxygen for at least a portion of their life cycle. Therefore, the transition to an oxygenated planet was a prerequisite for the emergence of animals. Yet, our understanding of Earth's oxygenation and the environmental requirements of animal habitability and ecological success is currently limited; estimates for the timing of the appearance of environments sufficiently oxygenated to support ecologically stable populations of animals span a wide range, from billions of years to only a few million years before animals appear in the fossil record. In this light, the extent to which oxygen played an important role in controlling when animals appeared remains a topic of debate. When animals originated and when they diversified are separate questions, meaning either one or both of these phenomena could have been decoupled from oxygenation. Here, we present views from across this interpretive spectrum-in a point-counterpoint format-regarding crucial aspects of the potential links between animals and surface oxygen levels. We highlight areas where the standard discourse on this topic requires a change of course and note that several traditional arguments in this "life versus environment" debate are poorly founded. We also identify a clear need for basic research across a range of fields to disentangle the relationships between oxygen availability and emergence and diversification of animal life.
Collapse
Affiliation(s)
- Devon B Cole
- School of Earth and Atmospheric Science, Georgia Institute of Technology, Atlanta, Georgia
| | - Daniel B Mills
- Department of Geological Sciences, Stanford University, Stanford, California
| | - Douglas H Erwin
- Department of Paleobiology, National Museum of Natural History, Washington, District of Columbia
- Santa Fe Institute, Santa Fe, New Mexico
| | - Erik A Sperling
- Department of Geological Sciences, Stanford University, Stanford, California
| | - Susannah M Porter
- Department of Earth Science, University of California Santa Barbara, Santa Barbara, California
| | - Christopher T Reinhard
- School of Earth and Atmospheric Science, Georgia Institute of Technology, Atlanta, Georgia
| | - Noah J Planavsky
- Department of Geology and Geophysics, Yale University, New Haven, Connecticut
| |
Collapse
|
21
|
Zumberge JA, Rocher D, Love GD. Free and kerogen-bound biomarkers from late Tonian sedimentary rocks record abundant eukaryotes in mid-Neoproterozoic marine communities. GEOBIOLOGY 2020; 18:326-347. [PMID: 31865640 PMCID: PMC7233469 DOI: 10.1111/gbi.12378] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/31/2019] [Accepted: 11/30/2019] [Indexed: 05/23/2023]
Abstract
Lipid biomarker assemblages preserved within the bitumen and kerogen phases of sedimentary rocks from the ca. 780-729 Ma Chuar and Visingsö Groups facilitate paleoenvironmental reconstructions and reveal fundamental aspects of emerging mid-Neoproterozoic marine communities. The Chuar and Visingsö Groups were deposited offshore of two distinct paleocontinents (Laurentia and Baltica, respectively) during the Tonian Period, and the rock samples used had not undergone excessive metamorphism. The major polycyclic alkane biomarkers detected in the rock bitumens and kerogen hydropyrolysates consist of tricyclic terpanes, hopanes, methylhopanes, and steranes. Major features of the biomarker assemblages include detectable and significant contribution from eukaryotes, encompassing the first robust occurrences of kerogen-bound regular steranes from Tonian rocks, including 21-norcholestane, 27-norcholestane, cholestane, ergostane, and cryostane, along with a novel unidentified C30 sterane series from our least thermally mature Chuar Group samples. Appreciable values for the sterane/hopane (S/H) ratio are found for both the free and kerogen-bound biomarker pools for both the Chuar Group rocks (S/H between 0.09 and 1.26) and the Visingsö Group samples (S/H between 0.03 and 0.37). The more organic-rich rock samples generally yield higher S/H ratios than for organic-lean substrates, which suggests a marine nutrient control on eukaryotic abundance relative to bacteria. A C27 sterane (cholestane) predominance among total C26 -C30 steranes is a common feature found for all samples investigated, with lower amounts of C28 steranes (ergostane and crysotane) also present. No traces of known ancient C30 sterane compounds; including 24-isopropylcholestanes, 24-n-propylcholestanes, or 26-methylstigmastanes, are detectable in any of these pre-Sturtian rocks. These biomarker characteristics support the view that the Tonian Period was a key interval in the history of life on our planet since it marked the transition from a bacterially dominated marine biosphere to an ocean system which became progressively enriched with eukaryotes. The eukaryotic source organisms likely encompassed photosynthetic primary producers, marking a rise in red algae, and consumers in a revamped trophic structure predating the Sturtian glaciation.
Collapse
Affiliation(s)
- J. Alex Zumberge
- Department of Earth and Planetary Sciences, University of California, Riverside, CA, USA
| | | | - Gordon D. Love
- Department of Earth and Planetary Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
22
|
Reinhard CT, Planavsky NJ, Ward BA, Love GD, Le Hir G, Ridgwell A. The impact of marine nutrient abundance on early eukaryotic ecosystems. GEOBIOLOGY 2020; 18:139-151. [PMID: 32065509 DOI: 10.1111/gbi.12384] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
The rise of eukaryotes to ecological prominence represents one of the most dramatic shifts in the history of Earth's biosphere. However, there is an enigmatic temporal lag between the emergence of eukaryotic organisms in the fossil record and their much later ecological expansion. In parallel, there is evidence for a secular increase in the availability of the key macronutrient phosphorus (P) in Earth's oceans. Here, we use an Earth system model equipped with a size-structured marine ecosystem to explore relationships between plankton size, trophic complexity, and the availability of marine nutrients. We find a strong dependence of planktonic ecosystem structure on ocean nutrient abundance, with a larger ocean nutrient inventory leading to greater overall biomass, broader size spectra, and increasing abundance of large Zooplankton. If existing estimates of Proterozoic marine nutrient levels are correct, our results suggest that increases in the ecological impact of eukaryotic algae and trophic complexity in eukaryotic ecosystems were directly linked to restructuring of the global P cycle associated with the protracted rise of surface oxygen levels. Our results thus suggest an indirect but potentially important mechanism by which ocean oxygenation may have acted to shape marine ecological function during late Proterozoic time.
Collapse
Affiliation(s)
- Christopher T Reinhard
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, California
| | - Noah J Planavsky
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, California
- Department of Geology and Geophysics, Yale University, New Haven, Connecticut
| | - Ben A Ward
- Ocean and Earth Science, University of Southampton, Southampton, UK
| | - Gordon D Love
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, California
- Department of Earth and Planetary Sciences, University of California, Riverside, California
| | | | - Andy Ridgwell
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, California
- Department of Earth and Planetary Sciences, University of California, Riverside, California
- School of Geographical Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
23
|
Braakman R. Evolution of cellular metabolism and the rise of a globally productive biosphere. Free Radic Biol Med 2019; 140:172-187. [PMID: 31082508 DOI: 10.1016/j.freeradbiomed.2019.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/28/2019] [Accepted: 05/02/2019] [Indexed: 01/14/2023]
Abstract
Metabolic processes in cells and chemical processes in the environment are fundamentally intertwined and have evolved in concert for most of Earth's existence. Here I argue that intrinsic properties of cellular metabolism imposed central constraints on the historical trajectories of biopsheric productivity and atmospheric oxygenation. Photosynthesis depends on iron, but iron is highly insoluble under the aerobic conditions produced by oxygenic photosynthesis. These counteracting constraints led to two major stages of Earth oxygenation. After a cyanobacteria-driven biospheric expansion near the Archean-Proterozoic boundary, productivity remained largely restricted to continental boundaries and shallow aquatic environments where weathering inputs made iron more accessible. The anoxic deep open ocean was rich in free iron during the Proterozoic, but this iron was largely inaccessible, partly because an otherwise nutrient-poor ocean was limiting to photosynthesis, but also because a photosynthetic expansion would have quenched its own iron supply. Near the Proterozoic-Phanerozoic boundary, bioenergetics innovations allowed eukaryotic photosynthesis to overcome these interconnected negative feedbacks and begin expanding into the deep open oceans and onto the continents, where nutrients are inherently harder to come by. Key insights into what drove the ecological rise of eukaryotic photosynthesis emerge from analyses of marine Synechococcus and Prochlorococcus, abundant marine picocyanobacteria whose ancestors colonized the oceans in the Neoproterozoic. The reconstructed evolution of this group reveals a sequence of innovations that ultimately produced a form of photosynthesis in Prochlorococcus that is more like that of green plant cells than other cyanobacteria. Innovations increased the energy flux of cells, thereby enhancing their ability to acquire sparse nutrients, and as by-product also increased the production of organic carbon waste. Some of these organic waste products had the ability to chelate iron and make it bioavailable, thereby indirectly pushing the oceans through a transition from an anoxic state rich in free iron to an oxygenated state with organic carbon-bound iron. Resulting conditions (and parallel processes on the continents) in turn led to a series of positive feedbacks that increased the availability of other nutrients, thereby promoting the rise of a globally productive biosphere. In addition to the occurrence of major biospheric expansions, the several hundred million-year periods around the Archean-Proterozoic and Proterozoic-Phanerozoic boundaries share a number of other parallels. Both epochs have also been linked to major carbon cycle perturbations and global glaciations, as well as changes in the nature of plate tectonics and increases in continental exposure and weathering. This suggests the dynamics of life and Earth are intimately intertwined across many levels and that general principles governed transitions in these coupled dynamics at both times in Earth history.
Collapse
Affiliation(s)
- Rogier Braakman
- Department of Civil & Environmental Engineering, Massachusetts Institute of Technology, USA; Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, USA.
| |
Collapse
|
24
|
Nguyen K, Love GD, Zumberge JA, Kelly AE, Owens JD, Rohrssen MK, Bates SM, Cai C, Lyons TW. Absence of biomarker evidence for early eukaryotic life from the Mesoproterozoic Roper Group: Searching across a marine redox gradient in mid-Proterozoic habitability. GEOBIOLOGY 2019; 17:247-260. [PMID: 30629323 DOI: 10.1111/gbi.12329] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/24/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
By about 2.0 billion years ago (Ga), there is evidence for a period best known for its extended, apparent geochemical stability expressed famously in the carbonate-carbon isotope data. Despite the first appearance and early innovation among eukaryotic organisms, this period is also known for a rarity of eukaryotic fossils and an absence of organic biomarker fingerprints for those organisms, suggesting low diversity and relatively small populations compared to the Neoproterozoic era. Nevertheless, the search for diagnostic biomarkers has not been performed with guidance from paleoenvironmental redox constrains from inorganic geochemistry that should reveal the facies that were most likely hospitable to these organisms. Siltstones and shales obtained from drill core of the ca. 1.3-1.4 Ga Roper Group from the McArthur Basin of northern Australia provide one of our best windows into the mid-Proterozoic redox landscape. The group is well dated and minimally metamorphosed (of oil window maturity), and previous geochemical data suggest a relatively strong connection to the open ocean compared to other mid-Proterozoic records. Here, we present one of the first integrated investigations of Mesoproterozoic biomarker records performed in parallel with established inorganic redox proxy indicators. Results reveal a temporally variable paleoredox structure through the Velkerri Formation as gauged from iron mineral speciation and trace-metal geochemistry, vacillating between oxic and anoxic. Our combined lipid biomarker and inorganic geochemical records indicate at least episodic euxinic conditions sustained predominantly below the photic zone during the deposition of organic-rich shales found in the middle Velkerri Formation. The most striking result is an absence of eukaryotic steranes (4-desmethylsteranes) and only traces of gammacerane in some samples-despite our search across oxic, as well as anoxic, facies that should favor eukaryotic habitability and in low maturity rocks that allow the preservation of biomarker alkanes. The dearth of Mesoproterozoic eukaryotic sterane biomarkers, even within the more oxic facies, is somewhat surprising but suggests that controls such as the long-term nutrient balance and other environmental factors may have throttled the abundances and diversity of early eukaryotic life relative to bacteria within marine microbial communities. Given that molecular clocks predict that sterol synthesis evolved early in eukaryotic history, and (bacterial) fossil steroids have been found previously in 1.64 Ga rocks, then a very low environmental abundance of eukaryotes relative to bacteria is our preferred explanation for the lack of regular steranes and only traces of gammacerane in a few samples. It is also possible that early eukaryotes adapted to Mesoproterozoic marine environments did not make abundant steroid lipids or tetrahymanol in their cell membranes.
Collapse
Affiliation(s)
- Kevin Nguyen
- Department of Earth Sciences, University of California, Riverside, California
| | - Gordon D Love
- Department of Earth Sciences, University of California, Riverside, California
| | - J Alex Zumberge
- Department of Earth Sciences, University of California, Riverside, California
| | - Amy E Kelly
- Shell International Exploration and Production, Houston, Texas
| | - Jeremy D Owens
- Department of Earth, Ocean & Atmospheric Sciences, Florida State University, Tallahassee, Florida
| | - Megan K Rohrssen
- Department of Earth & Atmospheric Sciences, Central Michigan University, Mount Pleasant, Michigan
| | - Steven M Bates
- Department of Earth Sciences, University of California, Riverside, California
| | - Chunfang Cai
- Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Timothy W Lyons
- Department of Earth Sciences, University of California, Riverside, California
| |
Collapse
|