1
|
Lancaster ER, Brady DC, Frederich M. In Hot Water: Current Thermal Threshold Methods Unlikely to Predict Invasive Species Shifts in NW Atlantic. Integr Comp Biol 2024; 64:189-202. [PMID: 38992237 DOI: 10.1093/icb/icae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024] Open
Abstract
As global temperatures continue to rise, accurate predicted species distribution models will be important for forecasting the movement of range-shifting species. These predictions rely on measurements of organismal thermal tolerance, which can be measured using classical threshold concepts such as Arrhenius break temperatures and critical thermal temperatures, or through ecologically relevant measurements such as the temperature at which reproduction and growth occur. Many species, including invasive species, exhibit thermal plasticity, so these thresholds may change based on ambient temperature, life stage, and measurement techniques. Here, we review thermal thresholds for 15 invertebrate species invasive to the Gulf of Maine. The high degree of variability within a species and between applied conceptual frameworks suggests that modeling the future distribution of these species in all ecosystems, but especially in the rapidly warming northwest Atlantic and Gulf of Maine, will be challenging. While each of these measurement techniques is valid, we suggest contextualization and integration of threshold measurements for accurate modeling.
Collapse
Affiliation(s)
- Emily R Lancaster
- University of Maine, 168 College Ave, United States of America
- University of New England, 11 Hills Beach Rd, United States of America
- Eckerd College, 4200 54th Ave S, United States of America
| | - Damian C Brady
- University of Maine, 168 College Ave, United States of America
| | - Markus Frederich
- University of New England, 11 Hills Beach Rd, United States of America
| |
Collapse
|
2
|
Fairchild EA, Wulfing S, White ER. Lumpfish, Cyclopterus lumpus, distribution in the Gulf of Maine, USA: observations from fisheries independent and dependent catch data. PeerJ 2024; 12:e17832. [PMID: 39157768 PMCID: PMC11330208 DOI: 10.7717/peerj.17832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/09/2024] [Indexed: 08/20/2024] Open
Abstract
The Gulf of Maine (GoM) is one of the fastest-warming parts of the world's oceans. Some species' distributional shifts have already been documented, especially for commercially-important species. Less is known about species that are not currently exploited but may become so in the future. As a case study into these issues, we focus on lumpfish (Cyclopterus lumpus) because of the recognized and timely need to understand wild lumpfish population dynamics to support sustainable fisheries and aquaculture developments. Using occurrence data from five different fisheries-dependent and independent surveys, we examined lumpfish distribution over time in the GoM. We found that lumpfish presence was more likely in Fall and correlated with deeper waters and colder bottom temperatures. Since 1980, lumpfish presence has increased over time and shifted north. Given a limited set of data, these findings should be interpreted with caution as additional work is needed to assess if the actual distribution of lumpfish is changing. Nevertheless, our work provides preliminary information for resource managers to ensure that lumpfish are harvested sustainably for use in emergent lumpfish aquaculture facilities.
Collapse
Affiliation(s)
| | - Sophie Wulfing
- Biological Sciences, University of New Hampshire, Durham, NH, United States of America
| | - Easton R. White
- Biological Sciences, University of New Hampshire, Durham, NH, United States of America
| |
Collapse
|
3
|
Koepper S, Clark KF, McClure JT, Revie CW, Stryhn H, Thakur KK. Differences in diversity and community composition of the shell microbiome of apparently healthy lobsters Homarus americanus across Atlantic Canada. Front Microbiol 2024; 15:1320812. [PMID: 38567078 PMCID: PMC10986177 DOI: 10.3389/fmicb.2024.1320812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Host-microbe dynamics are of increasing interest in marine research due to their role in host health and productivity. Changes in the shell microbiome of American lobsters have been associated with epizootic shell disease, a syndrome that is spreading northwards across the eastern U.S. and Canadian Atlantic coast. This study analyzed differences in alpha and beta diversity, as well as differentially abundant taxa, in the shell-associated bacterial community of apparently healthy lobsters from four lobster fishing areas (LFAs) in Atlantic Canada. Over 180 lobsters from New Brunswick, Nova Scotia and Prince Edward Island (PEI) were sampled during seven sampling events over four sampling months. The bacterial community was identified using novel PacBio long-read sequencing, while alpha and beta diversity parameters were analyzed using linear regression models and weighted UniFrac distances. The bacterial richness, diversity and evenness differed by sampling location, sampling month, and molt stage, but not by lobster sex or size, nor sampling depth. Similarly, based on LFA, sampling month, year and lobster molt stage, the shell microbiome differed in microbial community composition with up to 34 out of 162 taxa differing significantly in abundance between sampling groups. This large-scale microbial survey suggests that the shell microbial diversity of apparently healthy lobsters is influenced by spatial and temporal factors such as geographic location, as well as the length of time the carapace is exposed to the surrounding seawater.
Collapse
Affiliation(s)
- Svenja Koepper
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - K. Fraser Clark
- Department of Animal Sciences and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada
| | - J. T. McClure
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Crawford W. Revie
- Department of Computer and Information Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Henrik Stryhn
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Krishna K. Thakur
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| |
Collapse
|
4
|
Watson WH, Gutzler BC, Goldstein JS, Jury SH. Impacts of Increasing Temperature on the Metabolism of Confined and Freely Moving American Lobsters ( Homarus americanus). THE BIOLOGICAL BULLETIN 2023; 245:103-116. [PMID: 38980328 DOI: 10.1086/730687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
AbstractGulf of Maine waters are warming rapidly, prompting a reevaluation of how commercially important marine species will respond. The goal of this study was to determine the respiratory, cardiac, and locomotory responses of American lobsters (Homarus americanus) to increasing water temperatures and to compare these to similar published studies. First, we measured the heart rate and ventilation rate of 10 lobsters that were confined in a temperature-controlled chamber while exposing them to gradually warming temperatures from 16 to 30 °C over 7 h. Both heart rate and ventilation rate increased along with the temperature up to a break point, with the mean heart rate peaking at 26.5 ± 1.6 °C, while the ventilation rate peaked at 27.4 ± 0.8 °C. In a subset of these trials (n = 5), oxygen consumption was also monitored and peaked at similar temperatures. In a second experiment, both the heart rate and activity of five lobsters were monitored with custom-built dataloggers while they moved freely in a large tank, while the temperature was increased from 18 to 29 °C over 24 h. The heart rate of these lobsters also increased with temperature, but their initial heart rates were lower than we recorded from confined lobsters. Finally, we confirmed that the low heart rates of the freely moving lobsters were due to the methods used by comparing heart rate data from eight lobsters collected using both methods with each individual animal. Thus, while our overall results are consistent with data from previous studies, they also show that the methods used in studies of physiological and behavioral responses to warming temperatures can impact the results obtained.
Collapse
|
5
|
McClenachan L, Neal B. Forgotten whales, fading codfish: Perceptions of ‘natural’ ecosystems inform visions of future recovery. PEOPLE AND NATURE 2023. [DOI: 10.1002/pan3.10439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Loren McClenachan
- Ocean History Lab, Department of History and School of Environmental Studies University of Victoria Victoria British Columbia Canada
- Environmental Studies Program Colby College Waterville Maine USA
| | - Benjamin Neal
- Environmental Studies Program Colby College Waterville Maine USA
- Department of Biology and School of Environmental Studies University of Victoria Victoria British Columbia Canada
| |
Collapse
|
6
|
Ganley LC, Byrnes J, Pendleton DE, Mayo CA, Friedland KD, Redfern JV, Turner JT, Brault S. Effects of changing temperature phenology on the abundance of a critically endangered baleen whale. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
7
|
Scale-dependent assumptions influence habitat suitability estimates for the American lobster (Homarus americanus): Implications for a changing Gulf of Maine. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.110030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
McClenachan L, Record NR, Waller J. How do human actions affect fisheries? Differences in perceptions between fishers and scientists in the Maine lobster fishery. Facets (Ott) 2022. [DOI: 10.1139/facets-2021-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The degree to which human actions affect marine fisheries has been a fundamental question shaping people’s relationship with the sea. Today, divergences in stakeholder views about the impacts of human activities such as fishing, climate change, pollution, and resource management can hinder effective co-management and adaptation. Here, we used surveys to construct mental models of the Maine lobster fishery, identifying divergent views held by two key stakeholder groups: lobster fishers and marine scientists. The two groups were differentiated by their perceptions of the relative impact of pollution, water temperature, and fishing. Notably, many fishers perceive the process of fishing to have a positive effect on fisheries through the input of bait. Scientists exhibited a statistically significantly stronger concern for climate change and identified CO2 as one of the dominant pollutants in the Gulf of Maine. However, fishers and scientists agreed that management has a positive impact, which appeared to be a change over the past two decades, possibly due to increased collaboration between the two groups. This work contributes to the goal of decreasing the distance between stakeholder perspectives in the context of a co-managed fishery as well as understanding broader perceptions of impacts of human activities on marine ecosystems.
Collapse
Affiliation(s)
- Loren McClenachan
- Ocean History Lab, Department of History and School of Environmental Studies, University of Victoria, Victoria, BC, Canada
- Environmental Studies Program, Colby College, Waterville, ME, USA
| | | | - Jesica Waller
- Maine Department of Marine Resources, West Boothbay Harbor, ME, USA
| |
Collapse
|
9
|
Farr ER, Johnson MR, Nelson MW, Hare JA, Morrison WE, Lettrich MD, Vogt B, Meaney C, Howson UA, Auster PJ, Borsuk FA, Brady DC, Cashman MJ, Colarusso P, Grabowski JH, Hawkes JP, Mercaldo-Allen R, Packer DB, Stevenson DK. An assessment of marine, estuarine, and riverine habitat vulnerability to climate change in the Northeast U.S. PLoS One 2021; 16:e0260654. [PMID: 34882701 PMCID: PMC8659346 DOI: 10.1371/journal.pone.0260654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/12/2021] [Indexed: 11/19/2022] Open
Abstract
Climate change is impacting the function and distribution of habitats used by marine, coastal, and diadromous species. These impacts often exacerbate the anthropogenic stressors that habitats face, particularly in the coastal environment. We conducted a climate vulnerability assessment of 52 marine, estuarine, and riverine habitats in the Northeast U.S. to develop an ecosystem-scale understanding of the impact of climate change on these habitats. The trait-based assessment considers the overall vulnerability of a habitat to climate change to be a function of two main components, sensitivity and exposure, and relies on a process of expert elicitation. The climate vulnerability ranks ranged from low to very high, with living habitats identified as the most vulnerable. Over half of the habitats examined in this study are expected to be impacted negatively by climate change, while four habitats are expected to have positive effects. Coastal habitats were also identified as highly vulnerable, in part due to the influence of non-climate anthropogenic stressors. The results of this assessment provide regional managers and scientists with a tool to inform habitat conservation, restoration, and research priorities, fisheries and protected species management, and coastal and ocean planning.
Collapse
Affiliation(s)
- Emily R. Farr
- Office of Habitat Conservation, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Silver Spring, Maryland, United States of America
| | - Michael R. Johnson
- Habitat and Ecosystem Services Division, Greater Atlantic Regional Fisheries Office, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Gloucester, Massachusetts, United States of America
| | - Mark W. Nelson
- ECS, Under contract to the Office of Science and Technology, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Silver Spring, Maryland, United States of America
| | - Jonathan A. Hare
- Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Woods Hole, Massachusetts, United States of America
| | - Wendy E. Morrison
- Office of Sustainable Fisheries, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Silver Spring, Maryland, United States of America
| | - Matthew D. Lettrich
- ECS, Under contract to the Office of Science and Technology, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Silver Spring, Maryland, United States of America
| | - Bruce Vogt
- NOAA Chesapeake Bay Office, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Annapolis, Maryland, United States of America
| | - Christopher Meaney
- Gulf of Maine Coastal Program, U.S. Fish and Wildlife Service, Falmouth, Maine, United States of America
| | - Ursula A. Howson
- Office of Renewable Energy Programs, Bureau of Ocean Energy Management, Sterling, Virginia, United States of America
| | - Peter J. Auster
- Mystic Aquarium & University of Connecticut, Groton, Connecticut, United States of America
| | - Frank A. Borsuk
- Region 3, U.S. Environmental Protection Agency, Wheeling, West Virginia, United States of America
| | - Damian C. Brady
- Darling Marine Center, University of Maine, Walpole, Maine, United States of America
| | - Matthew J. Cashman
- Maryland-Delaware-DC Water Science Center, U.S. Geological Survey, Baltimore, Maryland, United States of America
| | - Phil Colarusso
- Region 1, U.S. Environmental Protection Agency, Boston, Massachusetts, United States of America
| | - Jonathan H. Grabowski
- Marine Science Center, Northeastern University, Nahant, Massachusetts, United States of America
| | - James P. Hawkes
- Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Orono, Maine, United States of America
| | - Renee Mercaldo-Allen
- Milford Laboratory, Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Milford, Connecticut, United States of America
| | - David B. Packer
- James J. Howard Marine Sciences Laboratory, Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Highlands, New Jersey, United States of America
| | - David K. Stevenson
- Habitat and Ecosystem Services Division, Greater Atlantic Regional Fisheries Office, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Gloucester, Massachusetts, United States of America
| |
Collapse
|
10
|
Montgomery J, Scarborough C, Shumchenia E, Verstaen J, Napoli N, Halpern B. Ocean health in the Northeast United States from 2005 to 2017. PEOPLE AND NATURE 2021. [DOI: 10.1002/pan3.10223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jamie Montgomery
- National Center for Ecological Analysis and Synthesis University of California Santa Barbara CA USA
| | - Courtney Scarborough
- National Center for Ecological Analysis and Synthesis University of California Santa Barbara CA USA
| | | | - Juliette Verstaen
- National Center for Ecological Analysis and Synthesis University of California Santa Barbara CA USA
| | - Nick Napoli
- Northeast Regional Ocean Council Providence RI USA
| | - Benjamin Halpern
- National Center for Ecological Analysis and Synthesis University of California Santa Barbara CA USA
- Bren School of Environmental Science and Management University of California Santa Barbara CA USA
| |
Collapse
|
11
|
Boulding E, Behrens Yamada S, Schooler S, Shanks A. Periodic invasions during El Niño events by the predatory lined shore crab (Pachygrapsus crassipes): forecasted effects of its establishment on direct-developing indigenous prey species (Littorinaspp.). CAN J ZOOL 2020. [DOI: 10.1139/cjz-2019-0250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Coevolutionary arms races between shelled gastropods and their predators are more escalated near the equator. Therefore, temperate gastropods are predicted to be maladapted to highly specialized tropical shell-crushing crabs. The northern geographical limit of the lined shore crab (Pachygrapsus crassipes J.W. Randall, 1840) does not usually overlap with the southern limit of the Sitka periwinkle (Littorina sitkana Philippi, 1846), which lacks a pelagic larval stage. Large El Niño events increased the winter abundance and poleward transport of P. crassipes larvae from California (USA) in the Davidson Current. Temporary intertidal crab populations that included females with eggs were observed 1–4 years later, >1000 km north of its usual geographical range. Laboratory experiments showed that L. sitkana did not have a size refuge from adult P. crassipes. Moreover, consumption rates of adult L. sitkana by P. crassipes were 10-fold higher than those published for indigenous purple shore crabs (Hemigrapsus nudus (Dana, 1851)) with similar claw sizes. Additionally, the upper intertidal limit of invading P. crassipes was higher than that of H. nudus. Consequently, the invasion of P. crassipes reduced the width of L. sitkana‘s spatial refuge from predation. The permanent presence of this subtropical predator could reduce the intertidal distribution of this temperate gastropod, thereby causing contraction of its southern range limit.
Collapse
Affiliation(s)
- E.G. Boulding
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - S. Behrens Yamada
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - S.S. Schooler
- South Slough National Estuarine Research Reserve, P.O. Box 5417, Charleston, OR 97420, USA
| | - A.L. Shanks
- Oregon Institute of Marine Biology, P.O. Box 5389, Charleston, OR 97420, USA
| |
Collapse
|
12
|
Oppenheim NG, Wahle RA, Brady DC, Goode AG, Pershing AJ. The cresting wave: larval settlement and ocean temperatures predict change in the American lobster harvest. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e02006. [PMID: 31541510 PMCID: PMC6916173 DOI: 10.1002/eap.2006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/03/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Adding to the challenge of predicting fishery recruitment in a changing environment is downscaling predictions to capture locally divergent trends over a species' range. In recent decades, the American lobster (Homarus americanus) fishery has shifted poleward along the northwest Atlantic coast, one of the most rapidly warming regions of the world's oceans. Building on evidence that early post-settlement life stages predict future fishery recruitment, we describe enhancements to a forecasting model that predict landings using an annual larval settlement index from 62 fixed sites among 10 study areas from Rhode Island, USA to New Brunswick, Canada. The model is novel because it incorporates local bottom temperature and disease prevalence to scale spatial and temporal changes in growth and mortality. For nine of these areas, adding environmental predictors significantly improved model performance, capturing a landings surge in the eastern Gulf of Maine, and collapse in southern New England. On the strength of these analyses, we project landings within the next decade to decline to near historical levels in the Gulf of Maine and no recovery in the south. This approach is timely as downscaled ocean temperature projections enable decision makers to assess their options under future climate scenarios at finer spatial scales.
Collapse
Affiliation(s)
- Noah G. Oppenheim
- University of MaineSchool of Marine SciencesDarling Marine CenterWalpoleMaine04573USA
- Institute for Fisheries Resources991 Marine DriveSan FranciscoCalifornia94129USA
| | - Richard A. Wahle
- University of MaineSchool of Marine SciencesDarling Marine CenterWalpoleMaine04573USA
| | - Damian C. Brady
- University of MaineSchool of Marine SciencesDarling Marine CenterWalpoleMaine04573USA
| | - Andrew G. Goode
- University of MaineSchool of Marine SciencesDarling Marine CenterWalpoleMaine04573USA
| | | |
Collapse
|