1
|
Su X, Zhang L, Meng H, Wang H, Zhao J, Sun X, Song X, Zhang X, Mao L. Long-term conservation tillage increase cotton rhizosphere sequestration of soil organic carbon by changing specific microbial CO 2 fixation pathways in coastal saline soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120743. [PMID: 38626484 DOI: 10.1016/j.jenvman.2024.120743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 04/18/2024]
Abstract
Coastal saline soil is an important reserve resource for arable land globally. Data from 10 years of continuous stubble return and subsoiling experiments have revealed that these two conservation tillage measures significantly improve cotton rhizosphere soil organic carbon sequestration in coastal saline soil. However, the contribution of microbial fixation of atmospheric carbon dioxide (CO2) has remained unclear. Here, metagenomics and metabolomics analyses were used to deeply explore the microbial CO2 fixation process in rhizosphere soil of coastal saline cotton fields under long-term stubble return and subsoiling. Metagenomics analysis showed that stubble return and subsoiling mainly optimized CO2 fixing microorganism (CFM) communities by increasing the abundance of Acidobacteria, Gemmatimonadetes, and Chloroflexi, and improving composition diversity. Conjoint metagenomics and metabolomics analyses investigated the effects of stubble return and subsoiling on the reverse tricarboxylic acid (rTCA) cycle. The conversion of citrate to oxaloacetate was inhibited in the citrate cleavage reaction of the rTCA cycle. More citrate was converted to acetyl-CoA, which enhanced the subsequent CO2 fixation process of acetyl-CoA conversion to pyruvate. In the rTCA cycle reductive carboxylation reaction from 2-oxoglutarate to isocitrate, synthesis of the oxalosuccinate intermediate product was inhibited, with strengthened CO2 fixation involving the direct conversion of 2-oxoglutarate to isocitrate. The collective results demonstrate that stubble return and subsoiling optimizes rhizosphere CFM communities by increasing microbial diversity, in turn increasing CO2 fixation by enhancing the utilization of rTCA and 3-hydroxypropionate/4-hydroxybutyrate cycles by CFMs. These events increase the microbial CO2 fixation in the cotton rhizosphere, thereby promoting the accumulation of microbial biomass, and ultimately improving rhizosphere soil organic carbon. This study clarifies the impact of conservation tillage measures on microbial CO2 fixation in cotton rhizosphere of coastal saline soil, and provides fundamental data for the improvement of carbon sequestration in saline soil in agricultural ecosystems.
Collapse
Affiliation(s)
- Xunya Su
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| | - Le Zhang
- China Agricultural University, Agronomy College, Beijing, 100193, China.
| | - Hao Meng
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| | - Han Wang
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| | - Jiaxue Zhao
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| | - Xuezhen Sun
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| | - Xianliang Song
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| | - Xiaopei Zhang
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| | - Lili Mao
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| |
Collapse
|
2
|
Abuelsoud W, Saleh AM, Mohammed AE, Alotaibi MO, AbdElgawad H. Chitosan nanoparticles upregulate C and N metabolism in soybean plants grown under elevated levels of atmospheric carbon dioxide. Int J Biol Macromol 2023; 252:126434. [PMID: 37604417 DOI: 10.1016/j.ijbiomac.2023.126434] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Despite the wide utilization of chitosan nanoparticles (CSNPs) as a promising approach for sustainable agriculture, their efficiency under elevated CO2 (eCO2), has not been evaluated. The interactive effects of CSNPs and eCO2 were evaluated on the growth and C and N metabolism of soybean plants. Plants were treated with CSNPs and grown under ambient CO2 (410 ppm, aCO2) or eCO2 (645 ppm). Regardless of CO2 level, CSNPs improved the net photosynthetic rate. CSNPs aggravated the effect of eCO2 treatment on the levels of non-structural carbohydrates (i.e., glucose, fructose, sucrose, and starch), especially in shoots, which was inconsistence with the upregulation of carbohydrates metabolizing enzymes. Being the most pivotal energetic and signaling organic compounds in higher plants, the synergistic action of CSNPs and eCO2 on the accumulation of soluble sugars upregulated the N metabolism as indicated by induced activities of nitrate reductase, arginase, glutamate dehydrogenase, glutamine synthetase, and glutamine oxoglutarate aminotransferase which was manifested finally as increased shoot and root total nitrogen content as well as proline and aspartate in roots. At the hormonal level, the coexistence of eCO2 with CSNPs further supports their positive impact on the contents of IAA and, to a lesser extent, GAs. The present data prove that the biofertilization capacity of CSNPs is even more potent under futuristic eCO2 levels and could even further improve the growth and resilience of plants.
Collapse
Affiliation(s)
- Walid Abuelsoud
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Ahmed M Saleh
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Afrah E Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Modhi O Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Hamada AbdElgawad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, 62521 Beni-Suef, Egypt; Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
3
|
Vega-Mas I, Ascencio-Medina E, Bozal-Leorri A, González-Murua C, Marino D, González-Moro MB. Will crops with biological nitrification inhibition capacity be favored under future atmospheric CO 2? FRONTIERS IN PLANT SCIENCE 2023; 14:1245427. [PMID: 37692431 PMCID: PMC10484480 DOI: 10.3389/fpls.2023.1245427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023]
Affiliation(s)
- Izargi Vega-Mas
- *Correspondence: Izargi Vega-Mas, ; María Begoña González-Moro,
| | | | | | | | | | | |
Collapse
|
4
|
Jiang Z, Fu Y, Zhou L, He Y, Zhou G, Dietrich P, Long J, Wang X, Jia S, Ji Y, Jia Z, Song B, Liu R, Zhou X. Plant growth strategy determines the magnitude and direction of drought-induced changes in root exudates in subtropical forests. GLOBAL CHANGE BIOLOGY 2023; 29:3476-3488. [PMID: 36931867 DOI: 10.1111/gcb.16685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 05/16/2023]
Abstract
Root exudates are an important pathway for plant-microbial interactions and are highly sensitive to climate change. However, how extreme drought affects root exudates and the main components, as well as species-specific differences in response magnitude and direction, are poorly understood. In this study, root exudation rates of total carbon (C) and its components (e.g., sugar, organic acid, and amino acid) were measured under the control and extreme drought treatments (i.e., 70% throughfall reduction) by in situ collection of four tree species with different growth rates in a subtropical forest. We also quantified soil properties, root morphological traits, and mycorrhizal infection rates to examine the driving factors underlying variations in root exudation. Our results showed that extreme drought significantly decreased root exudation rates of total C, sugar, and amino acid by 17.8%, 30.8%, and 35.0%, respectively, but increased root exudation rate of organic acid by 38.6%, which were largely associated with drought-induced changes in tree growth rates, root morphological traits, and mycorrhizal infection rates. Specifically, trees with relatively high growth rates were more responsive to drought for root exudation rates compared with those with relatively low growth rates, which were closely related to root morphological traits and mycorrhizal infection rates. These findings highlight the importance of plant growth strategy in mediating drought-induced changes in root exudation rates. The coordinations among root exudation rates, root morphological traits, and mycorrhizal symbioses in response to drought could be incorporated into land surface models to improve the prediction of climate change impacts on rhizosphere C dynamics in forest ecosystems.
Collapse
Affiliation(s)
- Zheng Jiang
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yuling Fu
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Lingyan Zhou
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yanghui He
- Northeast Asia Ecosystem Carbon Sink Research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Guiyao Zhou
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Peter Dietrich
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Jilan Long
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Xinxin Wang
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Shuxian Jia
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yuhuang Ji
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Zhen Jia
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Bingqian Song
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Ruiqiang Liu
- Northeast Asia Ecosystem Carbon Sink Research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Xuhui Zhou
- Center for Global Change and Ecological Forecasting, Tiantong National Field Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Northeast Asia Ecosystem Carbon Sink Research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
5
|
Li G, Wang K, Qin Q, Li Q, Mo F, Nangia V, Liu Y. Integrated Microbiome and Metabolomic Analysis Reveal Responses of Rhizosphere Bacterial Communities and Root exudate Composition to Drought and Genotype in Rice (Oryza sativa L.). RICE (NEW YORK, N.Y.) 2023; 16:19. [PMID: 37039929 PMCID: PMC10090257 DOI: 10.1186/s12284-023-00636-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND As climate change events become more frequent, drought is an increasing threat to agricultural production and food security. Crop rhizosphere microbiome and root exudates are critical regulators for drought adaptation, yet our understanding on the rhizosphere bacterial communities and root exudate composition as affected by drought stress is far from complete. In this study, we performed 16S rRNA gene amplicon sequencing and widely targeted metabolomic analysis of rhizosphere soil and root exudates from two contrasting rice genotypes (Nipponbare and Luodao 998) exposed to drought stress. RESULTS A reduction in plant phenotypes was observed under drought, and the inhibition was greater for roots than for shoots. Additionally, drought exerted a negligible effect on the alpha diversity of rhizosphere bacterial communities, but obviously altered their composition. In particular, drought led to a significant enrichment of Actinobacteria but a decrease in Firmicutes. We also found that abscisic acid in root exudates was clearly higher under drought, whereas lower jasmonic acid and L-cystine concentrations. As for plant genotypes, variations in plant traits of the drought-tolerant genotype Luodao 998 after drought were smaller than those of Nipponbare. Interestingly, drought triggered an increase in Bacillus, as well as an upregulation of most organic acids and a downregulation of all amino acids in Luodao 998. Notably, both Procrustes analysis and Mantel test demonstrated that rhizosphere microbiome and root exudate metabolomic profiles were highly correlated. A number of differentially abundant genera responded to drought and genotype, including Streptomyces, Bacillus and some members of Actinobacteria, were significantly associated with organic acid and amino acid contents in root exudates. Further soil incubation experiments showed that Streptomyces was regulated by abscisic acid and jasmonic acid under drought. CONCLUSIONS Our results reveal that both drought and genotype drive changes in the compositions of rice rhizosphere bacterial communities and root exudates under the greenhouse condition, and that organic acid exudation and suppression of amino acid exudation to select specific rhizosphere bacterial communities may be an important strategy for rice to cope with drought. These findings have important implications for improving the adaptability of rice to drought from the perspective of plant-microbe interactions.
Collapse
Affiliation(s)
- Gege Li
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kexin Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qun Qin
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qi Li
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fei Mo
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Vinay Nangia
- International Center for Agricultural Research in the Dry Areas, 999055, Rabat, Morocco
| | - Yang Liu
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
6
|
Lyu D, Smith DL. The root signals in rhizospheric inter-organismal communications. FRONTIERS IN PLANT SCIENCE 2022; 13:1064058. [PMID: 36618624 PMCID: PMC9811129 DOI: 10.3389/fpls.2022.1064058] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Root exudates play a key role in mediating plant-plant and plant-rhizomicrobiome interactions, including regulating biochemical/physiological aspects of plant-associated microorganisms, to enhance host plant growth and resilience. Root exudates can act as signals to reduce the competition from neighboring plants and recruiting/choreographing a wide range of diverse rhizomicrobiome members to make the host plant a good fit with its immediate environment. Root exudate production is a dynamic and key process, but there is a limited understanding of the metabolites or metabolic pathways involved in the inter-organismal communications facilitated by them. Given the well-known symbiotic relationships between plants and associated rhizomicrobiome members, adding root exudates to microbial isolation media may allow some of the large segments of rhizomicrobiome members that are not currently culturable to be grown in vitro. This will provide new insights into how root signals orchestrate associated microbes, will benefit agricultural production in the face of challenges posed by climate change, and will help to sustainably provide food for a growing global human population.
Collapse
|
7
|
Ulrich DEM, Clendinen CS, Alongi F, Mueller RC, Chu RK, Toyoda J, Gallegos-Graves LV, Goemann HM, Peyton B, Sevanto S, Dunbar J. Root exudate composition reflects drought severity gradient in blue grama (Bouteloua gracilis). Sci Rep 2022; 12:12581. [PMID: 35869127 PMCID: PMC9307599 DOI: 10.1038/s41598-022-16408-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/11/2022] [Indexed: 12/22/2022] Open
Abstract
Plant survival during environmental stress greatly affects ecosystem carbon (C) cycling, and plant–microbe interactions are central to plant stress survival. The release of C-rich root exudates is a key mechanism plants use to manage their microbiome, attracting beneficial microbes and/or suppressing harmful microbes to help plants withstand environmental stress. However, a critical knowledge gap is how plants alter root exudate concentration and composition under varying stress levels. In a greenhouse study, we imposed three drought treatments (control, mild, severe) on blue grama (Bouteloua gracilis Kunth Lag. Ex Griffiths), and measured plant physiology and root exudate concentration and composition using GC–MS, NMR, and FTICR. With increasing drought severity, root exudate total C and organic C increased concurrently with declining predawn leaf water potential and photosynthesis. Root exudate composition mirrored the physiological gradient of drought severity treatments. Specific compounds that are known to alter plant drought responses and the rhizosphere microbiome mirrored the drought severity-induced root exudate compositional gradient. Despite reducing C uptake, these plants actively invested C to root exudates with increasing drought severity. Patterns of plant physiology and root exudate concentration and composition co-varied along a gradient of drought severity.
Collapse
|
8
|
Almario J, Fabiańska I, Saridis G, Bucher M. Unearthing the plant-microbe quid pro quo in root associations with beneficial fungi. THE NEW PHYTOLOGIST 2022; 234:1967-1976. [PMID: 35239199 DOI: 10.1111/nph.18061] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Mutualistic symbiotic associations between multicellular eukaryotes and their microbiota are driven by the exchange of nutrients in a quid pro quo manner. In the widespread arbuscular mycorrhizal (AM) symbiosis involving plant roots and Glomeromycotina fungi, the mycobiont is supplied with carbon through photosynthesis, which in return supplies the host plant with essential minerals such as phosphorus (P). Most terrestrial plants are largely dependent on AM fungi for nutrients, which raises the question of how plants that are unable to form a functional AM sustain their P nutrition. AM nonhost plants can form alternative, evolutionarily younger, mycorrhizal associations such as the ectomycorrhiza, ericoid and orchid mycorrhiza. However, it is unclear how plants such as the Brassicaceae species Arabidopsis thaliana, which do not form known mycorrhizal symbioses, have adapted to the loss of these essential mycorrhizal traits. Isotope tracing experiments with root-colonizing fungi have revealed the existence of new 'mycorrhizal-like' fungi capable of transferring nutrients such as nitrogen (N) and P to plants, including Brassicaceae. Here, we provide an overview of the biology of trophic relationships between roots and fungi and how these associations might support plant adaptation to climate change.
Collapse
Affiliation(s)
- Juliana Almario
- Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgroSup, Université de Lyon, Université Claude Bernard Lyon1, 43 Boulevard du 11 novembre 1918, Villeurbanne, 69622, France
| | - Izabela Fabiańska
- Institute for Plant Sciences, Cologne Biocenter, University of Cologne, Cologne, 50674, Germany
| | - Georgios Saridis
- Institute for Plant Sciences, Cologne Biocenter, University of Cologne, Cologne, 50674, Germany
| | - Marcel Bucher
- Institute for Plant Sciences, Cologne Biocenter, University of Cologne, Cologne, 50674, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50931, Germany
| |
Collapse
|
9
|
Chai YN, Schachtman DP. Root exudates impact plant performance under abiotic stress. TRENDS IN PLANT SCIENCE 2022; 27:80-91. [PMID: 34481715 DOI: 10.1016/j.tplants.2021.08.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Plant root exudates serve pivotal roles in supporting plant development and interactions with the physicochemical and biological factors in the rhizosphere. Under stress conditions, root exudation is involved in enhancing plant resource-use efficiency and facilitating the crosstalk between plant and soil microbes to ameliorate stress. Although there are a large number of root exudates that remain to be characterized, recent technological advancements have allowed for the function of many exudate compounds to be elucidated. In this review, we discuss current knowledge about the key root exudates that modulate plant resource-use efficiency under various abiotic stresses including drought, aluminum toxicity, phosphorus, nitrogen, and iron deficiency. The role that key root exudates play in shaping microbial communities in the rhizosphere under stress conditions is also an important consideration addressed in this review.
Collapse
Affiliation(s)
- Yen Ning Chai
- Department of Agronomy and Horticulture, University of Nebraska - Lincoln, Lincoln, NE 68588, USA; Center for Plant Science Innovation, University of Nebraska - Lincoln, Lincoln, NE 68588, USA
| | - Daniel P Schachtman
- Department of Agronomy and Horticulture, University of Nebraska - Lincoln, Lincoln, NE 68588, USA; Center for Plant Science Innovation, University of Nebraska - Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
10
|
AbdElgawad H, Schoenaers S, Zinta G, Hassan YM, Abdel-Mawgoud M, Alkhalifah DHM, Hozzein WN, Asard H, Abuelsoud W. Soil arsenic toxicity differentially impacts C3 (barley) and C4 (maize) crops under future climate atmospheric CO 2. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125331. [PMID: 34030395 DOI: 10.1016/j.jhazmat.2021.125331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/14/2020] [Accepted: 02/01/2021] [Indexed: 05/13/2023]
Abstract
Soil arsenic (As) contamination limits global agricultural productivity. Anthropogenic emissions are causing atmospheric CO2 levels to rise. Elevated CO2 (eCO2) boosts plant growth both under optimal and suboptimal growth conditions. However, the crop-specific interaction between eCO2 and soil arsenic exposure has not been investigated at the whole plant, physiological and biochemical level. Here, we tested the effects of eCO2 (620 ppm) and soil As exposure (mild and severe treatments, 25 and 100 mg As/Kg soil) on growth, photosynthesis and redox homeostasis in barley (C3) and maize (C4). Compared to maize, barley was more susceptible to soil As exposure at ambient CO2 levels. Barley plants accumulated more As, particularly in roots. As accumulation inhibited plant growth and induced oxidative damage in a species-specific manner. As-exposed barley experienced severe oxidative stress as illustrated by high H2O2 and protein oxidation levels. Interestingly, eCO2 differentially mitigated As-induced stress in barley and maize. In barley, eCO2 exposure reduced photorespiration, H2O2 production, and lipid/protein oxidation. In maize eCO2 exposure led to an upregulation of the ascorbate-glutathione (ASC/GSH)-mediated antioxidative defense system. Combined, this work highlights how ambient and future eCO2 levels differentially affect the growth, physiology and biochemistry of barley and maize crops exposed to soil As pollution.
Collapse
Affiliation(s)
- Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Sébastjen Schoenaers
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Gaurav Zinta
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, India; Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.
| | - Yasser M Hassan
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | | | - Dalal Hussien M Alkhalifah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.
| | - Wael N Hozzein
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt; Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Han Asard
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Walid Abuelsoud
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
11
|
Dong J, Hunt J, Delhaize E, Zheng SJ, Jin CW, Tang C. Impacts of elevated CO 2 on plant resistance to nutrient deficiency and toxic ions via root exudates: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142434. [PMID: 33254908 DOI: 10.1016/j.scitotenv.2020.142434] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/07/2020] [Accepted: 09/15/2020] [Indexed: 06/12/2023]
Abstract
Elevated atmospheric CO2 (eCO2) concentration can increase root exudation into soils, which improves plant tolerance to abiotic stresses. This review used a meta-analysis to assess effect sizes of eCO2 on both efflux rates and total amounts of some specific root exudates, and dissected whether eCO2 enhances plant's resistance to nutrient deficiency and ion toxicity via root exudates. Elevated CO2 did not affect efflux rates of total dissolved organic carbon, a measure of combined root exudates per unit of root biomass or length, but increased the efflux amount of root systems per plant by 31% which is likely attributed to increased root biomass (29%). Elevated CO2 increased efflux rates of soluble-sugars, carboxylates, and citrate by 47%, 111%, and 16%, respectively, but did not affect those of amino acids and malate. The increased carbon allocation to roots, increased plant requirements of mineral nutrients, and heightened detoxification responses to toxic ions under eCO2 collectively contribute to the increased efflux rates despite lacking molecular evidence. The increased efflux rates of root exudates under eCO2 were closely associated with improved nutrient uptake whilst less studies have validated the associations between root exudates and resistance to toxic ions of plants when grown under eCO2. Future studies are required to reveal how climate change (eCO2) affect the efflux of specific root exudates, particularly organic anions, the corresponding nutrient uptake and toxic ion resistance from plant molecular biology and soil microbial ecology perspectives.
Collapse
Affiliation(s)
- Jinlong Dong
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, VIC 3086, Australia; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China.
| | - James Hunt
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, VIC 3086, Australia.
| | | | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Chong Wei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Caixian Tang
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, VIC 3086, Australia.
| |
Collapse
|
12
|
Tan B, Li Y, Liu T, Tan X, He Y, You X, Leong KH, Liu C, Li L. Response of Plant Rhizosphere Microenvironment to Water Management in Soil- and Substrate-Based Controlled Environment Agriculture (CEA) Systems: A Review. FRONTIERS IN PLANT SCIENCE 2021; 12:691651. [PMID: 34456936 PMCID: PMC8385539 DOI: 10.3389/fpls.2021.691651] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/16/2021] [Indexed: 05/06/2023]
Abstract
As natural agroecology deteriorates, controlled environment agriculture (CEA) systems become the backup support for coping with future resource consumption and potential food crises. Compared with natural agroecology, most of the environmental parameters of the CEA system rely on manual management. Such a system is dependent and fragile and prone to degradation, which includes harmful bacteria proliferation and productivity decline. Proper water management is significant for constructing a stabilized rhizosphere microenvironment. It has been proved that water is an efficient tool for changing the availability of nutrients, plant physiological processes, and microbial communities within. However, for CEA issues, relevant research is lacking at present. The article reviews the interactive mechanism between water management and rhizosphere microenvironments from the perspectives of physicochemical properties, physiological processes, and microbiology in CEA systems. We presented a synthesis of relevant research on water-root-microbes interplay, which aimed to provide detailed references to the conceptualization, research, diagnosis, and troubleshooting for CEA systems, and attempted to give suggestions for the construction of a high-tech artificial agricultural ecology.
Collapse
Affiliation(s)
- Bo Tan
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, China
| | - Yihan Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, China
| | - Tiegang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, China
| | - Xiao Tan
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, China
| | - Yuxin He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, China
| | - Xueji You
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, Shanghai, China
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Kah Hon Leong
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Kampar, Malaysia
| | - Chao Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, China
- *Correspondence: Chao Liu,
| | - Longguo Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, China
- Longguo Li,
| |
Collapse
|
13
|
Lu B, Qian J, Wang P, Wang C, Hu J, Li K, He X, Jin W. Effect of perfluorooctanesulfonate (PFOS) on the rhizosphere soil nitrogen cycling of two riparian plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140494. [PMID: 32886976 DOI: 10.1016/j.scitotenv.2020.140494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Here, we examined the effects of low and high concentrations of perfluorooctanesulfonate (PFOS) on rhizosphere soil N cycling processes in the presence of Lythrum salicaria and Phragmites communis over 4 months. Compared with the control group, the nitrate nitrogen (NO3--N) content of the bulk soil in the low PFOS (0.1 mg kg-1) treatment significantly decreased (27.7%), the ammonium nitrogen (NH4+-N) content significantly increased (8.7%), and the pH value and total organic carbon (TOC) content slightly increased (0.3% and 1.1%, respectively). Compared with the low PFOS treatment, the content of NO3-N, NH4+-N and pH value in the bulk soil of the high PFOS treatment (50 mg kg-1) significantly increased (1.0%, 53.8% and 61.8%, respectively), and the TOC content significantly decreased (8.2%). Soil protease levels were high in the low PFOS treatment, but low in the high PFOS treatment. PFOS produced inverted U-shaped responses in the potential nitrification (1.5, 3.0, and 1.1 mg N d-1 kg-1 in no, low, and high PFOS, respectively), denitrification (0.19, 0.30, and 0.22 mg N d-1 kg-1 in no, low, and high PFOS, respectively), and N2O emission rates (0.01, 0.03, and 0.02 mg N d-1 kg-1 in no, low, and high PFOS, respectively) of bulk soil. The abundance of the archaea amoA gene decreased with increasing PFOS concentration, whereas that of bacterial amoA increased; inverted U-shaped responses were observed for narG, nirK, nirS, and nosZ. In the PFOS-contaminated rhizosphere soil, the observed changes differed from those in the bulk soil and differed between treatments. P. communis tended to upregulate each step of the nitrogen cycle under low PFOS conditions, whereas L. salicaria tended to inhibit them. Under high PFOS conditions, both test plants tended to act as inhibitors of the soil N-cycle; thus, the effects of PFOS on soil N transformation were plant-specific.
Collapse
Affiliation(s)
- Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jing Hu
- Wetland Biogeochemistry Laboratory, Soil and Water Sciences Department, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Gainesville, FL, USA
| | - Kun Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Xixian He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Wen Jin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
14
|
Wu Q, Zhang C, Liang X, Zhu C, Wang T, Zhang J. Elevated CO 2 improved soil nitrogen mineralization capacity of rice paddy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136438. [PMID: 31923701 DOI: 10.1016/j.scitotenv.2019.136438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/25/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Elevated CO2 would increase rice yields and may lead to nitrogen limitation and potentially influence the sustainability of agricultural production. Blindly increasing the amount of chemical fertilizer will damage the environment and is very unwise. Therefore, clarifying the response of soil nitrogen mineralization capacity to elevated CO2 is critical for both sustainable agriculture production and environmental protection. Here, we relied on Free-Air CO2 Enrichment (FACE) platform and used a waterlogged incubation method to investigate the effects of elevated CO2 on soil nitrogen mineralization capacity under different fertilization levels when planted different rice cultivars (strong and weak-CO2 response rice). According to the first-order kinetic equation fitting, compared with Ambient, elevated CO2 increased soil potential mineralized nitrogen (Np) by 16.18%. Path analysis indicated that fertilization status, rice cultivar, soil organic carbon and soil C: N ratio might affect Np. There was a significant positive correlation between soil nitrogen mineralization rate and Np. Under different fertilization conditions and rice cultivars, the improvement degree of soil nitrogen mineralization capacity (Np and soil nitrogen mineralization rate) by elevated CO2 was different. These findings suggest that more parameters and influencing factors should be taken into account when studying soil nitrogen cycle models under the condition of global change.
Collapse
Affiliation(s)
- Qicong Wu
- State Experimental Station of Agro-ecosystem in Fengqiu, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Congzhi Zhang
- State Experimental Station of Agro-ecosystem in Fengqiu, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
| | - Xuequan Liang
- Bureau of Natural Resources of Tongyu County, Baicheng City, Jilin Province, 137200, People's Republic of China
| | - Chunwu Zhu
- State Experimental Station of Agro-ecosystem in Fengqiu, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
| | - Tingyun Wang
- State Experimental Station of Agro-ecosystem in Fengqiu, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Jiabao Zhang
- State Experimental Station of Agro-ecosystem in Fengqiu, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China.
| |
Collapse
|
15
|
Menezes‐Silva PE, Loram‐Lourenço L, Alves RDFB, Sousa LF, Almeida SEDS, Farnese FS. Different ways to die in a changing world: Consequences of climate change for tree species performance and survival through an ecophysiological perspective. Ecol Evol 2019; 9:11979-11999. [PMID: 31695903 PMCID: PMC6822037 DOI: 10.1002/ece3.5663] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 08/22/2019] [Accepted: 08/28/2019] [Indexed: 01/10/2023] Open
Abstract
Anthropogenic activities such as uncontrolled deforestation and increasing greenhouse gas emissions are responsible for triggering a series of environmental imbalances that affect the Earth's complex climate dynamics. As a consequence of these changes, several climate models forecast an intensification of extreme weather events over the upcoming decades, including heat waves and increasingly severe drought and flood episodes. The occurrence of such extreme weather will prompt profound changes in several plant communities, resulting in massive forest dieback events that can trigger a massive loss of biodiversity in several biomes worldwide. Despite the gravity of the situation, our knowledge regarding how extreme weather events can undermine the performance, survival, and distribution of forest species remains very fragmented. Therefore, the present review aimed to provide a broad and integrated perspective of the main biochemical, physiological, and morpho-anatomical disorders that may compromise the performance and survival of forest species exposed to climate change factors, particularly drought, flooding, and global warming. In addition, we also discuss the controversial effects of high CO2 concentrations in enhancing plant growth and reducing the deleterious effects of some extreme climatic events. We conclude with a discussion about the possible effects that the factors associated with the climate change might have on species distribution and forest composition.
Collapse
Affiliation(s)
| | - Lucas Loram‐Lourenço
- Laboratory of Plant EcophysiologyInstituto Federal Goiano – Campus Rio VerdeGoiásBrazil
| | | | | | | | | |
Collapse
|
16
|
Mahmoudi TR, Yu JM, Liu S, Pierson LS, Pierson EA. Drought-Stress Tolerance in Wheat Seedlings Conferred by Phenazine-Producing Rhizobacteria. Front Microbiol 2019; 10:1590. [PMID: 31354678 PMCID: PMC6636665 DOI: 10.3389/fmicb.2019.01590] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/26/2019] [Indexed: 01/09/2023] Open
Abstract
The specific role of phenazines produced by rhizosphere-colonizing Pseudomonas in mediating wheat seedling drought-stress tolerance and recovery from water deficit was investigated using Pseudomonas chlororaphis 30-84 and isogenic derivatives deficient or enhanced in phenazine production compared to wild type. Following a 7-day water deficit, seedlings that received no-inoculum or were colonized by the phenazine mutant wilted to collapse, whereas seedlings colonized by phenazine producers displayed less severe symptoms. After a 7-day recovery period, survival of seedlings colonized by phenazine-producing strains exceeded 80%, but was less than 60% for no-inoculum controls. A second 7-day water deficit reduced overall survival rates to less than 10% for no-inoculum control seedlings, whereas survival was ∼50% for seedlings colonized by phenazine-producers. The relative water content of seedlings colonized by phenazine-producers was 10-20% greater than for the no-inoculum controls at every stage of water deficit and recovery, resulting in higher recovery indices than observed for the no-inoculum controls. For 10-day water deficits causing the collapse of all seedlings, survival rates remained high for plants colonized by phenazine-producers, especially the enhanced phenazine producer (∼74%), relative to the no-inoculum control (∼25%). These observations indicate that seedlings colonized by the phenazine-producing strains suffered less from dehydration during water deficit and recovered better, potentially contributing to better resilience from a second drought/recovery cycle. Seedlings colonized by phenazine-producing strains invested more in root systems and produced 1.5 to 2 fold more root tips than seedlings colonized by the phenazine mutant or the no-inoculum controls when grown with or without water deficit. The results suggest that the presence of phenazine-producing bacteria in the rhizosphere provides wheat seedlings with a longer adjustment period resulting in greater drought-stress avoidance and resilience.
Collapse
Affiliation(s)
- Tessa Rose Mahmoudi
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | - Jun Myoung Yu
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
- Department of Applied Biology, Chungnam National University, Daejeon, South Korea
| | - Shuyu Liu
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX, United States
| | - Leland S. Pierson
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | - Elizabeth A. Pierson
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
17
|
Wang P, Marsh EL, Kruger G, Lorenz A, Schachtman DP. Belowground microbial communities respond to water deficit and are shaped by decades of maize hybrid breeding. Environ Microbiol 2019; 22:889-904. [DOI: 10.1111/1462-2920.14701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Peng Wang
- Department of Agronomy and Horticulture University of Nebraska Lincoln Lincoln NE 68588 USA
| | - Ellen L. Marsh
- Department of Agronomy and Horticulture University of Nebraska Lincoln Lincoln NE 68588 USA
| | - Greg Kruger
- Department of Agronomy and Horticulture University of Nebraska Lincoln Lincoln NE 68588 USA
| | - Aaron Lorenz
- Department of Agronomy and Plant Genetics University of Minnesota St. Paul MN 55108
| | - Daniel P. Schachtman
- Department of Agronomy and Horticulture University of Nebraska Lincoln Lincoln NE 68588 USA
| |
Collapse
|
18
|
Vargas R, Kenney AM, Bilinski T. Variable Influences of Water Availability and Rhizobacteria on the Growth of Schizachyrium scoparium (Little Bluestem) at Different Ages. Front Microbiol 2019; 10:860. [PMID: 31156563 PMCID: PMC6529566 DOI: 10.3389/fmicb.2019.00860] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 04/03/2019] [Indexed: 11/13/2022] Open
Abstract
There is significant interest in understanding the role of plant growth-promoting rhizobacteria (PGPR) in alleviating different types of plant stress. Schizachyrium scoparium (little bluestem) is a moderately drought tolerant, perennial bunchgrass native to North America. The goal of this experiment was to evaluate whether the addition of a bacterial root isolate in the Pseudomonas genus promoted the growth of S. scoparium with changes in water availability. Pseudomonas are common rhizobacteria and have been shown to improve plant growth. It was hypothesized that plants inoculated with the PGPR strain would have greater growth and health, and would be less affected by shifts in water availability. Pseudomonas strains were isolated from the roots of native S. scoparium plants. After germination, S. scoparium seedlings were subjected to four treatment groups: low water; high water; low water with PGPR; and high water with PGPR. The experiment was run three times with plants at different starting ages; 14-, 28-, and 70-day-old plants. The effects of the water and PGPR treatments were variable between the experimental trials. There were no significant effects of the water treatments on plant growth in Trial 1 (14-day-old plants) or Trial 2 (28-day-old plants), however, there was a significant negative effect of the high watering treatment on the shoot length and biomass in Trial 3. High water availability was significantly associated with greater plant health in Trial 1, but appeared to reduce plant health in Trials 2 and 3. The PGPR treatment appeared to promote root growth and biomass in Trial 2, and was associated with greater plant health in all three trials, especially when paired with the low water treatment. Results from a permutational MANOVA indicate that plant growth was significantly different between the trials due to differences in the starting age of the plants and the duration of the experiments. Thus, methodological choices, such as plant life history stage and experiment duration, may affect the response of plants to PGPR in the rhizosphere. This research provides an insight into the interactions between PGPR and water availability on the growth and health of native plants.
Collapse
Affiliation(s)
- Rhiannon Vargas
- Department of Biological Sciences, St. Edward’s University, Austin, TX, United States
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - Amanda M. Kenney
- Department of Biological Sciences, St. Edward’s University, Austin, TX, United States
| | - Teresa Bilinski
- Department of Biological Sciences, St. Edward’s University, Austin, TX, United States
| |
Collapse
|
19
|
Pérez-Romero JA, Duarte B, Barcia-Piedras JM, Matos AR, Redondo-Gómez S, Caçador I, Mateos-Naranjo E. Investigating the physiological mechanisms underlying Salicornia ramosissima response to atmospheric CO 2 enrichment under coexistence of prolonged soil flooding and saline excess. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:149-159. [PMID: 30551074 DOI: 10.1016/j.plaphy.2018.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/13/2018] [Accepted: 12/03/2018] [Indexed: 05/22/2023]
Abstract
A 45-days long climatic chamber experiment was design to evaluate the effect of 400 and 700 ppm atmospheric CO2 treatments with and without soil water logging in combination with 171 and 510 mM NaCl in the halophyte Salicornia ramosissima. In order to ascertain the possible synergetic impact of these factors associate to climatic change in this plant species physiological and growth responses. Our results indicated that elevated atmospheric CO2 concentration improved plant physiological performance under suboptimal root-flooding and saline conditions plants. Thus, this positive impact was mainly ascribed to an enhancement of energy transport efficiency, as indicated the greater PG, N and Sm values, and the maintaining of carbon assimilation capacity due to the higher net photosynthetic rate (AN) and water use efficiency (iWUE). This could contribute to reduce the risk of oxidative stress owing to the accumulation of reactive oxygen species (ROS). Moreover, plants grown at 700 ppm had a greater capacity to cope with flooding and salinity synergistic impact by a greater efficiency in the modulation in enzyme antioxidant machinery and by the accumulation of osmoprotective compounds and saturated fatty acids in its tissues. These responses indicate that atmospheric CO2 enrichment would contribute to preserve the development of Salicornia ramosissima against the ongoing process of increment of soil stressful conditions linked with climatic change.
Collapse
Affiliation(s)
- Jesús Alberto Pérez-Romero
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, 1095, 41080, Sevilla, Spain.
| | - Bernardo Duarte
- MARE - Marine and Environmental Sciences Centre, Faculty of Sciences of the University of Lisbon, Campo Grande, 1749-016, Lisbon, Portugal
| | - Jose-Maria Barcia-Piedras
- Department of Ecological Production and Natural Resources Center IFAPA Las Torres-Tomejil Road Sevilla - Cazalla Km 12'2, 41200, Alcalá del Río, Seville, Spain
| | - Ana Rita Matos
- BioISI-Biosystems and Integrative Sciences Institute, Plant Functional Genomics Group, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Susana Redondo-Gómez
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, 1095, 41080, Sevilla, Spain
| | - Isabel Caçador
- Department of Ecological Production and Natural Resources Center IFAPA Las Torres-Tomejil Road Sevilla - Cazalla Km 12'2, 41200, Alcalá del Río, Seville, Spain
| | - Enrique Mateos-Naranjo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, 1095, 41080, Sevilla, Spain
| |
Collapse
|
20
|
Kim YC, Anderson AJ. Rhizosphere pseudomonads as probiotics improving plant health. MOLECULAR PLANT PATHOLOGY 2018; 19:2349-2359. [PMID: 29676842 PMCID: PMC6638116 DOI: 10.1111/mpp.12693] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/08/2018] [Accepted: 04/18/2018] [Indexed: 05/25/2023]
Abstract
Many root-colonizing microbes are multifaceted in traits that improve plant health. Although isolates designated as biological control agents directly reduce pathogen growth, many exert additional beneficial features that parallel changes induced in animal and other hosts by health-promoting microbes termed probiotics. Both animal and plant probiotics cause direct antagonism of pathogens and induce systemic immunity in the host to pathogens and other stresses. They also alter host development and improve host nutrition. The probiotic root-colonizing pseudomonads are generalists in terms of plant hosts, soil habitats and the array of stress responses that are ameliorated in the plant. This article illustrates how the probiotic pseudomonads, nurtured by the carbon (C) and nitrogen (N) sources released by the plant in root exudates, form protective biofilms on the root surface and produce the metabolites or enzymes to boost plant health. The findings reveal the multifunctional nature of many of the microbial metabolites in the plant-probiotic interplay. The beneficial effects of probiotics on plant function can contribute to sustainable yield and quality in agricultural production.
Collapse
Affiliation(s)
- Young Cheol Kim
- Department of Applied Biology, College of Agriculture and Life SciencesChonnam National UniversityGwangju 61186South Korea
| | - Anne J. Anderson
- Department of Biological EngineeringUtah State UniversityLoganUT 84322‐4105USA
| |
Collapse
|
21
|
Pérez-Romero JA, Idaszkin YL, Barcia-Piedras JM, Duarte B, Redondo-Gómez S, Caçador I, Mateos-Naranjo E. Disentangling the effect of atmospheric CO 2 enrichment on the halophyte Salicornia ramosissima J. Woods physiological performance under optimal and suboptimal saline conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:617-629. [PMID: 29738990 DOI: 10.1016/j.plaphy.2018.04.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/30/2018] [Indexed: 05/22/2023]
Abstract
A mesocosm experiment was designed to assess the effect of atmospheric CO2 increment on the salinity tolerance of the C3 halophyte Salicornia ramosissima. Thus, the combined effect of 400 ppm and 700 ppm CO2 at 0, 171 and 510 mM NaCl on plants growth, gas exchange, chlorophyll fluorescence parameters, pigments profiles, antioxidative enzyme activities and water relations was studied. Our results highlighted a positive effect of atmospheric CO2 increment on plant physiological performance under suboptimal salinity concentration (510 mM NaCl). Thus, we recorded higher net photosynthetic rate (AN) values under saline conditions and 700 ppm CO2, being this effect mainly mediated by a reduction of mesophyll (gm) and biochemical limitation imposed to salt excess. In addition, rising atmospheric CO2 led to a better plant water balance, linked with a reduction of stomatal conductante (gs) and an overall increment of osmotic potential (Ѱo) with NaCl concentration increment. In spite of these positive effects, there were no significant biomass variations between any treatments. Being this fact ascribed by the investment of the higher energy fixed for salinity stress defence mechanisms, which allowed plants to maintain more active the photochemical machinery even at high salinities, reducing the risk of ROS production, as indicated an improvement of the electron flux and a rise of the energy dissipation. Finally, the positive effect of the CO2 was also supported by the modulation of pigments profiles (mainly zeaxhantin and violaxhantin) concentrations and anti-oxidative stress enzymes, such as superoxide dismutase (SOD) and ascorbate peroxidase (APx).
Collapse
Affiliation(s)
- Jesús Alberto Pérez-Romero
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, 1095, 41080, Sevilla, Spain.
| | - Yanina Lorena Idaszkin
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC-CONICET), Boulevard Brown, 2915, U9120ACD, Puerto Madryn, Chubut, Argentina; Universidad Nacional de la Patagonia San Juan Bosco, Boulevard Brown, 3051, U9120ACD, Puerto Madryn, Chubut, Argentina
| | - Jose-Maria Barcia-Piedras
- Department of Ecological Production and Natural Resources Center IFAPA Las Torres, Tomejil Road Sevilla, Cazalla Km 12'2, 41200, Alcalá del Río, Seville, Spain
| | - Bernardo Duarte
- MARE - Marine and Environmental Sciences Centre, Faculty of Sciences of the University of Lisbon, Campo Grande, 1749-016, Lisbon, Portugal
| | - Susana Redondo-Gómez
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, 1095, 41080, Sevilla, Spain
| | - Isabel Caçador
- MARE - Marine and Environmental Sciences Centre, Faculty of Sciences of the University of Lisbon, Campo Grande, 1749-016, Lisbon, Portugal
| | - Enrique Mateos-Naranjo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, 1095, 41080, Sevilla, Spain
| |
Collapse
|
22
|
Pérez-Romero JA, Idaszkin YL, Duarte B, Baeta A, Marques JC, Redondo-Gómez S, Caçador I, Mateos-Naranjo E. Atmospheric CO 2 enrichment effect on the Cu-tolerance of the C 4 cordgrass Spartina densiflora. JOURNAL OF PLANT PHYSIOLOGY 2018; 220:155-166. [PMID: 29179083 DOI: 10.1016/j.jplph.2017.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
A glasshouse experiment was designed to investigate the effect of the co-occurrence of 400 and 700ppm CO2 at 0, 15 and 45mM Cu on the Cu-tolerance of C4 cordgrass species Spartina densiflora, by measuring growth, gas exchange, efficiency of PSII, pigments profiles, antioxidative enzyme activities and nutritional balance. Our results revealed that the rising atmospheric CO2 mitigated growth reduction imposed by Cu in plants grown at 45mM Cu, leading to leaf Cu concentration bellow than 270mgKg-1 Cu, caused by an evident dilution effect. On the other hand, non-CO2 enrichment plants showed leaf Cu concentration values up to 737.5mgKg-1 Cu. Furthermore, improved growth was associated with higher net photosynthetic rate (AN). The beneficial effect of rising CO2 on photosynthetic apparatus seems to be associated with a reduction of stomatal limitation imposed by Cu excess, which allowed these plants to maintain greater iWUE values. Also, plants grown at 45mM Cu and 700ppm CO2, showed higher ETR values and lower energy dissipation, which could be linked with an induction of Rubisco carboxylation and supported by the recorded amelioration of N imbalance. Furthermore, higher ETR values under CO2 enrichment could lead to an additional consumption of reducing equivalents. Idea that was reflected in the lower values of ETRmax/AN ratio, malondialdehyde (MDA) and ascorbate peroxidase (APx), guaiacol peroxidase (GPx) and superoxide dismutase (SOD) activities under Cu excess, which could indicate a lower production of ROS species under elevated CO2 concentration, due to a better use of absorbed energy.
Collapse
Affiliation(s)
- Jesús Alberto Pérez-Romero
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, 1095, 41080, Sevilla, Spain
| | - Yanina Lorena Idaszkin
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC-CONICET), Boulevard Brown 2915, U9120ACD Puerto Madryn, Chubut, Argentina; Universidad Nacional de la Patagonia San Juan Bosco, Boulevard Brown 3051, U9120ACD Puerto Madryn, Chubut, Argentina
| | - Bernardo Duarte
- MARE - Marine and Environmental Sciences Centre, Faculty of Sciences of the University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | - Alexandra Baeta
- MARE - Marine and Environmental Sciences Centre, c/o DCV, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - João Carlos Marques
- MARE - Marine and Environmental Sciences Centre, c/o DCV, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Susana Redondo-Gómez
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, 1095, 41080, Sevilla, Spain
| | - Isabel Caçador
- MARE - Marine and Environmental Sciences Centre, Faculty of Sciences of the University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | - Enrique Mateos-Naranjo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, 1095, 41080, Sevilla, Spain.
| |
Collapse
|
23
|
Naylor D, Coleman-Derr D. Drought Stress and Root-Associated Bacterial Communities. FRONTIERS IN PLANT SCIENCE 2017; 8:2223. [PMID: 29375600 PMCID: PMC5767233 DOI: 10.3389/fpls.2017.02223] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/18/2017] [Indexed: 05/20/2023]
Abstract
Root-associated bacterial communities play a vital role in maintaining health of the plant host. These communities exist in complex relationships, where composition and abundance of community members is dependent on a number of factors such as local soil chemistry, plant genotype and phenotype, and perturbations in the surrounding abiotic environment. One common perturbation, drought, has been shown to have drastic effects on bacterial communities, yet little is understood about the underlying causes behind observed shifts in microbial abundance. As drought may affect root bacterial communities both directly by modulating moisture availability, as well as indirectly by altering soil chemistry and plant phenotypes, we provide a synthesis of observed trends in recent studies and discuss possible directions for future research that we hope will provide for more knowledgeable predictions about community responses to future drought events.
Collapse
Affiliation(s)
- Dan Naylor
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service, Albany, CA, United States
| | - Devin Coleman-Derr
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service, Albany, CA, United States
- *Correspondence: Devin Coleman-Derr,
| |
Collapse
|