1
|
Pinto MP, Beltrão-Mendes R, Talebi M, de Lima AA. Primates facing climate crisis in a tropical forest hotspot will lose climatic suitable geographical range. Sci Rep 2023; 13:641. [PMID: 36635347 PMCID: PMC9837198 DOI: 10.1038/s41598-022-26756-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Global climate changes affect biodiversity and cause species distribution shifts, contractions, and expansions. Climate change and disease are emerging threats to primates, and approximately one-quarter of primates' ranges have temperatures over historical ones. How will climate changes influence Atlantic Forest primate ranges? We used habitat suitability models and measured potential changes in area and distributions shifts. Climate change expected in 2100 may change the distribution area of Atlantic Forest primates. Fourteen species (74%) are predicted to lose more than 50% of their distribution, and nine species (47%) are predicted to lose more than 75% of their distribution. The balance was negative, indicating a potential future loss, and the strength of the reduction in the distribution is related to the severity of climate change (SSP scenarios). Directional shifts were detected to the south. The projected mean centroid latitudinal shift is ~ 51 km to the south for 2100 SSP5-8.5 scenario. The possibility of dispersal will depend on suitable routes and landscape configuration. Greenhouse gas emissions should be urgently reduced. Our results also emphasize that no more forest loss is acceptable in Atlantic Forest, and restoration, canopy bridges, friendly agroecosystems, and monitoring of infrastructure projects are urgent to enable dealing with climate change.
Collapse
Affiliation(s)
- Míriam Plaza Pinto
- Departamento de Ecologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), 59072-970, Natal, RN, Brasil.
- Programa de Pós-Graduação em Ecologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), 59072-970, Natal, RN, Brasil.
| | - Raone Beltrão-Mendes
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal de Sergipe (UFS), 49100-000, São Cristóvão, SE, Brasil
| | - Maurício Talebi
- Departamento de Ciências Ambientais, Universidade Federal de São Paulo (UNIFESP), 09972-270, Diadema, SP, Brasil
- Programa de Pós-Graduação em Análise Ambiental Integrada, Universidade Federal de São Paulo (UNIFESP), Diadema, SP, Brasil
| | - Adriana Almeida de Lima
- Programa de Pós-Graduação em Ecologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), 59072-970, Natal, RN, Brasil
| |
Collapse
|
2
|
Alves-Ferreira G, Talora DC, Solé M, Cervantes-López MJ, Heming NM. Unraveling global impacts of climate change on amphibians distributions: A life-history and biogeographic-based approach. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.987237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Climate change can affect species distribution patterns in three different ways: pushing them to disperse to new suitable areas, forcing them to adapt to novel climatic conditions, or driving them to extinction. However, the biological and geographical traits that lead to these different responses remain poorly explored. Here, we evaluated how ecological and biogeographic traits influence amphibians’ response to climate change. We performed a systematic review searching for studies that evaluated the effects of future climate change on amphibian’s distribution. Our research returned 31 articles that projected the distribution of 331 amphibians. Our results demonstrate that species inhabiting an elevation above 515 m will lose a significant portion of their climatically suitable area. We also found that as isothermality increases, the amount of area suitable in response to climate change also increases. Another important discovery was that as the size of the baseline area increases, the greater must be the loss of climatically suitable areas. On the other hand, species with very small areas tend to keep their current climatically suitable area in the future. Furthermore, our results indicate that species that inhabit dry habitats tend to expand their suitable area in response to climate change. This result can be explained by the environmental characteristics of these habitats, which tend to present extreme seasonal climates with well-defined periods of drought and rain. We also found that anurans that inhabit exclusively forests are projected to lose a greater portion of their suitable areas, when compared to species that inhabit both forest and open areas, wetlands, and dry and rupestrian environments. The biogeographical realm also influenced anuran’s range shifts, with Afrotropic and Nearctic species projected to expand their geographical ranges. The assessment of climate change effects on amphibian distribution has been the focus of a growing number of studies. Despite this, some regions and species remain underrepresented. Current literature evaluates about 4% of the 7,477 species of Anura and 8% of the 773 species of Caudata and some regions rich in amphibian species remain severely underrepresented, such as Madagascar. Thus, future studies should focus on regions and taxas that remain underrepresented.
Collapse
|
3
|
Climate change threatens native potential agroforestry plant species in Brazil. Sci Rep 2022; 12:2267. [PMID: 35145191 PMCID: PMC8831634 DOI: 10.1038/s41598-022-06234-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/11/2022] [Indexed: 12/22/2022] Open
Abstract
Climate change is one of the main drivers of species extinction in the twentyfirst-century. Here, we (1) quantify potential changes in species' bioclimatic area of habitat (BAH) of 135 native potential agroforestry species from the Brazilian flora, using two different climate change scenarios (SSP2-4.5 and SSP5-8.5) and dispersal scenarios, where species have no ability to disperse and reach new areas (non-dispersal) and where species can migrate within the estimated BAH (full dispersal) for 2041–2060 and 2061–2080. We then (2) assess the preliminary conservation status of each species based on IUCN criteria. Current and future potential habitats for species were predicted using MaxEnt, a machine-learning algorithm used to estimate species' probability distribution. Future climate is predicted to trigger a mean decline in BAH between 38.5–56.3% under the non-dispersal scenario and between 22.3–41.9% under the full dispersal scenario for 135 native potential agroforestry species. Additionally, we found that only 4.3% of the studied species could be threatened under the IUCN Red List criteria B1 and B2. However, when considering the predicted quantitative habitat loss due to climate change (A3c criterion) the percentages increased between 68.8–84.4% under the non-dispersal scenario and between 40.7–64.4% under the full dispersal scenario. To lessen such threats, we argue that encouraging the use of these species in rural and peri-urban agroecosystems are promising, complementary strategies for their long-term conservation.
Collapse
|
4
|
Baker DJ, Dickson CR, Bergstrom DM, Whinam J, Maclean IM, McGeoch MA. Evaluating models for predicting microclimates across sparsely vegetated and topographically diverse ecosystems. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- David J. Baker
- Environment and Sustainability Institute University of Exeter Penryn Cornwall UK
- School of Biological Sciences Monash University Clayton Vic. Australia
| | | | - Dana M. Bergstrom
- Australian Antarctic Division Department of Agriculture, Water and the Environment Kingston TAS Australia
| | - Jennie Whinam
- School of Geography and Spatial Science University of Tasmania Hobart TAS Australia
| | - Ilya M.D. Maclean
- Environment and Sustainability Institute University of Exeter Penryn Cornwall UK
| | - Melodie A. McGeoch
- School of Biological Sciences Monash University Clayton Vic. Australia
- Department of Ecology, Environment and Evolution La Trobe University Melbourne Vic. Australia
| |
Collapse
|
5
|
Gasper ALD, Grittz GS, Russi CH, Schwartz CE, Rodrigues AV. Expected impacts of climate change on tree ferns distribution and diversity patterns in subtropical Atlantic Forest. Perspect Ecol Conserv 2021. [DOI: 10.1016/j.pecon.2021.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
6
|
Dorigan de Matos Furlanetto AL, Kaziuk FD, Martinez GR, Donatti L, Merlin Rocha ME, Dos Santos ALW, Floh EIS, Cadena SMSC. Mitochondrial bioenergetics and enzymatic antioxidant defense differ in Paraná pine cell lines with contrasting embryogenic potential. Free Radic Res 2021; 55:255-266. [PMID: 33961525 DOI: 10.1080/10715762.2021.1921172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Araucaria angustifolia is classified as a critically endangered species by the International Union for Conservation of Nature. This threat is worsened by the inefficiency of methods for ex-situ conservation and propagation. In conifers, somatic embryogenesis (SE) associated with cryopreservation is an efficient method to achieve germplasm conservation and mass clonal propagation. However, the efficiency of SE is highly dependent on genotype responsivity to the artificial stimulus used in vitro during cell line proliferation and later during somatic embryo development. In this study, we evaluated the activity of antioxidant enzymes and characterized mitochondrial functions during the proliferation of embryogenic cells of A. angustifolia responsive (SE1) and non-responsive (SE6) to the development of somatic embryos. The activities of the antioxidant enzymes GR (EC 1.6.4.2), MDHAR (EC 1.6.5.4), and POX (EC 1.11.1.7) were increased in SE1 culture, while in SE6 culture, only the activity of DHAR (EC 1.8.5.1) was significantly higher. Additionally, SE6 culture presented a higher number of mitochondria, which agreed with the increased rate of oxygen consumption compared to responsive SE1 culture; however, the mitochondrial volume was lower. Although the ATP levels did not differ, the NAD(P)H levels were higher in SE1 cells. NDs, AOX, and UCP were less active in responsive SE1 than in non-responsive cells. Our results show significant differences between SE1 and SE6 embryogenic cells regarding mitochondrial functions and antioxidant enzyme activities, which may be intrinsic to the in vitro proliferation phase of both cell lines, possessing a crucial role for the induction of in vitro maturation process.
Collapse
Affiliation(s)
| | - Fernando Diego Kaziuk
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Glaucia Regina Martinez
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Lucelia Donatti
- Departamento de Biologia Celular, Universidade Federal do Paraná, Curitiba, Brazil
| | | | | | - Eny Iochevet Segal Floh
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
7
|
Ellis CJ, Eaton S. Microclimates hold the key to spatial forest planning under climate change: Cyanolichens in temperate rainforest. GLOBAL CHANGE BIOLOGY 2021; 27:1915-1926. [PMID: 33421251 DOI: 10.1111/gcb.15514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
There is deepening interest in how microclimatic refugia can reduce species threat, if suitable climatic conditions are maintained locally, despite global climate change. Microclimates are a particularly important consideration in topographically heterogeneous landscapes, while in some habitats, such as forests and woodlands, microclimates are also extremely labile and affected by management practices that could consequently be used to offset climate change impact. This study explored a conservation priority guild-cyanolichen epiphytes in temperate rainforest-quantifying the niche response to macroclimate, and landscape or woodland stand structures that determine the microclimate. Based on epiphyte survey in a core region of European temperate rainforest (western Scotland), a 'random forest' machine-learning model confirmed a strong cyanolichen response to summer dryness, as well as the effects of distance to running water, topographic heatload and tree species identity, which modify the local moisture regime and/or lichen growth rates. By quantifying this response to macroclimate, landscape and stand structures, it was possible to estimate an extent to which woodland may be expanded in the future, to offset a negative effect of increasing summer dryness projected through to the 2080s. Using current policy as a yardstick, sufficient woodland expansion could be delivered relatively quickly for median impacted sites, but with times to woodland delivery extending over 10, 20 and 25 years for sites at the 75th, 90th and 95th percentiles of cyanolichen decline. Furthermore, the extent of new woodland required, and delivery times, increase almost threefold on average, as new woodland becomes distributed over wider riparian zones. These contrasting implications emphasize an urgent need for afforestation that achieves targeted spatial planning responsive to microclimates as refugia.
Collapse
Affiliation(s)
| | - Sally Eaton
- Royal Botanic Garden Edinburgh, Edinburgh, UK
| |
Collapse
|