1
|
Piecha M, Kreyling J, Couwenberg J, Pester M, Guenther A, Henningsen L, Weil M, Jurasinski G, Blume-Werry G, Urich T, Wang H. Plant roots but not hydrology control microbiome composition and methane flux in temperate fen mesocosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173480. [PMID: 38796012 DOI: 10.1016/j.scitotenv.2024.173480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
The rewetting of formerly drained peatlands can help to counteract climate change through the reduction of CO2 emissions. However, this can lead to resuming CH4 emissions due to changes in the microbiome, favoring CH4-producing archaea. How plants, hydrology and microbiomes interact as ultimate determinants of CH4 dynamics is still poorly understood. Using a mesocosm approach, we studied peat microbiomes, below-ground root biomass and CH4 fluxes with three different water level regimes (stable high, stable low and fluctuating) and four different plant communities (bare peat, Carex rostrata, Juncus inflexus and their mixture) over the course of one growing season. A significant difference in microbiome composition was found between mesocosms with and without plants, while the difference between plant species identity or water regimes was rather weak. A significant difference was also found between the upper and lower peat, with the difference increasing as plants grew. By the end of the growing season, the methanogen relative abundance was higher in the sub-soil layer, as well as in the bare peat and C. rostrata pots, as compared to J. inflexus or mixture pots. This was inversely linked to the larger root area of J. inflexus. The root area also negatively correlated with CH4 fluxes which positively correlated with the relative abundance of methanogens. Despite the absence or low abundance of methanotrophs in many samples, the integration of methanotroph abundance improved the quality of the correlation with CH4 fluxes, and methanogens and methanotrophs together determined CH4 fluxes in a structural equation model. However, water regime showed no significant impact on plant roots and methanogens, and consequently, on CH4 fluxes. This study showed that plant roots determined the microbiome composition and, in particular, the relative abundance of methanogens and methanotrophs, which, in interaction, drove the CH4 fluxes.
Collapse
Affiliation(s)
- Marc Piecha
- Department of Bacterial Physiology, Institute of Microbiology, 17489 Greifswald, Germany
| | - Juergen Kreyling
- Experimental Plant Ecology, Institute of Botany and Landscape Ecology, 17489 Greifswald, Germany
| | - John Couwenberg
- Experimental Plant Ecology, Institute of Botany and Landscape Ecology, 17489 Greifswald, Germany
| | - Michael Pester
- Department of Microorganisms, Leibniz Institute, German Collection of Microorganisms and Cell Cultures GmbH, 38124 Braunschweig, Germany; Institute of Microbiology, Technical University of Braunschweig, 38106 Braunschweig, Germany
| | - Anke Guenther
- Landscape Ecology, Faculty of Agricultural and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
| | - Levke Henningsen
- Experimental Plant Ecology, Institute of Botany and Landscape Ecology, 17489 Greifswald, Germany
| | - Micha Weil
- Department of Bacterial Physiology, Institute of Microbiology, 17489 Greifswald, Germany
| | - Gerald Jurasinski
- Landscape Ecology, Faculty of Agricultural and Environmental Sciences, University of Rostock, 18059 Rostock, Germany; Peatland Science, University of Greifswald, 17489 Greifswald, Germany
| | - Gesche Blume-Werry
- Experimental Plant Ecology, Institute of Botany and Landscape Ecology, 17489 Greifswald, Germany; Department of Ecology and Environmental Sciences, Umeå University, 901 87 Umeå, Sweden
| | - Tim Urich
- Department of Bacterial Physiology, Institute of Microbiology, 17489 Greifswald, Germany
| | - Haitao Wang
- Department of Bacterial Physiology, Institute of Microbiology, 17489 Greifswald, Germany.
| |
Collapse
|
2
|
Hartman WH, Bueno de Mesquita CP, Theroux SM, Morgan-Lang C, Baldocchi DD, Tringe SG. Multiple microbial guilds mediate soil methane cycling along a wetland salinity gradient. mSystems 2024; 9:e0093623. [PMID: 38170982 PMCID: PMC10804969 DOI: 10.1128/msystems.00936-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Estuarine wetlands harbor considerable carbon stocks, but rising sea levels could affect their ability to sequester soil carbon as well as their potential to emit methane (CH4). While sulfate loading from seawater intrusion may reduce CH4 production due to the higher energy yield of microbial sulfate reduction, existing studies suggest other factors are likely at play. Our study of 11 wetland complexes spanning a natural salinity and productivity gradient across the San Francisco Bay and Delta found that while CH4 fluxes generally declined with salinity, they were highest in oligohaline wetlands (ca. 3-ppt salinity). Methanogens and methanogenesis genes were weakly correlated with CH4 fluxes but alone did not explain the highest rates observed. Taxonomic and functional gene data suggested that other microbial guilds that influence carbon and nitrogen cycling need to be accounted for to better predict CH4 fluxes at landscape scales. Higher methane production occurring near the freshwater boundary with slight salinization (and sulfate incursion) might result from increased sulfate-reducing fermenter and syntrophic populations, which can produce substrates used by methanogens. Moreover, higher salinities can solubilize ionically bound ammonium abundant in the lower salinity wetland soils examined here, which could inhibit methanotrophs and potentially contribute to greater CH4 fluxes observed in oligohaline sediments.IMPORTANCELow-level salinity intrusion could increase CH4 flux in tidal freshwater wetlands, while higher levels of salinization might instead decrease CH4 fluxes. High CH4 emissions in oligohaline sites are concerning because seawater intrusion will cause tidal freshwater wetlands to become oligohaline. Methanogenesis genes alone did not account for landscape patterns of CH4 fluxes, suggesting mechanisms altering methanogenesis, methanotrophy, nitrogen cycling, and ammonium release, and increasing decomposition and syntrophic bacterial populations could contribute to increases in net CH4 flux at oligohaline salinities. Improved understanding of these influences on net CH4 emissions could improve restoration efforts and accounting of carbon sequestration in estuarine wetlands. More pristine reference sites may have older and more abundant organic matter with higher carbon:nitrogen compared to wetlands impacted by agricultural activity and may present different interactions between salinity and CH4. This distinction might be critical for modeling efforts to scale up biogeochemical process interactions in estuarine wetlands.
Collapse
Affiliation(s)
| | | | | | - Connor Morgan-Lang
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dennis D. Baldocchi
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| | - Susannah G. Tringe
- DOE Joint Genome Institute, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
3
|
Capooci M, Seyfferth AL, Tobias C, Wozniak AS, Hedgpeth A, Bowen M, Biddle JF, McFarlane KJ, Vargas R. High methane concentrations in tidal salt marsh soils: Where does the methane go? GLOBAL CHANGE BIOLOGY 2024; 30:e17050. [PMID: 38273533 DOI: 10.1111/gcb.17050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 01/27/2024]
Abstract
Tidal salt marshes produce and emit CH4 . Therefore, it is critical to understand the biogeochemical controls that regulate CH4 spatial and temporal dynamics in wetlands. The prevailing paradigm assumes that acetoclastic methanogenesis is the dominant pathway for CH4 production, and higher salinity concentrations inhibit CH4 production in salt marshes. Recent evidence shows that CH4 is produced within salt marshes via methylotrophic methanogenesis, a process not inhibited by sulfate reduction. To further explore this conundrum, we performed measurements of soil-atmosphere CH4 and CO2 fluxes coupled with depth profiles of soil CH4 and CO2 pore water gas concentrations, stable and radioisotopes, pore water chemistry, and microbial community composition to assess CH4 production and fate within a temperate tidal salt marsh. We found unexpectedly high CH4 concentrations up to 145,000 μmol mol-1 positively correlated with S2- (salinity range: 6.6-14.5 ppt). Despite large CH4 production within the soil, soil-atmosphere CH4 fluxes were low but with higher emissions and extreme variability during plant senescence (84.3 ± 684.4 nmol m-2 s-1 ). CH4 and CO2 within the soil pore water were produced from young carbon, with most Δ14 C-CH4 and Δ14 C-CO2 values at or above modern. We found evidence that CH4 within soils was produced by methylotrophic and hydrogenotrophic methanogenesis. Several pathways exist after CH4 is produced, including diffusion into the atmosphere, CH4 oxidation, and lateral export to adjacent tidal creeks; the latter being the most likely dominant flux. Our findings demonstrate that CH4 production and fluxes are biogeochemically heterogeneous, with multiple processes and pathways that can co-occur and vary in importance over the year. This study highlights the potential for high CH4 production, the need to understand the underlying biogeochemical controls, and the challenges of evaluating CH4 budgets and blue carbon in salt marshes.
Collapse
Affiliation(s)
- Margaret Capooci
- Department of Plant and Soil Science, University of Delaware, Newark, Delaware, USA
| | - Angelia L Seyfferth
- Department of Plant and Soil Science, University of Delaware, Newark, Delaware, USA
| | - Craig Tobias
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| | - Andrew S Wozniak
- School of Marine Science and Policy, University of Delaware, Lewes, Delaware, USA
| | - Alexandra Hedgpeth
- Department of Geography, University of California, Los Angeles, Los Angeles, California, USA
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Malique Bowen
- School of Marine Science and Policy, University of Delaware, Lewes, Delaware, USA
| | - Jennifer F Biddle
- School of Marine Science and Policy, University of Delaware, Lewes, Delaware, USA
| | - Karis J McFarlane
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Rodrigo Vargas
- Department of Plant and Soil Science, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
4
|
Antonijević D, Hoffmann M, Prochnow A, Krabbe K, Weituschat M, Couwenberg J, Ehlert S, Zak D, Augustin J. The unexpected long period of elevated CH 4 emissions from an inundated fen meadow ended only with the occurrence of cattail (Typha latifolia). GLOBAL CHANGE BIOLOGY 2023; 29:3678-3691. [PMID: 37029755 DOI: 10.1111/gcb.16713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/17/2023] [Indexed: 06/06/2023]
Abstract
Drainage and agricultural use transform natural peatlands from a net carbon (C) sink to a net C source. Rewetting of peatlands, despite of high methane (CH4 ) emissions, holds the potential to mitigate climate change by greatly reducing CO2 emissions. However, the time span for this transition is unknown because most studies are limited to a few years. Especially, nonpermanent open water areas often created after rewetting, are highly productive. Here, we present 14 consecutive years of CH4 flux measurements following rewetting of a formerly long-term drained peatland in the Peene valley. Measurements were made at two rewetted sites (non-inundated vs. inundated) using manual chambers. During the study period, significant differences in measured CH4 emissions occurred. In general, these differences overlapped with stages of ecosystem transition from a cultivated grassland to a polytrophic lake dominated by emergent helophytes, but could also be additionally explained by other variables. This transition started with a rapid vegetation shift from dying cultivated grasses to open water floating and submerged hydrophytes and significantly increased CH4 emissions. Since 2008, helophytes have gradually spread from the shoreline into the open water area, especially in drier years. This process was periodically delayed by exceptional inundation and eventually resulted in the inundated site being covered by emergent helophytes. While the period between 2009 and 2015 showed exceptionally high CH4 emissions, these decreased significantly after cattail and other emergent helophytes became dominant at the inundated site. Therefore, CH4 emissions declined only after 10 years of transition following rewetting, potentially reaching a new steady state. Overall, this study highlights the importance of an integrative approach to understand the shallow lakes CH4 biogeochemistry, encompassing the entire area with its mosaic of different vegetation forms. This should be ideally done through a study design including proper measurement site allocation as well as long-term measurements.
Collapse
Affiliation(s)
- Danica Antonijević
- Research Area 1: Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF) e.V., Müncheberg, Germany
| | - Mathias Hoffmann
- Research Area 1: Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF) e.V., Müncheberg, Germany
| | - Annette Prochnow
- Leibniz-Institute for Agricultural Engineering Potsdam-Bornim, Potsdam, Germany
- Albrecht Daniel Thaer Institute for Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, Berlin, Germany
| | - Karoline Krabbe
- Institute of Botany and Landscape Ecology, Greifswald University, Partner in the Greifswald Mire Centre, Greifswald, Germany
| | - Mirjam Weituschat
- Institute of Botany and Landscape Ecology, Greifswald University, Partner in the Greifswald Mire Centre, Greifswald, Germany
| | - John Couwenberg
- Institute of Botany and Landscape Ecology, Greifswald University, Partner in the Greifswald Mire Centre, Greifswald, Germany
| | - Sigrid Ehlert
- Research Area 2: Land Use and Governance, Leibniz Centre for Agricultural Landscape Research (ZALF) e.V., Müncheberg, Germany
| | - Dominik Zak
- Department of Ecoscience, Aarhus University, Silkeborg, Denmark
- Department of Ecohydrology and Biogeochemistry, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Jürgen Augustin
- Research Area 1: Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF) e.V., Müncheberg, Germany
| |
Collapse
|
5
|
Zhang Z, Xu Z, Wang X. The greenhouse effect of antibiotics: The influence pathways of antibiotics on methane release from freshwater sediment. ENVIRONMENT INTERNATIONAL 2023; 176:107964. [PMID: 37209487 DOI: 10.1016/j.envint.2023.107964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/25/2023] [Accepted: 05/05/2023] [Indexed: 05/22/2023]
Abstract
The impact of antibiotics on methane (CH4) release from sediment involves both CH4 production and consumption processes. However, most relevant studies lack a discussion of the pathways by which antibiotics affect CH4 release and do not highlight the role played by the sediment chemical environment in this influence mechanism. Here, we collected field surface sediments and grouped them with various antibiotic combination concentration gradients (50, 100, 500, 1000 ng g-1) under a 35-day indoor anaerobic constant temperature incubation. We found that the positive effect of antibiotics on sediment CH4 release potential appeared later than the positive effect on sediment CH4 release flux. Still, the positive effect of high-concentration antibiotics (500, 1000 ng g-1) occurred with a lag in both processes. Also, the positive effect of high-concentration antibiotics was significantly higher than low-concentration antibiotics (50, 100 ng g-1) in the later incubation period (p < 0.05). We performed a multi-collinearity assessment of sediment biochemical indicators, followed by a generalized linear model with negative binomial regression (GLM-NB) to obtain essential variables. In particular, we conducted the interaction analysis on CH4 release potential and flux regression for the influence pathways construction. The partial least-squares path modeling (PLS-PM) demonstrated that the positive effect of antibiotics on CH4 release (Total effect = 0.2579) was primarily attributed to their effect on the sediment chemical environment (Direct effect = 0.5107). These findings greatly expand our understanding of the antibiotic greenhouse effect in freshwater sediment. Further studies should more carefully consider the effects of antibiotics on the sediment chemical environment, and continuously improve the mechanistic studies of antibiotics on sediment CH4 release.
Collapse
Affiliation(s)
- Ziqi Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Zhinan Xu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Xiangrong Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Research Center for Urban Ecological Planning and Design, Fudan University, Shanghai 200433, China.
| |
Collapse
|
6
|
Liu Z, Wang J, Xie J, Yao D, Yang S, Ge J. Interactions among heavy metals and methane-metabolizing microorganisms and their effects on methane emissions in Dajiuhu peatland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37415-37426. [PMID: 36572772 DOI: 10.1007/s11356-022-24868-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/15/2022] [Indexed: 06/18/2023]
Abstract
Peatlands play a crucial role in mediating the emissions of methane through active biogeochemical cycling of accumulated carbon driven by methane-metabolizing microorganisms; meanwhile, they serve as vital archives of atmospheric heavy metal deposition. Despite many edaphic factors confirmed as determinants to modulate the structure of methanotrophic and methanogenic communities, recognition of interactions among them is limited. In this study, peat soils were collected from Dajiuhu peatland to assess the presence of heavy metals, and methanotrophs and methanogens were investigated via high-throughput sequencing for functional genes mcrA and pmoA. Further analyses of the correlations between methane-related functional groups were conducted. The results demonstrated that both methane-metabolizing microorganisms and heavy metals have prominent vertical heterogeneity upward and downward along the depth of 20 cm. Pb, Cd, and Hg strongly correlated with methanotrophs and methanogens across all seasons and depths, serving as forceful factors in structural variations of methanogenic and methanotrophic communities. Particularly, Pb, Cd, and Hg were identified as excessive elements in Dajiuhu peatland. Furthermore, seasonal variations of networks among methane-related functional groups and environmental factors significantly affected the changes of methane fluxes across different seasons. Concretely, the complicated interactions were detrimental to methane emissions in the Dajiuhu peatland, leading to the minimum methane emissions in winter. Our study identified the key heavy metals affecting the composition of methane-metabolizing microorganisms and linkages between seasonal variations of methane emissions and interaction among heavy metals and methane-metabolizing microorganisms, which provided much new reference and theoretical basis for integrated management of natural peatlands.
Collapse
Affiliation(s)
- Ziwei Liu
- School of Environmental Studies, China University of Geosciences (Wuhan), 68 Jincheng Street, Hongshan District, Wuhan, 430078, Hubei Province, China
- Laboratory of Basin Hydrology and Wetland Eco-Restoration, China University of Geosciences (Wuhan), Wuhan, 430078, China
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, China University of Geosciences (Wuhan), Wuhan, 430078, China
- Institution of Ecology and Environmental Sciences, China University of Geosciences (Wuhan), Wuhan, 430078, China
| | - Jiumei Wang
- School of Environmental Studies, China University of Geosciences (Wuhan), 68 Jincheng Street, Hongshan District, Wuhan, 430078, Hubei Province, China
- Laboratory of Basin Hydrology and Wetland Eco-Restoration, China University of Geosciences (Wuhan), Wuhan, 430078, China
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, China University of Geosciences (Wuhan), Wuhan, 430078, China
- Institution of Ecology and Environmental Sciences, China University of Geosciences (Wuhan), Wuhan, 430078, China
| | - Jinlin Xie
- School of Environmental Studies, China University of Geosciences (Wuhan), 68 Jincheng Street, Hongshan District, Wuhan, 430078, Hubei Province, China
- Laboratory of Basin Hydrology and Wetland Eco-Restoration, China University of Geosciences (Wuhan), Wuhan, 430078, China
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, China University of Geosciences (Wuhan), Wuhan, 430078, China
- Institution of Ecology and Environmental Sciences, China University of Geosciences (Wuhan), Wuhan, 430078, China
| | - Dong Yao
- School of Environmental Studies, China University of Geosciences (Wuhan), 68 Jincheng Street, Hongshan District, Wuhan, 430078, Hubei Province, China
- Laboratory of Basin Hydrology and Wetland Eco-Restoration, China University of Geosciences (Wuhan), Wuhan, 430078, China
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, China University of Geosciences (Wuhan), Wuhan, 430078, China
- Institution of Ecology and Environmental Sciences, China University of Geosciences (Wuhan), Wuhan, 430078, China
| | - Shiyu Yang
- School of Environmental Studies, China University of Geosciences (Wuhan), 68 Jincheng Street, Hongshan District, Wuhan, 430078, Hubei Province, China
- Laboratory of Basin Hydrology and Wetland Eco-Restoration, China University of Geosciences (Wuhan), Wuhan, 430078, China
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, China University of Geosciences (Wuhan), Wuhan, 430078, China
- Institution of Ecology and Environmental Sciences, China University of Geosciences (Wuhan), Wuhan, 430078, China
| | - Jiwen Ge
- School of Environmental Studies, China University of Geosciences (Wuhan), 68 Jincheng Street, Hongshan District, Wuhan, 430078, Hubei Province, China.
- Laboratory of Basin Hydrology and Wetland Eco-Restoration, China University of Geosciences (Wuhan), Wuhan, 430078, China.
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, China University of Geosciences (Wuhan), Wuhan, 430078, China.
- Institution of Ecology and Environmental Sciences, China University of Geosciences (Wuhan), Wuhan, 430078, China.
| |
Collapse
|
7
|
Fan L, Dippold MA, Thiel V, Ge T, Wu J, Kuzyakov Y, Dorodnikov M. Temperature sensitivity of anaerobic methane oxidation versus methanogenesis in paddy soil: Implications for the CH 4 balance under global warming. GLOBAL CHANGE BIOLOGY 2022; 28:654-664. [PMID: 34653297 DOI: 10.1111/gcb.15935] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
The global methane (CH4 ) budget is based on a sensitive balance between methanogenesis and CH4 oxidation (aerobic and anaerobic). The response of these processes to climate warming, however, is not quantified. This largely reflects our lack of knowledge about the temperature sensitivity (Q10 ) of the anaerobic oxidation of CH4 (AOM)-a ubiquitous process in soils. Based on a 13 CH4 labeling experiment, we determined the rate, Q10 and activation energy of AOM and of methanogenesis in a paddy soil at three temperatures (5, 20, 35°C). The rates of AOM and of methanogenesis increased exponentially with temperature, whereby the AOM rate was significantly lower than methanogenesis. Both the activation energy and Q10 of AOM dropped significantly from 5-20 to 20-35°C, indicating that AOM is a highly temperature-dependent microbial process. Nonetheless, the Q10 of AOM and of methanogenesis were similar at 5-35°C, implying a comparable temperature dependence of AOM and methanogenesis in paddy soil. The continuous increase of AOM Q10 over the 28-day experiment reflects the successive utilization of electron acceptors according to their thermodynamic efficiency. The basic constant for Q10 of AOM was calculated to be 0.1 units for each 3.2 kJ mol-1 increase of activation energy. We estimate the AOM in paddy soils to consume 2.2~5.5 Tg CH4 per year on a global scale. Considering these results in conjunction with literature data, the terrestrial AOM in total consumes ~30% of overall CH4 production. Our data corroborate a similar Q10 of AOM and methanogenesis. As the rate of AOM in paddy soils is lower than methanogenesis, however, it will not fully compensate for an increased methane production under climate warming.
Collapse
Affiliation(s)
- Lichao Fan
- Department of Soil Science of Temperate Ecosystems, University of Göttingen, Göttingen, Germany
| | - Michaela A Dippold
- Department of Biogeochemistry of Agroecosystems, University of Göttingen, Göttingen, Germany
- Geo-Biosphere Interactions, University of Tuebingen, Tuebingen, Germany
| | - Volker Thiel
- Geobiology, Geoscience Center, University of Göttingen, Göttingen, Germany
| | - Tida Ge
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, China
| | - Jinshui Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, University of Göttingen, Göttingen, Germany
- Department of Agricultural Soil Science, University of Göttingen, Göttingen, Germany
- Agro-Technological Institute, RUDN University, Moscow, Russia
- Tyumen State University, Tyumen, Russia
| | - Maxim Dorodnikov
- Department of Soil Science of Temperate Ecosystems, University of Göttingen, Göttingen, Germany
- Department of Biogeochemistry of Agroecosystems, University of Göttingen, Göttingen, Germany
- Tyumen State University, Tyumen, Russia
| |
Collapse
|
8
|
Kasak K, Espenberg M, Anthony TL, Tringe SG, Valach AC, Hemes KS, Silver WL, Mander Ü, Kill K, McNicol G, Szutu D, Verfaillie J, Baldocchi DD. Restoring wetlands on intensive agricultural lands modifies nitrogen cycling microbial communities and reduces N 2O production potential. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113562. [PMID: 34425499 DOI: 10.1016/j.jenvman.2021.113562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/03/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
The concentration of nitrous oxide (N2O), an ozone-depleting greenhouse gas, is rapidly increasing in the atmosphere. Most atmospheric N2O originates in terrestrial ecosystems, of which the majority can be attributed to microbial cycling of nitrogen in agricultural soils. Here, we demonstrate how the abundance of nitrogen cycling genes vary across intensively managed agricultural fields and adjacent restored wetlands in the Sacramento-San Joaquin Delta in California, USA. We found that the abundances of nirS and nirK genes were highest at the intensively managed organic-rich cornfield and significantly outnumber any other gene abundances, suggesting very high N2O production potential. The quantity of nitrogen transforming genes, particularly those responsible for denitrification, nitrification and DNRA, were highest in the agricultural sites, whereas nitrogen fixation and ANAMMOX was strongly associated with the wetland sites. Although the abundance of nosZ genes was also high at the agricultural sites, the ratio of nosZ genes to nir genes was significantly higher in wetland sites indicating that these sites could act as a sink of N2O. These findings suggest that wetland restoration could be a promising natural climate solution not only for carbon sequestration but also for reduced N2O emissions.
Collapse
Affiliation(s)
- Kuno Kasak
- University of Tartu, Institute of Ecology and Earth Sciences, Department of Geography, Tartu, Estonia.
| | - Mikk Espenberg
- University of Tartu, Institute of Ecology and Earth Sciences, Department of Geography, Tartu, Estonia
| | - Tyler L Anthony
- University of California, Berkeley, Department of Environmental Science, Policy and Management, Berkeley, CA, USA
| | | | - Alex C Valach
- Climate and Agriculture Group, Agroscope, Switzerland
| | | | - Whendee L Silver
- University of California, Berkeley, Department of Environmental Science, Policy and Management, Berkeley, CA, USA
| | - Ülo Mander
- University of Tartu, Institute of Ecology and Earth Sciences, Department of Geography, Tartu, Estonia
| | - Keit Kill
- University of Tartu, Institute of Ecology and Earth Sciences, Department of Geography, Tartu, Estonia
| | - Gavin McNicol
- Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Daphne Szutu
- University of California, Berkeley, Department of Environmental Science, Policy and Management, Berkeley, CA, USA
| | - Joseph Verfaillie
- University of California, Berkeley, Department of Environmental Science, Policy and Management, Berkeley, CA, USA
| | - Dennis D Baldocchi
- University of California, Berkeley, Department of Environmental Science, Policy and Management, Berkeley, CA, USA
| |
Collapse
|
9
|
Jensen JK, Nilsson B, Engesgaard P. Numerical Modeling of Nitrate Removal in Anoxic Groundwater during River Flooding of Riparian Zones. GROUND WATER 2021; 59:866-877. [PMID: 33942295 DOI: 10.1111/gwat.13108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
A numerical study demonstrates the effects of flooding on subsurface hydrological flowpaths and nitrate removal in anoxic groundwater in riparian zones with a top peat layer. A series of two-dimensional numerical simulations with changing conditions for flow (steady state or transient with flooding), hydrogeology, denitrification, and duration of flooding demonstrate how flowpaths, residence times, and nitrate removal are affected. In periods with no flooding groundwater flows horizontally and discharges to the river through the riverbed. During periods with flooding, shallow groundwater is forced upwards as discharge through peat layers that often have more optimal conditions for denitrification caused by the presence of highly reactive organic matter. The contrast in hydraulic conductivity between the sand aquifer and the overlying peat layer, as well as the flooding duration, have a significant role in determining the degree of nitrate removal.
Collapse
Affiliation(s)
- Jannick Kolbjørn Jensen
- Department of Geosciences and Natural Resource Management, Section of Geology, University of Copenhagen, Øster Voldgade 10, 1350 Copenhagen K, Denmark
- The Capital Region of Denmark, Centre for Regional Development, Kongens Vaenge 2, 3400 Hillerød, Denmark
| | - Bertel Nilsson
- Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, 1350 Copenhagen K, Denmark
| | | |
Collapse
|
10
|
Günther A, Barthelmes A, Huth V, Joosten H, Jurasinski G, Koebsch F, Couwenberg J. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nat Commun 2020; 11:1644. [PMID: 32242055 PMCID: PMC7118086 DOI: 10.1038/s41467-020-15499-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/05/2020] [Indexed: 11/12/2022] Open
Abstract
Peatlands are strategic areas for climate change mitigation because of their matchless carbon stocks. Drained peatlands release this carbon to the atmosphere as carbon dioxide (CO2). Peatland rewetting effectively stops these CO2 emissions, but also re-establishes the emission of methane (CH4). Essentially, management must choose between CO2 emissions from drained, or CH4 emissions from rewetted, peatland. This choice must consider radiative effects and atmospheric lifetimes of both gases, with CO2 being a weak but persistent, and CH4 a strong but short-lived, greenhouse gas. The resulting climatic effects are, thus, strongly time-dependent. We used a radiative forcing model to compare forcing dynamics of global scenarios for future peatland management using areal data from the Global Peatland Database. Our results show that CH4 radiative forcing does not undermine the climate change mitigation potential of peatland rewetting. Instead, postponing rewetting increases the long-term warming effect through continued CO2 emissions.
Collapse
Affiliation(s)
- Anke Günther
- University of Rostock, Faculty of Agricultural and Environmental Studies, Landscape Ecology, Rostock, Germany.
| | - Alexandra Barthelmes
- University of Greifswald, Faculty of Mathematics and Natural Sciences, Peatland Studies and Paleoecology, Greifswald, Germany
- Greifswald Mire Centre (GMC), Greifswald, Germany
| | - Vytas Huth
- University of Rostock, Faculty of Agricultural and Environmental Studies, Landscape Ecology, Rostock, Germany
| | - Hans Joosten
- University of Greifswald, Faculty of Mathematics and Natural Sciences, Peatland Studies and Paleoecology, Greifswald, Germany
- Greifswald Mire Centre (GMC), Greifswald, Germany
| | - Gerald Jurasinski
- University of Rostock, Faculty of Agricultural and Environmental Studies, Landscape Ecology, Rostock, Germany
| | - Franziska Koebsch
- University of Rostock, Faculty of Agricultural and Environmental Studies, Landscape Ecology, Rostock, Germany
| | - John Couwenberg
- University of Greifswald, Faculty of Mathematics and Natural Sciences, Peatland Studies and Paleoecology, Greifswald, Germany
- Greifswald Mire Centre (GMC), Greifswald, Germany
| |
Collapse
|