1
|
Zhang C, Li Y, Wang W, Gao Z, Liu H, Nie Y. Combined effects of climate and land-use changes on the alpha and beta functional diversities of terrestrial mammals in China. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2224-2233. [PMID: 39028374 DOI: 10.1007/s11427-023-2574-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/21/2024] [Indexed: 07/20/2024]
Abstract
Climate and land-use changes are predicted to impact biodiversity, threatening ecosystem services and functions. However, their combined effects on the functional diversity of mammals at the regional scale remain unclear, especially at the beta level. Here, we use projected climate and land-use changes in China to investigate their potential effects on the alpha and beta functional diversities of terrestrial mammals under low- and high-emission scenarios. In the current projection, we showed strong positive spatial correlations between functional richness and species richness. Functional evenness (FEve), functional specialization (FSpe), and functional originality (FOri) decreased with species richness, and functional divergence (FDiv) increased first and then plateaued. Functional beta diversity was dominated by its nestedness component, in contrast to the taxonomic facet. Potential changes in species richness are more strongly influenced by land-use change under the low-emission scenario, while under the high-emission scenario, they are more strongly influenced by climate change. Changes in functional richness (FRic) were inconsistent with those in species richness, with a magnitude of decreases greater than predicted from species richness. Moreover, mammal assemblages showed potential functional differentiation (FD) across the country, and the trends exceeded those towards taxonomic differentiation (TD). Our findings help us understand the processes underlying biodiversity responses to global changes on multiple facets and provide new insight for conservation plans.
Collapse
Affiliation(s)
- Chao Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yumei Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Zexuan Gao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanqing Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yonggang Nie
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Yoon HS, Corsi F, Miara A, Welch JR, Jager HI. Climate-driven shifts in freshwater biodiversity will impact mitigation costs for hydropower. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176201. [PMID: 39293758 DOI: 10.1016/j.scitotenv.2024.176201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/15/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
Climate change is forecasted to drastically alter freshwater fish and mussel species distribution. Hydropower dam reservoirs, which modify downstream thermal regimes, may interact with climate change's impact on species distribution. This distribution shift may feedback, affecting hydropower operation costs through environmental compliance. We investigated how freshwater species distribution will shift due to climate change and hydropower reservoirs in the conterminous United States (CONUS), and how this will affect biodiversity mitigation costs for privately-owned hydropower plants. In general, using environmental niche modeling, we found that climate change increased the range of both freshwater fish and mussel species on average. For fish, this was mainly due to the expanded habitat for warm-water and cool-water fish species despite the diminish in habitat for cold-water species. Compared to climate change, thermal stratification of hydropower reservoirs had a small impact on the future range changes of these species in the tailwaters but showed an interaction with the effect of climate change on species range. Geographically, we projected an increase of species richness in the west and a decrease in the central and east of CONUS for fish, while projecting uniform increase for mussels. With this shift in species distribution, we estimated that the Northwest region will face the largest increase in mitigation cost, while the majority of plants in the Southeast will experience a decrease in cost.
Collapse
Affiliation(s)
- Hyun Seok Yoon
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA.
| | - Fabio Corsi
- The City University of New York, New York, NY 10017, USA
| | - Ariel Miara
- National Renewable Energy Laboratory, Golden, CO 80401, USA
| | | | | |
Collapse
|
3
|
Wegscheider B, Waldock C, Calegari BB, Josi D, Brodersen J, Seehausen O. Neglecting biodiversity baselines in longitudinal river connectivity restoration impacts priority setting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:175167. [PMID: 39127207 DOI: 10.1016/j.scitotenv.2024.175167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
River habitats are fragmented by barriers which impede the movement and dispersal of aquatic organisms. Restoring habitat connectivity is a primary objective of nature conservation plans with multiple efforts to strategically restore connectivity at local, regional, and global scales. However, current approaches to prioritize connectivity restoration do not typically consider how barriers spatially fragment species' populations. Additionally, we lack knowledge on biodiversity baselines to predict which species would find suitable habitat after restoring connectivity. In this paper, we asked how neglecting these biodiversity baselines in river barrier removals impacts priority setting for conservation planning. We applied a novel modelling approach combining predictions of species distributions with network connectivity models to prioritize conservation actions in rivers of the Rhine-Aare system in Switzerland. Our results show that the high number and density of barriers has reduced structural and functional connectivity across representative catchments within the system. We show that fragmentation decreases habitat suitability for species and that using expected distributions as biodiversity baselines significantly affects priority settings for connectivity restorations compared to species-agnostic metrics based on river length. This indicates that priorities for barrier removals are ranked higher within the expected distributions of species to maximize functional connectivity while barriers in unsuitable regions are given lower importance scores. Our work highlights that the joint consideration of existing barriers and species past and current distributions are critical for restoration plans to ensure the recovery and persistence of riverine fish diversity.
Collapse
Affiliation(s)
- Bernhard Wegscheider
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, CH-3012 Bern, Switzerland; Department of Fish Ecology and Evolution, EAWAG, Swiss Federal Institute for Aquatic Science and Technology, CH-6047 Kastanienbaum, Switzerland.
| | - Conor Waldock
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, CH-3012 Bern, Switzerland; Department of Fish Ecology and Evolution, EAWAG, Swiss Federal Institute for Aquatic Science and Technology, CH-6047 Kastanienbaum, Switzerland
| | - Bárbara B Calegari
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, CH-3012 Bern, Switzerland; Department of Fish Ecology and Evolution, EAWAG, Swiss Federal Institute for Aquatic Science and Technology, CH-6047 Kastanienbaum, Switzerland
| | - Dario Josi
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, CH-3012 Bern, Switzerland; Department of Fish Ecology and Evolution, EAWAG, Swiss Federal Institute for Aquatic Science and Technology, CH-6047 Kastanienbaum, Switzerland
| | - Jakob Brodersen
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, CH-3012 Bern, Switzerland; Department of Fish Ecology and Evolution, EAWAG, Swiss Federal Institute for Aquatic Science and Technology, CH-6047 Kastanienbaum, Switzerland
| | - Ole Seehausen
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, CH-3012 Bern, Switzerland; Department of Fish Ecology and Evolution, EAWAG, Swiss Federal Institute for Aquatic Science and Technology, CH-6047 Kastanienbaum, Switzerland
| |
Collapse
|
4
|
Wang H, Jiang X, Liu K, Pu X, Wang Y. Swimming ability of Schizothoracinae fishes in Yarlung Zangbo River of China. JOURNAL OF FISH BIOLOGY 2024; 105:95-109. [PMID: 38650364 DOI: 10.1111/jfb.15763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/27/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
The Yarlung Zangbo River is a river with abundant hydropower resources but fragile biodiversity in China. As an important benchmark for both research and ecological management, there is still a lack of knowledge about the swimming ability of fishes in the Yarlung Zangbo River. The induced flow velocity (Uind), critical swimming speed (Ucrit), and burst swimming speed (Uburst) of five Schizothoracinae species were tested in this study. Relative swimming ability related to body length and body shape was calculated. The results indicated that the average absolute swimming speeds (Uind-a, Ucrit-a, and Uburst-a) of all the experimental fish were 10.20 ± 0.01, 57.58 ± 3.28, and 69.54 ± 2.94 cm/s, respectively, and the corresponding relative Uind, Ucrit, and Uburst related to body length (Uind-l, Ucrit-l, Uburst-l) were 1.15 ± 0.07, 5.04 ± 0.26, and 7.23 ± 0.28 BL/s, respectively. Moreover, relative Uind, Ucrit, and Uburst related to body shape (Uind-s, Ucrit-s, and Uburst-s) were 0.80 ± 0.13, 2.49 ± 0.51, and 4.32 ± 0.57 cm-2/s, respectively. No significantly differences in relative swimming speeds existed among five species. Only Oxygymnocypris stewartii was significantly weaker in Uburst-s than Schizothorax o'connori. The body shape showed a stronger relationship with swimming speed than the body length did. Schizothoracinae fish in the Yarlung Zangbo River basin are less sensitive to the water flow and performed weaker Ucrit and Uburst compared to those in the Yangtze River basin, indicating that Schizothoracinae fish in the Yarlung Zangbo River may be more susceptible to threats from environmental changes. The paper enriched the research on the swimming ability of Schizothoracinae fishes and provided efficient data for the fish conservation in the Yarlung Zangbo River.
Collapse
Affiliation(s)
- Hongtao Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Xutao Jiang
- China Water Resources Beifang Investigation, Design and Research Co. Ltd., Tianjin, China
| | - Kejia Liu
- School of Management Science and Engineering, Shandong University of Finance and Economics, Jinan, China
| | - Xunchi Pu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Yuanming Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Parasiewicz P, Belka K, Łapińska M, Ławniczak K, Prus P, Adamczyk M, Buras P, Szlakowski J, Kaczkowski Z, Krauze K, O'Keeffe J, Suska K, Ligięza J, Melcher A, O'Hanley J, Birnie-Gauvin K, Aarestrup K, Jones PE, Jones J, Garcia de Leaniz C, Tummers JS, Consuegra S, Kemp P, Schwedhelm H, Popek Z, Segura G, Vallesi S, Zalewski M, Wiśniewolski W. Over 200,000 kilometers of free-flowing river habitat in Europe is altered due to impoundments. Nat Commun 2023; 14:6289. [PMID: 37813852 PMCID: PMC10562483 DOI: 10.1038/s41467-023-40922-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/03/2023] [Indexed: 10/11/2023] Open
Abstract
European rivers are disconnected by more than one million man-made barriers that physically limit aquatic species migration and contribute to modification of freshwater habitats. Here, a Conceptual Habitat Alteration Model for Ponding is developed to aid in evaluating the effects of impoundments on fish habitats. Fish communities present in rivers with low human impact and their broad environmental settings enable classification of European rivers into 15 macrohabitat types. These classifications, together with the estimated fish sensitivity to alteration of their habitat are used for assessing the impacts of six main barrier types (dams, weirs, sluices, culverts, fords, and ramps). Our results indicate that over 200,000 km or 10% of previously free-flowing river habitat has been altered due to impoundments. Although they appear less frequently, dams, weirs and sluices cause much more habitat alteration than the other types. Their impact is regionally diverse, which is a function of barrier height, type and density, as well as biogeographical location. This work allows us to foresee what potential environmental gain or loss can be expected with planned barrier management actions in rivers, and to prioritize management actions.
Collapse
Affiliation(s)
| | - Kamila Belka
- National Inland Fisheries Research Institute, Olsztyn, Poland.
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Łódź, Poland.
| | - Małgorzata Łapińska
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Łódź, Poland
- University of Lodz, Łódź, Poland
| | - Karol Ławniczak
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Łódź, Poland
- University of Lodz, Łódź, Poland
| | - Paweł Prus
- National Inland Fisheries Research Institute, Olsztyn, Poland
| | | | - Paweł Buras
- National Inland Fisheries Research Institute, Olsztyn, Poland
| | | | - Zbigniew Kaczkowski
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Łódź, Poland
- University of Lodz, Łódź, Poland
| | - Kinga Krauze
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Łódź, Poland
| | - Joanna O'Keeffe
- National Inland Fisheries Research Institute, Olsztyn, Poland
| | - Katarzyna Suska
- National Inland Fisheries Research Institute, Olsztyn, Poland
| | - Janusz Ligięza
- National Inland Fisheries Research Institute, Olsztyn, Poland
| | - Andreas Melcher
- University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | | | | | | | | | | | | | - Paul Kemp
- University of Southampton, Southampton, UK
| | | | | | | | | | - Maciej Zalewski
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Łódź, Poland
| | | |
Collapse
|
6
|
Shim T, Kim Z, Jung J. A Benford's law-based framework to determine the threshold of occurrence sites for species distribution modelling from ecological monitoring databases. Sci Rep 2023; 13:16777. [PMID: 37798344 PMCID: PMC10556063 DOI: 10.1038/s41598-023-44010-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 10/03/2023] [Indexed: 10/07/2023] Open
Abstract
The use of data-based species distribution models (SDMs) has increased significantly in recent years. However, studies of determining the minimum requirements of occurrence sites from ecological monitoring datasets used in species distribution modelling remain insufficient. Therefore, this study proposed a framework to determine the threshold of minimum occurrence sites for SDMs by assessing compliance with Benford's law. The compliance test verified that the national-scale freshwater fish monitoring dataset was natural and reliable. Results derived from true skill statistics (TSS) determined the minimum number of occurrence sites for reliable species distribution modelling was 20 with a TSS value of 0.793 and an overall accuracy of 0.804. The Benford compliance test has shown to be a useful tool for swift and efficient evaluation of the reliability of species occurrence datasets, or the determination of the threshold of occurrence sites before species distribution modelling. Further studies regarding the evaluation of this method's transferability to other species and validation using SDM performance are required. Overall, the framework proposed in this study demonstrates that Benford compliance test applied to species monitoring datasets can be used to derive a universal and model-independent minimum occurrence threshold for SDMs.
Collapse
Affiliation(s)
- Taeyong Shim
- Ojeong Resilience Institute, Korea University, Seoul, 02841, Republic of Korea
| | - Zhonghyun Kim
- Institute of Life Science and Natural Resources, Korea University, Seoul, 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
7
|
Woods T, Freeman MC, Krause KP, Maloney KO. Observed and projected functional reorganization of riverine fish assemblages from global change. GLOBAL CHANGE BIOLOGY 2023; 29:3759-3780. [PMID: 37021672 DOI: 10.1111/gcb.16707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/03/2023] [Indexed: 06/06/2023]
Abstract
Climate and land-use/land-cover change ("global change") are restructuring biodiversity, globally. Broadly, environmental conditions are expected to become warmer, potentially drier (particularly in arid regions), and more anthropogenically developed in the future, with spatiotemporally complex effects on ecological communities. We used functional traits to inform Chesapeake Bay Watershed fish responses to future climate and land-use scenarios (2030, 2060, and 2090). We modeled the future habitat suitability of focal species representative of key trait axes (substrate, flow, temperature, reproduction, and trophic) and used functional and phylogenetic metrics to assess variable assemblage responses across physiographic regions and habitat sizes (headwaters through large rivers). Our focal species analysis projected future habitat suitability gains for carnivorous species with preferences for warm water, pool habitats, and fine or vegetated substrates. At the assemblage level, models projected decreasing habitat suitability for cold-water, rheophilic, and lithophilic individuals but increasing suitability for carnivores in the future across all regions. Projected responses of functional and phylogenetic diversity and redundancy differed among regions. Lowland regions were projected to become less functionally and phylogenetically diverse and more redundant while upland regions (and smaller habitat sizes) were projected to become more diverse and less redundant. Next, we assessed how these model-projected assemblage changes 2005-2030 related to observed time-series trends (1999-2016). Halfway through the initial projecting period (2005-2030), we found observed trends broadly followed modeled patterns of increasing proportions of carnivorous and lithophilic individuals in lowland regions but showed opposing patterns for functional and phylogenetic metrics. Leveraging observed and predicted analyses simultaneously helps elucidate the instances and causes of discrepancies between model predictions and ongoing observed changes. Collectively, results highlight the complexity of global change impacts across broad landscapes that likely relate to differences in assemblages' intrinsic sensitivities and external exposure to stressors.
Collapse
Affiliation(s)
- Taylor Woods
- Eastern Ecological Science Center, U.S. Geological Survey, West Virginia, Kearneysville, USA
| | - Mary C Freeman
- Eastern Ecological Science Center, U.S. Geological Survey, Georgia, Athens, USA
| | - Kevin P Krause
- Eastern Ecological Science Center, U.S. Geological Survey, West Virginia, Kearneysville, USA
| | - Kelly O Maloney
- Eastern Ecological Science Center, U.S. Geological Survey, West Virginia, Kearneysville, USA
| |
Collapse
|
8
|
da Costa ID, Costa LL, da Silva Oliveira A, de Carvalho CEV, Zalmon IR. Microplastics in fishes in amazon riverine beaches: Influence of feeding mode and distance to urban settlements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160934. [PMID: 36539082 DOI: 10.1016/j.scitotenv.2022.160934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Microplastic (MP) pollution is a global problem and has affected several biological levels even in protected areas. In the present study, MP contamination was investigated in fish associated with sandy beaches in a permanent environmental protection area in the Amazon. In order to achieve this goal, the shape, color, abundance, richness, and chemical composition of MPs in the digestive tract of 29 fish species in 24 beaches of the Machado River, western Brazilian Amazon, were evaluated. Linear mixed models (LMMs) were adjusted to test the effects of local human modification (HMc), distance from urban settlements, distance from the closest affluent, and trophic categories of fish species on microplastic abundance and richness in their digestive tracts. From the 1082 fish analyzed, 332 (30 %) presented MPs in their digestive tracts. A total of 617 MPs was found (1.8 ± 1.6 MPs; 4.5 ± 1.9 MPs/g fish). Omnivorous and insectivorous fish presented more MPs in sandy beaches located closer to urban settlements. However, carnivorous fish presented a higher abundance of MPs in their digestive tracts compared with the other trophic guilds. This is the first study to analyze plastic contamination in fish associated with sandy beaches in the Amazon (Brazil), and it revealed contamination of the ichthyofauna mainly related to the distance from urban settlements. Our results reinforce the need for better management of landscape surrounding protected areas to mitigate MP pollution.
Collapse
Affiliation(s)
- Igor David da Costa
- Departamento de Ciências Exatas, Biológicas e da Terra, Universidade Federal Fluminense, Santo Antônio de Pádua, 28470-000 Rio de Janeiro, Brazil; Mestrado Profissional em Gestão e Regulação de Recursos Hídricos, Universidade Federal de Rondônia, 76900-726 Rondônia, Brazil.
| | - Leonardo Lopes Costa
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, 28013-602 Rio de Janeiro, Brazil
| | - Ariane da Silva Oliveira
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, 28013-602 Rio de Janeiro, Brazil
| | - Carlos Eduardo Veiga de Carvalho
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, 28013-602 Rio de Janeiro, Brazil
| | - Ilana Rosental Zalmon
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, 28013-602 Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
Sun J, Du W, Lucas MC, Ding C, Chen J, Tao J, He D. River fragmentation and barrier impacts on fishes have been greatly underestimated in the upper Mekong River. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 327:116817. [PMID: 36459786 DOI: 10.1016/j.jenvman.2022.116817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
River barriers reduce river connectivity and lead to fragmentation of fish habitats, which can result in decline or even extinction of aquatic biota, including fish populations. In the Mekong basin, previous studies have mainly focused on the impacts of large dams but ignored the impacts of small-scale barriers, or drew conclusions from incomplete barrier databases, potentially leading to research biases. To test the completeness of existing databases and to evaluate the catchment-scale fragmentation level, a detailed investigation of river barriers for the whole Upper Mekong (Lancang catchment) was performed, by conducting visual interpretation of high-resolution remotely sensed images. Then, a complete catchment-scale barrier database was created for the first time. By comparing our barrier database with existing databases, this study indicates that 93.7% of river barriers were absent from the existing database, including 75% of dams and 99.5% of small barriers. Barrier density and dendritic connectivity index (DCID and DCIP) were used to measure channel fragmentation within the catchment. Overall, 50.5% of sub-catchments contained river barriers. The Middle region is the most fragmented area within the Lancang catchment, with a median [quartiles] barrier density of 5.34 [0.70-9.67] per 100 km, DCIP value of 49.50 [21.50-90.00] and DCID value of 38.50 [9.00-92.25]. Furthermore, since 2010, distribution ranges of two representative fish species Schizothorax lissolabiatus (a rheophilic cyprinid) and Bagarius yarrelli (a large catfish) have reduced by 19.2% and 32.8% respectively, probably due in part to the construction of river barriers. Our findings indicate that small-scale barriers, in particular weirs and also small dams are the main reason for habitat fragmentation in the Lancang and must be considered alongside large dams in water management and biodiversity conservation within the Mekong.
Collapse
Affiliation(s)
- Jingrui Sun
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-security, Yunnan University, Kunming, 650091, China; Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650091, China
| | - Weilong Du
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-security, Yunnan University, Kunming, 650091, China; Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650091, China
| | - Martyn C Lucas
- Department of Biosciences, University of Durham, Durham DH1 3LE, UK
| | - Chengzhi Ding
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-security, Yunnan University, Kunming, 650091, China; Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650091, China.
| | - Jinnan Chen
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-security, Yunnan University, Kunming, 650091, China; Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650091, China
| | - Juan Tao
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-security, Yunnan University, Kunming, 650091, China; Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650091, China
| | - Daming He
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-security, Yunnan University, Kunming, 650091, China; Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
10
|
Carvajal-Quintero J, Comte L, Giam X, Olden JD, Brose U, Erős T, Filipe AF, Fortin MJ, Irving K, Jacquet C, Larsen S, Ruhi A, Sharma S, Villalobos F, Tedesco PA. Scale of population synchrony confirms macroecological estimates of minimum viable range size. Ecol Lett 2023; 26:291-301. [PMID: 36468276 DOI: 10.1111/ele.14152] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 12/11/2022]
Abstract
Global ecosystems are facing a deepening biodiversity crisis, necessitating robust approaches to quantifying species extinction risk. The lower limit of the macroecological relationship between species range and body size has long been hypothesized as an estimate of the relationship between the minimum viable range size (MVRS) needed for species persistence and the organismal traits that affect space and resource requirements. Here, we perform the first explicit test of this assumption by confronting the MVRS predicted by the range-body size relationship with an independent estimate based on the scale of synchrony in abundance among spatially separated populations of riverine fish. We provide clear evidence of a positive relationship between the scale of synchrony and species body size, and strong support for the MVRS set by the lower limit of the range-body size macroecological relationship. This MVRS may help prioritize first evaluations for unassessed or data-deficient taxa in global conservation assessments.
Collapse
Affiliation(s)
- Juan Carvajal-Quintero
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena- Leipzig, Leipzig, Germany.,Leipzig University, Leipzig, Germany
| | - Lise Comte
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Xingli Giam
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Julian D Olden
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena- Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena, Germany
| | - Tibor Erős
- Balaton Limnological Research Institute, ELKH, Tihany, Hungary
| | - Ana Filipa Filipe
- Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal.,Associate Laboratory TERRA, Lisbon, Portugal
| | - Marie-Josée Fortin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Katie Irving
- Department of Biology, Southern California Coastal Water Research Project, Costa Mesa, California, USA
| | - Claire Jacquet
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Stefano Larsen
- Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige, Italy.,Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | - Albert Ruhi
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| | - Sapna Sharma
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Fabricio Villalobos
- Laboratorio de Macroecología Evolutiva, Red de Biología Evolutiva, Instituto de Ecología, Veracruz, Mexico
| | - Pablo A Tedesco
- UMR EDB, IRD 253, CNRS 5174, UPS, Université Toulouse 3 Paul Sabatier, Toulouse, France
| |
Collapse
|
11
|
Albert JS, Carnaval AC, Flantua SGA, Lohmann LG, Ribas CC, Riff D, Carrillo JD, Fan Y, Figueiredo JJP, Guayasamin JM, Hoorn C, de Melo GH, Nascimento N, Quesada CA, Ulloa Ulloa C, Val P, Arieira J, Encalada AC, Nobre CA. Human impacts outpace natural processes in the Amazon. Science 2023; 379:eabo5003. [PMID: 36701466 DOI: 10.1126/science.abo5003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Amazonian environments are being degraded by modern industrial and agricultural activities at a pace far above anything previously known, imperiling its vast biodiversity reserves and globally important ecosystem services. The most substantial threats come from regional deforestation, because of export market demands, and global climate change. The Amazon is currently perched to transition rapidly from a largely forested to a nonforested landscape. These changes are happening much too rapidly for Amazonian species, peoples, and ecosystems to respond adaptively. Policies to prevent the worst outcomes are known and must be enacted immediately. We now need political will and leadership to act on this information. To fail the Amazon is to fail the biosphere, and we fail to act at our peril.
Collapse
Affiliation(s)
- James S Albert
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, USA
| | - Ana C Carnaval
- Department of Biology and Ph.D. Program in Biology, City University of New York (CUNY) and CUNY Graduate Center, New York, NY, USA
| | - Suzette G A Flantua
- Department of Biological Sciences, University of Bergen and Bjerknes Centre for Climate Research, Bergen, Norway
| | - Lúcia G Lohmann
- Universidade de São Paulo, Instituto de Biociências, Departamento de Botânica, São Paulo, SP, Brazil
| | - Camila C Ribas
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
| | - Douglas Riff
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Juan D Carrillo
- Department of Biology, University of Fribourg and Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Ying Fan
- Department of Earth and Planetary Sciences, Rutgers, The State University of New Jersey, NJ, USA
| | - Jorge J P Figueiredo
- Institute of Geoscience, Center of Mathematical and Earth Sciences, Universidade Federal Rio de Janeiro, RJ, Brazil
| | - Juan M Guayasamin
- Instituto Biósfera, Laboratorio de Biología Evolutiva, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Carina Hoorn
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Gustavo H de Melo
- Department of Geology, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | | | - Carlos A Quesada
- Coordination for Environmental Dynamics, National Institute for Research in Amazonia, Manaus, AM, Brazil
| | | | - Pedro Val
- School of Earth and Environmental Sciences, Queens College, CUNY, New York, NY, USA.,Ph.D. Program in Earth and Environmental Sciences, CUNY Graduate Center, New York, NY, USA.,Department of Geology, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Julia Arieira
- Science Panel for the Amazon (SPA), São José dos Campos, SP, Brazil
| | - Andrea C Encalada
- Instituto Biósfera, Universidad San Francisco de Quito, Quito, Ecuador
| | - Carlos A Nobre
- Institute of Advanced Studies, University of São Paulo, SP, Brazil
| |
Collapse
|
12
|
Caldas B, Thieme ML, Shahbol N, Coelho ME, Grill G, Van Damme PA, Aranha R, Cañas C, Fagundes CK, Franco‐León N, Herrera‐Collazos EE, Jézéquel C, Montoya M, Mosquera‐Guerra F, Oliveira‐da‐Costa M, Paschoalini M, Petry P, Oberdorff T, Trujillo F, Tedesco PA, de Brito Ribeiro MCL. Identifying the current and future status of freshwater connectivity corridors in the Amazon Basin. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | - Carlos Cañas
- Bureau of Water Resource Information St. Johns River Water Management District Palatka Florida USA
| | - Camila K. Fagundes
- Wildlife Conservation Society (former) Brasilia Brazil
- Universidade Federal do Pampa (current) Uruguaiana, Rio Grande do Sul Brazil
| | | | | | - Céline Jézéquel
- Evolution et diversite biologique, UMR EDB, CNRS 5174, IRD253, UPS Toulouse France
| | | | | | | | - Mariana Paschoalini
- Aqualie Institute and Laboratory of Ecological Behavior and Bioacoutics of the Federal University of Juiz de Fora Juiz de Fora Minas Gerais Brazil
| | - Paulo Petry
- The Nature Conservancy, Latin America Freshwater Unit Hollis New Hampshire USA
| | - Thierry Oberdorff
- Evolution et diversite biologique, UMR EDB, CNRS 5174, IRD253, UPS Toulouse France
| | | | - Pablo A. Tedesco
- Evolution et diversite biologique, UMR EDB, CNRS 5174, IRD253, UPS Toulouse France
| | | |
Collapse
|
13
|
Changes in the Suitable Habitats of Three Endemic Fishes to Climate Change in Tibet. BIOLOGY 2022; 11:biology11121808. [PMID: 36552317 PMCID: PMC9774986 DOI: 10.3390/biology11121808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
As one of the most sensitive regions to global climate change, Tibet is subject to remarkable changes in biota over the past decades, including endemic fish species. However, no study has attempted to predict the changes in the distribution of Tibetan fishes, leaving a great blank for aquatic conservation in Tibet. Based on the Maximum Entropy model (MaxEnt), this study predicted the changes in the suitable habitats of three endemic fish species, including two species mainly inhabiting the rivers (Glyptosternon maculatum, Oxygymnocypris stewartii) and one species mainly inhabiting lakes (Gymnocypris selincuoensis) in Tibet under two representative concentration pathways (RCP2.6 and RCP8.5) under two future scenarios (2050 and 2090), and explored the impact of the barrier effects of hydropower projects on the suitable habitats of fish. The results showed that under the four scenarios, the net change in the suitable habitats of the G. maculatum was negative (-2.0--18.8%), while the suitable habitats of the O. stewartii and G. selincuoensis would be expanded, with the net change of 60.0-238.3% and 46.4-56.9%, respectively. Under different scenarios, the suitable habitats of the three species had a tendency to migrate to a higher elevation, and the largest expansion in the range of migration was projected to occur under the 2090-RCP8.5 scenario. In addition, due to the impact of the hydropower projects, the ability of G. maculatum to obtain new suitable habitats from climate change would be reduced by 2.0-8.1%, which was less than the loss induced by climate change (5.5-25.1%), while the suitable habitats of O. stewartii would be reduced by 3.0-9.7%, which was more than the impact of climate change (about 1%). The results of this study have guiding significance for the conservation and management of fish resources diversity in the Yarlung Tsangpo River basin and Siling Co basin of Tibet, and also provide a reference for the coordination and scientific planning of hydropower projects in Tibet.
Collapse
|
14
|
Chuctaya J, Meza-Vargas V, Faustino-Fuster DR, Hidalgo M, Ortega H. Lista de especies de peces de la cuenca del Río Ucayali, Perú. REVISTA PERUANA DE BIOLOGÍA 2022. [DOI: 10.15381/rpb.v29i4.20049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
En este trabajo se presenta una lista actualizada de los registros de especies de peces de la cuenca del río Ucayali, Perú, provenientes de datos publicados y no publicados. Los resultados muestran que la cuenca del Ucayali presenta una ictiofauna rica y diversificada con el registro de 734 especies distribuidas en 15 órdenes, 49 familias y 292 géneros. La Ictiofauna está compuesta por peces miniatura (4%), peces pequeños (39%), medianos (41%), grandes (13%) y gigantes (3%). Los grupos dominantes son los Characiformes (312 especies, 43.0 %), Siluriformes (270 especies, 36.8%), Gymnotiformes (51 especies, 6.9%), y Cichliformes (50 especies, 6.8%). Parte de la ictiofauna es compartida con cuencas adyacentes como Marañón, y Amazonas peruano, principalmente en la región de confluencia, lo que contribuye a la notable diversidad de peces en la cuenca. Se observó una alta riqueza de especies con distribución restricta de los géneros Orestias, Astroblepus, Trichomycterus, Hemibrycon, entre otras especies, que ocurren en la región de cabeceras. Estimativos de riqueza de especies considerando su distribución por cada 100 m de altitud, indican que la cuenca del Ucayali esta subestimada, esperándose encontrar hasta 1125 especies. Los resultados aquí presentados son antecedentes que coadyuvaran a la toma de decisiones con fines de conservación y desarrollo sustentable en la región amazónica.
Collapse
|
15
|
Troia MJ, Perkin JS. Can fisheries bioenergetics modelling refine spatially explicit assessments of climate change vulnerability? CONSERVATION PHYSIOLOGY 2022; 10:coac035. [PMID: 35795018 PMCID: PMC9252126 DOI: 10.1093/conphys/coac035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/28/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Rising water temperature under climate change is affecting the physiology, population dynamics and geographic distribution of freshwater taxa. We propose a novel application of individual-based bioenergetics modelling (BEM) to assess the physiological impacts of warming on freshwater fishes across broad spatial extents. We test this approach using the Guadalupe bass (Micropterus treculii), a species of conservation and recreational significance that is endemic to central TX, USA. We projected historical-to-future changes (middle 20th century to end of 21st century) in daily bioenergetics of individual fish across 7872 stream reaches and compared this output to changes in reach occupancy derived from traditional species distribution modelling (SDM). SDMs project an 8.7% to 52.1% decrease in reach occupancy, depending on model parameterizations and climate change scenarios. Persistence is projected in the central Edwards Plateau region, whereas extirpations are projected for the warmer southeastern region. BEM projected a median 79.3% and 143.2% increase in somatic growth of age-1 Guadalupe bass across historically occupied reaches under moderate and severe climate change scenarios, respectively. Higher end-of-year body size under future climate was caused by a longer growing season. Future scenarios exploring suppressed or enhanced prey consumption suggest that small changes in prey availability will have relatively greater effects on growth than forecasted changes in temperature. Projected growth was geographically discordant with SDM-based habitat suitability, suggesting that SDMs do not accurately reflect fundamental thermal niche dimensions. Our assessment suggests that for locations where the species persists, Guadalupe bass may benefit from warming, although realized consumption gains will depend on seasonal, spatially varying changes in prey availability and other biotic and abiotic factors. More generally, we demonstrate that uniting species-specific BEM with spatially explicit climate change projections can elucidate the physiological impacts of climate change-including seasonal variation-on freshwater fishes across broad geographic extents to complement traditional SDM.
Collapse
Affiliation(s)
- Matthew J Troia
- Corresponding author: Department of Integrative Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - Joshuah S Perkin
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
16
|
Peluso LM, Mateus L, Penha J, Bailly D, Cassemiro F, Suárez Y, Fantin-Cruz I, Kashiwaqui E, Lemes P. Climate change negative effects on the Neotropical fishery resources may be exacerbated by hydroelectric dams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154485. [PMID: 35283123 DOI: 10.1016/j.scitotenv.2022.154485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Climate change is now recognized as a reality and along with human pressures such as river fragmentation by dams, amplifies the threats to freshwater ecosystems and their biodiversity. In the Brazilian portion of the Upper Paraguay River Basin (UPRB) that encompasses the Pantanal, one of the largest tropical wetlands in the world, in addition to the high biodiversity found there, fisheries are an important ecosystem service mostly supported by migratory fishes. We estimated the current range of migratory fish of commercial interest, also assessing the climate change effects predicted on the distribution patterns. Then, we assessed the effects of future climate on fish richness, and combining species ranges with routes blocked by artificial dams investigated possible impacts on fishery and food security in the UPRB. Climate change will induce range contraction between 47% and 100% for the species analyzed, and only four migratory fish may have suitable habitat until the end-of-century. The local richness will reduce about 85% in the basin. River fragmentation by dams acting together with climate change will prevent upstream shifts for most fish species. About 4% of present range and up to 45% of future range of migratory fish should be blocked by dams in UPRB. Consequently, this will also negatively affect fishery yield and food security in the future.
Collapse
Affiliation(s)
- Luiza Moura Peluso
- Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Instituto de Biociências, Universidade Federal de Mato Grosso, Avenida Fernando Corrêa, 2367, CEP 78060-900 Cuiabá, Mato Grosso, Brazil.
| | - Lúcia Mateus
- Laboratório de Ecologia de Manejo de Recursos Pesqueiros, Centro de Biodiversidade, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Jerry Penha
- Laboratório de Ecologia de Manejo de Recursos Pesqueiros, Centro de Biodiversidade, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Dayani Bailly
- Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Centro de Ciências Biológicas, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | | | - Yzel Suárez
- Centro de Estudos em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul, Dourados, Mato Grosso do Sul, Brazil
| | - Ibraim Fantin-Cruz
- Programa de Pós-Graduação em Recursos Hídricos, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Elaine Kashiwaqui
- Grupo de Estudos em Ciências Ambientais e Educação, Universidade Estadual de Mato Grosso do Sul, Mundo Novo, Mato Grosso do Sul, Brazil
| | - Priscila Lemes
- Laboratório de Ecologia e Biogeografia da Conservação, Centro de Biodiversidade, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| |
Collapse
|
17
|
Luis Val A, Wood CM. Global change and physiological challenges for fish of the Amazon today and in the near future. J Exp Biol 2022; 225:275450. [PMID: 35582942 DOI: 10.1242/jeb.216440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Amazonia is home to 15% (>2700, in 18 orders) of all the freshwater fish species of the world, many endemic to the region, has 65 million years of evolutionary history and accounts for 20% of all freshwater discharge to the oceans. These characteristics make Amazonia a unique region in the world. We review the geological history of the environment, its current biogeochemistry and the evolutionary forces that led to the present endemic fish species that are distributed amongst three very different water types: black waters [acidic, ion-poor, rich in dissolved organic carbon (DOC)], white waters (circumneutral, particle-rich) and clear waters (circumneutral, ion-poor, DOC-poor). The annual flood pulse is the major ecological driver for fish, providing feeding, breeding and migration opportunities, and profoundly affecting O2, CO2 and DOC regimes. Owing to climate change and other anthropogenic pressures such as deforestation, pollution and governmental mismanagement, Amazonia is now in crisis. The environment is becoming hotter and drier, and more intense and frequent flood pulses are now occurring, with greater variation between high and low water levels. Current projections are that Amazon waters of the near future will be even hotter, more acidic, darker (i.e. more DOC, more suspended particles), higher in ions, higher in CO2 and lower in O2, with many synergistic effects. We review current physiological information on Amazon fish, focusing on temperature tolerance and ionoregulatory strategies for dealing with acidic and ion-poor environments. We also discuss the influences of DOC and particles on gill function, the effects of high dissolved CO2 and low dissolved O2, with emphasis on water- versus air-breathing mechanisms, and strategies for pH compensation. We conclude that future elevations in water temperature will be the most critical factor, eliminating many species. Climate change will likely favour predominantly water-breathing species with low routine metabolic rates, low temperature sensitivity of routine metabolic rates, high anaerobic capacity, high hypoxia tolerance and high thermal tolerance.
Collapse
Affiliation(s)
- Adalberto Luis Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Brazil, 69080-971
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, CanadaV6T 1Z4.,Department of Biology, McMaster University, Hamilton, ON, CanadaL8S 4K1
| |
Collapse
|
18
|
Lee F, Simon KS, Perry GLW. River networks: an analysis of simulating algorithms and graph metrics used to quantify topology. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Finnbar Lee
- School of Environment The University of Auckland, Private Bag 92019 Auckland New Zealand
| | - Kevin S. Simon
- School of Environment The University of Auckland, Private Bag 92019 Auckland New Zealand
| | - George L. W. Perry
- School of Environment The University of Auckland, Private Bag 92019 Auckland New Zealand
| |
Collapse
|
19
|
Bell DA, Kovach RP, Muhlfeld CC, Al-Chokhachy R, Cline TJ, Whited DC, Schmetterling DA, Lukacs PM, Whiteley AR. Climate change and expanding invasive species drive widespread declines of native trout in the northern Rocky Mountains, USA. SCIENCE ADVANCES 2021; 7:eabj5471. [PMID: 34936455 PMCID: PMC8694593 DOI: 10.1126/sciadv.abj5471] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/08/2021] [Indexed: 05/22/2023]
Abstract
Climate change and invasive species are major threats to native biodiversity, but few empirical studies have examined their combined effects at large spatial and temporal scales. Using 21,917 surveys collected over 30 years, we quantified the impacts of climate change on the past and future distributions of five interacting native and invasive trout species throughout the northern Rocky Mountains, USA. We found that the occupancy of native bull trout and cutthroat trout declined by 18 and 6%, respectively (1993–2018), and was predicted to decrease by an additional 39 and 16% by 2080. However, reasons for these occupancy reductions markedly differed among species: Climate-driven increases in water temperature and decreases in summer flow likely caused declines of bull trout, while climate-induced expansion of invasive species largely drove declines of cutthroat trout. Our results demonstrate that climate change can affect ecologically similar, co-occurring native species through distinct pathways, necessitating species-specific management actions.
Collapse
Affiliation(s)
- Donovan A. Bell
- Wildlife Biology Program, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
- Corresponding author.
| | | | - Clint C. Muhlfeld
- Northern Rocky Mountain Science Center, U.S. Geological Survey, West Glacier, MT, USA
- Flathead Biological Station, University of Montana, Polson, MT, USA
| | - Robert Al-Chokhachy
- Northern Rocky Mountain Science Center, U.S. Geological Survey, Bozeman, MT, USA
| | - Timothy J. Cline
- Northern Rocky Mountain Science Center, U.S. Geological Survey, West Glacier, MT, USA
| | - Diane C. Whited
- Flathead Biological Station, University of Montana, Polson, MT, USA
| | | | - Paul M. Lukacs
- Wildlife Biology Program, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| | - Andrew R. Whiteley
- Wildlife Biology Program, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| |
Collapse
|
20
|
Aguirre WE, Alvarez‐Mieles G, Anaguano‐Yancha F, Burgos Morán R, Cucalón RV, Escobar‐Camacho D, Jácome‐Negrete I, Jiménez Prado P, Laaz E, Miranda‐Troya K, Navarrete‐Amaya R, Nugra Salazar F, Revelo W, Rivadeneira JF, Valdiviezo Rivera J, Zárate Hugo E. Conservation threats and future prospects for the freshwater fishes of Ecuador: A hotspot of Neotropical fish diversity. JOURNAL OF FISH BIOLOGY 2021; 99:1158-1189. [PMID: 34235726 PMCID: PMC8518725 DOI: 10.1111/jfb.14844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/04/2021] [Accepted: 07/04/2021] [Indexed: 06/01/2023]
Abstract
Freshwater fish communities in Ecuador exhibit some of the highest levels of diversity and endemism in the Neotropics. Unfortunately, aquatic ecosystems in the country are under serious threat and conditions are deteriorating. In 2018-19, the government of Ecuador sponsored a series of workshops to examine the conservation status of Ecuador's freshwater fishes. Concerns were identified for 35 species, most of which are native to the Amazon region, and overfishing of Amazonian pimelodid catfishes emerged as a major issue. However, much of the information needed to make decisions across fish groups and regions was not available, hindering the process and highlighting the need for a review of the conservation threats to Ecuador's freshwater fishes. Here, we review how the physical alteration of rivers, deforestation, wetland and floodplain degradation, agricultural and urban water pollution, mining, oil extraction, dams, overfishing, introduced species and climate change are affecting freshwater fishes in Ecuador. Although many of these factors affect fishes throughout the Neotropics, the lack of data on Ecuadorian fish communities is staggering and highlights the urgent need for more research. We also make recommendations, including the need for proper enforcement of existing environmental laws, restoration of degraded aquatic ecosystems, establishment of a national monitoring system for freshwater ecosystems, investment in research to fill gaps in knowledge, and encouragement of public engagement in citizen science and conservation efforts. Freshwater fishes are an important component of the cultural and biological legacy of the Ecuadorian people. Conserving them for future generations is critical.
Collapse
Affiliation(s)
- Windsor E. Aguirre
- Department of Biological SciencesDePaul UniversityChicagoIllinoisUSA
- Instituto Nacional de BiodiversidadQuitoEcuador
- Field Museum of Natural HistoryChicagoIllinoisUSA
| | | | | | | | - Roberto V. Cucalón
- Department of Biological SciencesDePaul UniversityChicagoIllinoisUSA
- Present address:
Program in Ecology, Evolution, and Conservation BiologyUniversity of Illinois at Urbana‐ChampaignChampaignIllinoisUSA
| | | | - Iván Jácome‐Negrete
- Facultad de Ciencias Biológicas, Instituto de Estudios Amazónicos e InsularesUniversidad Central del EcuadorQuitoEcuador
| | - Pedro Jiménez Prado
- Pontificia Universidad Católica del Ecuador Sede EsmeraldasEsmeraldasEcuador
- Área de Ecología, Departamento de Ciencias Agrarias y del Medio Natural, Escuela Politécnica Superior de HuescaUniversidad de ZaragozaHuescaSpain
| | - Enrique Laaz
- Instituto Público de Investigación de Acuicultura y PescaGuayaquilEcuador
| | | | | | - Fredy Nugra Salazar
- ONG Bosque Medicinal, ONG Forest.inkGualaquizaEcuador
- Laboratorio de Limnología de la Universidad del AzuayCuencaEcuador
| | - Willan Revelo
- Unidad de Recursos Demersales Bentónicos de Agua Dulce y EmbalsesInstituto Público de Investigación de Acuicultura y PescaGuayaquilEcuador
| | | | | | | |
Collapse
|
21
|
Pelicice FM, Bialetzki A, Camelier P, Carvalho FR, García-Berthou E, Pompeu PS, Mello FTD, Pavanelli CS. Human impacts and the loss of Neotropical freshwater fish diversity. NEOTROPICAL ICHTHYOLOGY 2021. [DOI: 10.1590/1982-0224-2021-0134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract Neotropical Ichthyology promotes the Special Issue (SI) “Human impacts and the loss of Neotropical freshwater fish diversity” with the purpose of publishing relevant scientific articles on the current biodiversity crisis and the loss of Neotropical freshwater fishes in the Anthropocene. The SI is composed of 22 publications, being two review articles and 20 original articles. A total of 107 researchers contributed to these papers, involving 44 institutions based in Brazil and six other countries. Published articles investigated main anthropic activities and their impacts on fish diversity, with special focus on river regulation, mining, land use changes, aquaculture, and fisheries. Studies provided evidence about the loss of fish diversity in the Neotropics, including fish kill events, demographic changes, contamination, changes in assemblage structure, loss of taxonomic and functional diversity, besides the degradation of ecosystem functions and services, and the lack of effective protection and conservation. Studies were conducted in rivers, streams, lakes, and reservoirs from different Neotropical systems. The studies published in this SI represent a relevant sample of the current worrisome situation of freshwater fishes in the Neotropical region and call for urgent revision in environmental policies, management and conservation initiatives, and socioeconomic priorities.
Collapse
|
22
|
Santana MLEC, Carvalho FR, Teresa FB. Broad and fine-scale threats on threatened Brazilian freshwater fish: variability across hydrographic regions and taxonomic groups. BIOTA NEOTROPICA 2021. [DOI: 10.1590/1676-0611-bn-2020-0980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract: Anthropogenic environmental changes are the main cause of species extinction during the Holocene. Species have been exposed to major source of threats, such as habitat loss and fragmentation, pollution, introduced species, and harvesting, many of which are derived from specific anthropogenic activities, such as urbanization, agriculture, and damming (i.e. fine-scale threats). However, the importance of these threats on the species conservation status in a given region depends on the type of impacts they are exposed to and the susceptibility of species to these impacts. In this study, we used a database of threatened Brazilian freshwater fish species to test whether the major source of threats and the specific anthropogenic impacts to species vary across hydrographic regions and taxonomic groups. Our results showed that habitat loss is a ubiquitous major threat jeopardizing the conservation status of the Brazilian fish species. However, different fine-scale threats mediate this process across hydrographic regions and taxonomic groups. The combination of impacts from agriculture, deforestation, and urbanization affects most of the threatened species in the basins of the Northeast, South, and Southeast, including the species of the most threatened order, the Cyprinodontiformes. Damming is the main human activity affecting threatened species of Siluriformes, Characiformes, Gymnotiformes, and Cichliformes, especially in northern basins (Amazon and Tocantins-Araguaia). Therefore, we found that specific fine-scale threats influencing threatened species vary across hydrographic regions and taxonomic groups, probably due to geographic variability in the incidence of human activities and differential niche requirements and vulnerability of species to these activities.
Collapse
|
23
|
Radinger J, García-Berthou E. The role of connectivity in the interplay between climate change and the spread of alien fish in a large Mediterranean river. GLOBAL CHANGE BIOLOGY 2020; 26:6383-6398. [PMID: 32813898 DOI: 10.1111/gcb.15320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Understanding how global change and connectivity will jointly modify the distribution of riverine species is crucial for conservation biology and environmental management. However, little is known about the interaction between climate change and fragmentation and how movement barriers might impede native species from adjusting their distributions versus limit the further spread of alien species. In this study, we modelled the current and future distributions of 11 native and five alien fishes in the large and heavily fragmented Ebro River, located within the Mediterranean region, which has many freshwater endemics severely threatened by global change. We considered 10 climate change models and five modelling algorithms and assessed the effects of connectivity on the accessibility of future suitable habitats. Thereby, we identify most conflict-prone river reaches, that is, where barriers pose a particular trade-off between isolating and negatively impacting native species versus potentially reducing the risk of alien species spread. Our results projected upstream habitat shifts for the vast majority of the species. Climate change affected species differently, with alien species generally showing larger habitat gains compared to natives. Most pronounced distributional changes (i.e. losses of native species and gains of alien species) and compositional turnover might be expected in the lower and mid reaches of large tributaries of the Ebro River. The role of anthropogenic barriers in this context is often ambiguous but rather unfavourable, as they not only restrict native fishes but also alter stream habitats and flow conditions. However, with our spatial modelling framework, we could identify specific river reaches where the connectivity trade-off in the context of climate change is particularly relevant. Overall, our findings emphasize the importance of the complex effects that climate change, riverine connectivity and alien species are expected to impose on river communities and the urgent need to adapt management strategies accordingly.
Collapse
Affiliation(s)
- Johannes Radinger
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- GRECO, Institute of Aquatic Ecology, University of Girona, Girona, Spain
| | | |
Collapse
|