1
|
Ganjurjav H, Li M, Han L, Sha Y, Li Z, Han X, Ji G, Wu R, Ma Y, Hu G, Gornish E, Gao Q. Reseeding increased plant biomass production and soil fertility, but not plant species diversity in degraded grasslands in China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122966. [PMID: 39427622 DOI: 10.1016/j.jenvman.2024.122966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/05/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Reseeding is a primary measure to restore degraded grasslands. Numerous studies have conducted experiments to investigate how the properties of grassland ecosystems respond to reseeding in China. However, there is a lack of summary of the results of these studies. Here, we conducted a hierarchical random-effects meta-analysis on the effects of reseeding on plant, soil, and microbial properties. We collected 19 variables, including plant biomass, species diversity and richness, soil organic carbon content, soil total and available nutrients, soil water content, soil microbial biomass and diversity, and enzyme activity, from a dataset of 1363 paired observations (degraded vs. reseeded) from 75 publications. The results showed that reseeding increased aboveground and belowground plant biomass by 70.2% and 68.0% on average, respectively. Reseeding increased soil organic carbon, phosphorus, and potassium contents, but did not affect soil nitrogen levels. Reseeding increased soil microbial nitrogen under conditions of tillage and fertilization. Reseeding age was found to have a positive correlation with species richness, while planting type, fertilization, and tillage did not have a significant impact on the species richness and diversity. Under the treatments of fertilization, non-tillage, and mix-planting, the response ratio of aboveground biomass to reseeding was positively correlated with the response ratio of species diversity to reseeding. Our results concluded that current reseeding practices can significantly improve plant biomass production and soil fertility but have minor effects on plant species diversity. These findings indicate that the preservation of biodiversity should receive greater attention from both researchers and practitioners in grassland remediation in China.
Collapse
Affiliation(s)
- Hasbagan Ganjurjav
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; National Agricultural Experimental Station for Agricultural Environment, Nagqu, China
| | - Mingjie Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; National Agricultural Experimental Station for Agricultural Environment, Nagqu, China
| | - Ling Han
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; National Agricultural Experimental Station for Agricultural Environment, Nagqu, China
| | - Yubao Sha
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; National Agricultural Experimental Station for Agricultural Environment, Nagqu, China
| | - Zheng Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; National Agricultural Experimental Station for Agricultural Environment, Nagqu, China
| | - Xuyang Han
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; National Agricultural Experimental Station for Agricultural Environment, Nagqu, China
| | - Guoxu Ji
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; National Agricultural Experimental Station for Agricultural Environment, Nagqu, China
| | - Rihan Wu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; National Agricultural Experimental Station for Agricultural Environment, Nagqu, China
| | - Yandan Ma
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; National Agricultural Experimental Station for Agricultural Environment, Nagqu, China
| | - Guozheng Hu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; National Agricultural Experimental Station for Agricultural Environment, Nagqu, China
| | - Elise Gornish
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
| | - Qingzhu Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; National Agricultural Experimental Station for Agricultural Environment, Nagqu, China.
| |
Collapse
|
2
|
Wan L, Liu G, Sun J, Ma J, Cheng H, Shen Y, Du C, Su X. Optimizing grazing exclusion duration for carbon sequestration in grasslands: Incorporating temporal heterogeneity of aboveground biomass and soil organic carbon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172006. [PMID: 38554978 DOI: 10.1016/j.scitotenv.2024.172006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Grasslands account for approximately one-third of the global terrestrial carbon stocks. However, a limited understanding of the impact of grazing exclusion on carbon storage in grassland ecosystems hinders progress towards restoring overgrazed grasslands and promoting carbon sequestration. In this study, we conducted a comprehensive meta-analysis to investigate the effects of grazing exclusion on aboveground biomass (AGB) and soil organic carbon (SOC) in four grasslands: alpine grasslands (AP), tropical savannas (TS), temperate subhumid grasslands (TG), and a semi-desert steppe (SD). Our meta-analysis indicated that grazing exclusion significantly enhanced carbon sequestration in grassland ecosystems, and the benefits of carbon sequestration were most pronounced in the AP, followed by the TG, SD, and TS. Grazing exclusion duration (DUR) was a significant factor associated with the response of aboveground biomass (AGB) and soil organic carbon (SOC) to grazing exclusion. Moreover, the relationships between AGB and DUR were nonlinear, with existence thresholds of 18, 21, 12, 19, and 23 years in global grasslands (ALL), AP, TS, TG, and SD, respectively. However, the relationship between SOC and DUR was linear, with SOC continuing to increase as DUR increased (up to 40 years). The multi-objective optimization indicated that the optimal duration of grazing exclusion for grassland carbon sequestration was 18-20, 21-23, 12-14, 19-21, and 23-25 years for ALL, AP, TS, TG, and SD, respectively. Our study contributes to the enhancement of grazing management and offers better options for increasing carbon sequestration in grasslands.
Collapse
Affiliation(s)
- Lingfan Wan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Guohua Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Sun
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiaxin Ma
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Hao Cheng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Shen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Chenjun Du
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xukun Su
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Wan P, Zhou Z, Yuan Z, Wei H, Huang F, Li Z, Li FM, Zhang F. Fungal community composition changes and reduced bacterial diversity drive improvements in the soil quality index during arable land restoration. ENVIRONMENTAL RESEARCH 2024; 244:117931. [PMID: 38103774 DOI: 10.1016/j.envres.2023.117931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Arable land is facing the growing challenge of land degradation due to intensive use and this is beginning to affect global food security. However, active and passive restoration can improve soil characteristics and reshape microbial communities. Despite the increasing focus on changes in microbial communities during restoration, the mechanisms underlying how microbes drive the soil quality index (SQI) in arable land restoration remain unclear. In this study, we selected conventional farmland (CF, heavily intensified) and two restoration strategies (AR, artificial restoration; NR, natural restoration), with the same context (including soil texture, climate, etc.), and measured the microbial indicators over 2 years to investigate the mechanisms driving SQI improvement on restored arable land. The AR and NR treatments resulted in a 50% and 58% increase in SQI, respectively, compared to CF as soil nutrient levels increased, resulting in higher microbial biomasses and enzyme activities. Microbial abundance on the AR land was approximately two times greater than on the NR land due to the introduction of legumes. Bacterial diversity declined, while fungi developed in a more diverse direction under the restoration strategies. The AR and NR areas were mainly enriched with rhizobium (Microvirga, Bradyrhizobium), which contribute to healthy plant growth. The pathogenic fungi (Gibberella, Fusarium, Volutella) were more abundant in the CF area and the plant pathogen guild was about five times higher in the restored areas. Following arable land restoration, microbial life history strategies shifted from r-to K-strategists due to the higher proportion of recalcitrant SOC (DOC/SOC decreased by 18%-30%). The altered microbial community in the restored areas created new levels of functionality, with a 2.6%-4.3% decrease in bacterial energy metabolism (oxidative phosphorylation, C fixation, and N metabolism decreased by 7%, 4%, and 6%, respectively). Structural equation modelling suggested that restoration strategy affected SQI either directly by increasing total soil nutrient levels or indirectly by altering the microbial community and that fungal community composition and bacterial diversity made the largest contributions to SQI. These results provided new insights into soil quality improvement from a microbial perspective and can help guide future arable land restoration.
Collapse
Affiliation(s)
- Pingxing Wan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zhongke Zhou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Ziqiang Yuan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Huihui Wei
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Fuqiang Huang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zhansheng Li
- Asia Hub, Sanya Institute of Nanjing Agricultural University, Yazhou Bay Science and Technology City, Sanya, Hainan, 572000, China
| | - Feng-Min Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu, 730000, China; College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
4
|
Yao B, Shi G, Zhou H, Zhao X, Peñuelas J, Sardans J, Wang F, Wang Z. Uneven distributions of unique species promoting N niche complementarity explain the stability of degraded alpine meadow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168487. [PMID: 37977375 DOI: 10.1016/j.scitotenv.2023.168487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Alpine meadow degradation, usually involving decreased soil nitrogen (N) and patchy landscapes, is a challenge for natural restoration. However, the mechanism underlying plant species coexistence under degradation is unclear. In this study, we evaluated plant N niche complementarity in degraded alpine meadows on the Qinghai-Tibet Plateau using a 15N-labeling (15NO3-, 15NH4+, and 15N-glycine) experiment. At the community level, the concentration of 15NO3- in the degraded alpine meadow was 1.5 times higher than that in the undegraded alpine meadow; both alpine meadows had a significant preference for NO3- (60.72 % and 66.84 % for the degraded and undegraded alpine meadows, respectively), and the degree of glycine preference was significantly higher in the degraded alpine meadow (30.77 %) relative to the undegraded alpine meadow (21.85 %). At the species level, dominant species in both alpine meadows consistently preferred NO3-; the generalist species that can be found in both meadows and unique species of the two alpine meadows generally showed NO3- preferences, while the other plant species that were unevenly distributed in the degraded alpine meadow tended to show increased utilization of glycine, which could reduce N competition. We observed that differentiation among N sources and the uneven distribution of unique species may explain the stability of degraded alpine meadows. Our results suggested that uneven distributions of plants could have strong impacts on community stability and highlighted the importance of considering fine-scale analysis in studies of niche theory. This study has important implications for the restoration of degraded alpine meadows.
Collapse
Affiliation(s)
- Buqing Yao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, the Chinese Academy of Sciences, Xining 810008, China; Key Laboratory of Restoration Ecology of Cold Area in Qinghai Province, Northwest Institute of Plateau Biology, the Chinese Academy of Sciences, Xining 810008, China
| | - Guoxi Shi
- Key Laboratory of Utilization of Agriculture Solid Waste Resources, College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui 741000, China
| | - Huakun Zhou
- Key Laboratory of Restoration Ecology of Cold Area in Qinghai Province, Northwest Institute of Plateau Biology, the Chinese Academy of Sciences, Xining 810008, China
| | - Xinquan Zhao
- College of Ecological and Environmental Engineering, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, Catalonia 08193, Spain; CREAF, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Jordi Sardans
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, Catalonia 08193, Spain; CREAF, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Fangping Wang
- College of Ecological and Environmental Engineering, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China.
| | - Zhiqiang Wang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu 610041, China; Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
5
|
Wang Y, Wang Z, Kang Y, Zhang Z, Bao D, Sun X, Su J. Assessing the win-win situation of forage production and soil organic carbon through a short-term active restoration strategy in alpine grasslands. FRONTIERS IN PLANT SCIENCE 2024; 14:1290808. [PMID: 38273956 PMCID: PMC10808524 DOI: 10.3389/fpls.2023.1290808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024]
Abstract
Introduction Grassland degradation has seriously affected the ecological environment and human livelihood. To abate these, implementing effective management strategies to restore and improve the service functions and productivity of degraded grasslands is crucial. Methods To evaluate the influences of restoration measures combined with different grazing intensities on short-term (1 year) grassland restoration, the changes in soil physicochemical properties, as well as plant traits under restoration measures of different grazing intensities, reseeding, and fertilization, were analyzed. Results Soil organic carbon (SOC) increased to varying degrees, whereas available nutrients decreased under all combined restoration measures. Reseeding, alone and in combination with fertilization, substantially increased SOC, improved grassland vegetation status, and enhanced grassland productivity. The aboveground biomass of Gramineae and the total aboveground biomass increased under the combined restoration measures of transferring livestock out of the pasture 45 days in advance, reseeding, and fertilization (T4). Redundancy analysis revealed a strong correlation between grassland vegetation characteristics, SOC, and available potassium. Considering soil and vegetation factors, the short-term results suggested that the combination measures in T4had the most marked positive impact on grassland restoration. Discussion These findings offer valuable theoretical insights for the ecological restoration of degraded grasslands in alpine regions.
Collapse
Affiliation(s)
- Yan Wang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Zhicheng Wang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Yukun Kang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Zhiming Zhang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Duanhong Bao
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Xiaomei Sun
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
- College of Resource and Environmental Science, Gansu Agricultural University, Lanzhou, China
| | - Junhu Su
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
6
|
Zhang X, Feng Q, Cao J, Liu W, Qin Y, Zhu M, Han T. Grazing practices affect soil microbial networks but not diversity and composition in alpine meadows of northeastern Qinghai-Tibetan plateau. ENVIRONMENTAL RESEARCH 2023; 235:116656. [PMID: 37451580 DOI: 10.1016/j.envres.2023.116656] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Livestock grazing is the primary practice in alpine meadows and can alter soil microbiomes, which is critical for ecosystem functions and services. Seasonal grazing (SG) and continuous grazing (CG) are two kinds of different grazing practices that dominate alpine meadows on the Qinghai-Tibetan Plateau (QTP), and how they affect soil microbial communities remains in-depth exploration. The present study was conducted to investigate the effects of different grazing practices (i.e., SG and CG) on the diversity, composition, and co-occurrence networks of soil bacteria and fungi in QTP alpine meadows. Soil microbial α- and β-diversity showed no obvious difference between SG and CG grasslands. Grazing practices had little impact on soil microbial composition, except that the relative abundance of Proteobacteria and Ascomycota showed significant difference between SG and CG grasslands. Soil microbial networks were more complex and less stable in SG grasslands than that in CG grasslands, and the bacterial networks were more complex than fungal networks. Soil fungal diversity was more strongly correlated with environmental factors than bacteria, whereas both fungal and bacterial structures were mainly influenced by soil pH, total nitrogen, and ammonium nitrogen. These findings indicate that microbial associations are more sensitive to grazing practices than microbial diversity and composition, and that SG may be a better grazing practice for ecological benefits in alpine meadows.
Collapse
Affiliation(s)
- Xiaofang Zhang
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qi Feng
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Jianjun Cao
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, China.
| | - Wei Liu
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Qilian Mountains Eco-Environment Research Center in Gansu Province, Lanzhou, 730000, China
| | - Yanyan Qin
- Qilian Mountains Eco-Environment Research Center in Gansu Province, Lanzhou, 730000, China; Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Meng Zhu
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Tuo Han
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
7
|
Shu X, Liu W, Hu Y, Xia L, Fan K, Zhang Y, Zhang Y, Zhou W. Ecosystem multifunctionality and soil microbial communities in response to ecological restoration in an alpine degraded grassland. FRONTIERS IN PLANT SCIENCE 2023; 14:1173962. [PMID: 37593047 PMCID: PMC10431941 DOI: 10.3389/fpls.2023.1173962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 07/07/2023] [Indexed: 08/19/2023]
Abstract
Linkages between microbial communities and multiple ecosystem functions are context-dependent. However, the impacts of different restoration measures on microbial communities and ecosystem functioning remain unclear. Here, a 14-year long-term experiment was conducted using three restoration modes: planting mixed grasses (MG), planting shrub with Salix cupularis alone (SA), and planting shrub with Salix cupularis plus planting mixed grasses (SG), with an extremely degraded grassland serving as the control (CK). Our objective was to investigate how ecosystem multifunctionality and microbial communities (diversity, composition, and co-occurrence networks) respond to different restoration modes. Our results indicated that most of individual functions (i.e., soil nutrient contents, enzyme activities, and microbial biomass) in the SG treatment were significantly higher than in the CK treatment, and even higher than MG and SA treatments. Compared with the CK treatment, treatments MG, SA, and SG significantly increased the multifunctionality index on average by 0.57, 0.23 and 0.76, respectively. Random forest modeling showed that the alpha-diversity and composition of bacterial communities, rather than fungal communities, drove the ecosystem multifunctionality. Moreover, we found that both the MG and SG treatments significantly improved bacterial network stability, which exhabited stronger correlations with ecosystem multifunctionality compared to fungal network stability. In summary, this study demonstrates that planting shrub and grasses altogether is a promising restoration mode that can enhance ecosystem multifunctionality and improve microbial diversity and stability in the alpine degraded grassland.
Collapse
Affiliation(s)
- Xiangyang Shu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Weijia Liu
- Institute of Agricultural Bioenvironment and Energy, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, China
| | - Yufu Hu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Longlong Xia
- Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
| | - Kunkun Fan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yanyan Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yulin Zhang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Wei Zhou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Luo B, Huang M, Wang W, Niu J, Shrestha M, Zeng H, Ma L, Degen AA, Liao J, Zhang T, Bai Y, Zhao J, Fraser LH, Shang Z. Ant nests increase litter decomposition to mitigate the negative effect of warming in an alpine grassland ecosystem. Proc Biol Sci 2023; 290:20230613. [PMID: 37369352 PMCID: PMC10299860 DOI: 10.1098/rspb.2023.0613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Warming can decrease feeding activity of soil organisms and affect biogeochemical cycles. The ant Formica manchu is active on the nest surface and prefers a hot, dry environment; therefore, warming may provide a favourable environment for its activities. We hypothesized that F. manchu benefit from warming and mitigate the negative effects of warming on litter decomposition. We examined the effects of ant nests (nest absence versus nest presence) and warming (+1.3 and +2.3°C) on litter decomposition, soil properties and the plant community in alpine grassland. Decomposition stations with two mesh sizes were used to differentiate effects of microorganisms (0.05 mm) and macroinvertebrates (1 cm) on decomposition. Ant nests increased litter decomposition with and without macroinvertebrates accessing the decomposition station when compared to plots without ant nests. Only litter decomposition in ant nests with macroinvertebrates having access to the decomposition station was not affected negatively by warming. Plots with ant nests had greater soil carbon, nutrient contents and plant growth than plots without ant nests, regardless of warming. Our results suggest that ant nests maintain ecosystem processes and functions under warming. Consequently, a management strategy in alpine grasslands should include the protection of these ants and ant nests.
Collapse
Affiliation(s)
- Binyu Luo
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Mei Huang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Wenyin Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jiahuan Niu
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, People's Republic of China
| | - Mani Shrestha
- Department of Disturbance Ecology and Vegetation Dynamics, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany
| | - Haijun Zeng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Lin Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - A. Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of Negev, Beer Sheva 8410500, Israel
| | - Jingkang Liao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, and College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, People's Republic of China
| | - Tao Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yanfu Bai
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jingxue Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Lauchlan H. Fraser
- Department of Natural Resource Sciences, Thompson Rivers University, Kamloops, British Columbia, Canada V2C 0C8
| | - Zhanhuan Shang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
9
|
Hu J, Kang L, Li Z, Feng X, Liang C, Wu Z, Zhou W, Liu X, Yang Y, Chen L. Photo-produced aromatic compounds stimulate microbial degradation of dissolved organic carbon in thermokarst lakes. Nat Commun 2023; 14:3681. [PMID: 37344478 DOI: 10.1038/s41467-023-39432-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/13/2023] [Indexed: 06/23/2023] Open
Abstract
Photochemical and biological degradation of dissolved organic carbon (DOC) and their interactions jointly contribute to the carbon dioxide released from surface waters in permafrost regions. However, the mechanisms that govern the coupled photochemical and biological degradation of DOC are still poorly understood in thermokarst lakes. Here, by combining Fourier transform ion cyclotron resonance mass spectrometry and microbial high-throughput sequencing, we conducted a sunlight and microbial degradation experiment using water samples collected from 10 thermokarst lakes along a 1100-km permafrost transect. We demonstrate that the enhancement of sunlight on DOC biodegradation is not associated with the low molecular weight aliphatics produced by sunlight, but driven by the photo-produced aromatics. This aromatic compound-driven acceleration of biodegradation may be attributed to the potential high abilities of the microbes to decompose complex compounds in thermokarst lakes. These findings highlight the importance of aromatics in regulating the sunlight effects on DOC biodegradation in permafrost-affected lakes.
Collapse
Affiliation(s)
- Jie Hu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Luyao Kang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ziliang Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuehui Feng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Caifan Liang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zan Wu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wei Zhou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuning Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Leiyi Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
10
|
Brown RW, Chadwick DR, Bott T, West HM, Wilson P, Hodgins GR, Snape CE, Jones DL. Biochar application to temperate grasslands: challenges and opportunities for delivering multiple ecosystem services. BIOCHAR 2023; 5:33. [PMID: 37325199 PMCID: PMC10261193 DOI: 10.1007/s42773-023-00232-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
Grasslands (natural, semi-natural and improved) occupy approximately one-third of the terrestrial biosphere and are key for global ecosystem service provision, storing up to 30% of soil organic carbon (SOC). To date, most research on soil carbon (C) sequestration has focused on croplands where the levels of native soil organic matter (SOM) are typically low and significant potential exists to replenish SOM stocks. However, with the renewed push to achieve "net zero" C emissions by 2050, grasslands may offer an additional C store, utilising tools such as biochar. Here, we critically evaluate the potential for biochar as a technology for increasing grassland C stocks, identifying a number of practical, economic, social and legislative challenges that need to be addressed before the widescale adoption of biochar may be achieved. We critically assess the current knowledge within the field of grassland biochar research in the context of ecosystem service provision and provide opinions on the applicability of biochar as an amendment to different types of grassland (improved, semi-improved and unimproved) and the potential effect on ecosystem provision using a range of application techniques in the topsoil and subsoil. We concluded that the key question remains, is it possible for managed grasslands to store more C, without causing a loss in additional ecosystem services? To address this question future research must take a more multidisciplinary and holistic approach when evaluating the potential role of biochar at sequestering C in grasslands to mitigate climate change. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s42773-023-00232-y.
Collapse
Affiliation(s)
- Robert W. Brown
- School of Natural Sciences, Bangor University, Bangor, LL57 2UW Gwynedd UK
| | - David R. Chadwick
- School of Natural Sciences, Bangor University, Bangor, LL57 2UW Gwynedd UK
| | - Tom Bott
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD UK
| | - Helen M. West
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD UK
| | - Paul Wilson
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD UK
| | - Genevieve R. Hodgins
- Department of Chemical and Environmental Engineering, University of Nottingham, Jubilee Campus, Nottingham, NG7 2TU UK
| | - Colin E. Snape
- Department of Chemical and Environmental Engineering, University of Nottingham, Jubilee Campus, Nottingham, NG7 2TU UK
| | - Davey L. Jones
- School of Natural Sciences, Bangor University, Bangor, LL57 2UW Gwynedd UK
- Centre for Sustainable Farming Systems, Food Futures Institute, SoilsWest, Murdoch University, Murdoch, WA 6150 Australia
| |
Collapse
|
11
|
Wang B, Zhu Y, Chen X, Chen D, Wu Y, Wu L, Liu S, Yue L, Wang Y, Bai Y. Even short‐term revegetation complicates soil food webs and strengths their links with ecosystem functions. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Bing Wang
- Engineering Research Center of Eco‐Environment in Three Gorges Reservoir Region of Ministry of Education China Three Gorges University Yichang China
| | - Yuhe Zhu
- Engineering Research Center of Eco‐Environment in Three Gorges Reservoir Region of Ministry of Education China Three Gorges University Yichang China
| | - Xiang Chen
- College of Grassland, Resources and Environment Inner Mongolia Agricultural University Hohhot China
| | - Dima Chen
- Engineering Research Center of Eco‐Environment in Three Gorges Reservoir Region of Ministry of Education China Three Gorges University Yichang China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany Chinese Academy of Sciences Beijing China
| | - Ying Wu
- Engineering Research Center of Eco‐Environment in Three Gorges Reservoir Region of Ministry of Education China Three Gorges University Yichang China
| | - Liji Wu
- Engineering Research Center of Eco‐Environment in Three Gorges Reservoir Region of Ministry of Education China Three Gorges University Yichang China
| | - Shengen Liu
- Engineering Research Center of Eco‐Environment in Three Gorges Reservoir Region of Ministry of Education China Three Gorges University Yichang China
| | - Linyan Yue
- Engineering Research Center of Eco‐Environment in Three Gorges Reservoir Region of Ministry of Education China Three Gorges University Yichang China
| | - Yang Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany Chinese Academy of Sciences Beijing China
| | - Yongfei Bai
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
12
|
Xu M, Li W, Wang J, Zhu Y, Feng Y, Yang G, Zhang W, Han X. Soil ecoenzymatic stoichiometry reveals microbial phosphorus limitation after vegetation restoration on the Loess Plateau, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152918. [PMID: 34999061 DOI: 10.1016/j.scitotenv.2022.152918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Exploring the limitations of soil microbial nutrient metabolism would help to understand the adaptability and response mechanisms of soil microbes in semi-arid ecosystems. Soil ecoenzymatic stoichiometry is conducive to quantifying the nutrient limitations of microorganisms. To quantify microbial nutrient limitation during plant restoration, we measured soil physicochemical properties, microbial biomass, and the activities of four enzymes (ꞵ-1,4-glucosidase, leucine aminopeptidase, ꞵ-1,4-N-acetylglucosaminidase, and alkaline phosphatase) in the soils of the northern Loess Plateau. Vegetation restoration patterns significantly affected soil properties, microbial biomass, enzymatic activity, and associated stoichiometry. Soil enzymatic activity increased significantly after vegetation restoration, especially in Robinia pseudoacacia plantations (RP). Correlation analysis showed that soil nutrients (C and N), moisture and pH were significantly correlated with ecoenzymatic activities and their stoichiometries. Vector-threshold element ratio (VT) model analysis revealed that microbial nutrient metabolism was limited by P, and soil microbial C limitation was significantly weakened after vegetation restoration, particularly in RP. Correlation analysis indicated that microbial nutrient limitations represented by the VT model were significantly correlated with soil moisture, nutrients, and associated stoichiometry. Therefore, the soil microbial community was mainly limited by P rather than N in vegetation restoration on the Loess Plateau via the VT model, and this limitation was primarily associated with the variation in soil properties. In addition, the soil microbial C limitation was significantly negatively correlated with microbial nutrient (P or N) limitation, which illustrated that soil microbial nutrient metabolism has strong stoichiometric homeostasis.
Collapse
Affiliation(s)
- Miaoping Xu
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China; The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Wenjie Li
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China; The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Jiayi Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China; The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Yufan Zhu
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China; The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Yongzhong Feng
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China; The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Gaihe Yang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China; The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Wei Zhang
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xinhui Han
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China; The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Yangling, 712100, Shaanxi, China; Forest Ecosystem Positioning Research Station of Huanglong Mountain, Yan'an 716000, Shaanxi, China.
| |
Collapse
|
13
|
Kan ZR, Liu WX, Liu WS, Lal R, Dang YP, Zhao X, Zhang HL. Mechanisms of soil organic carbon stability and its response to no-till: A global synthesis and perspective. GLOBAL CHANGE BIOLOGY 2022; 28:693-710. [PMID: 34726342 DOI: 10.1111/gcb.15968] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/06/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Mechanisms of soil organic carbon (SOC) stabilization have been widely studied due to their relevance in the global carbon cycle. No-till (NT) has been frequently adopted to sequester SOC; however, limited information is available regarding whether sequestered SOC will be stabilized for long term. Thus, we reviewed the mechanisms affecting SOC stability in NT systems, including the priming effects (PE), molecular structure of SOC, aggregate protection, association with soil minerals, microbial properties, and environmental effects. Although a more steady-state molecular structure of SOC is observed in NT compared with conventional tillage (CT), SOC stability may depend more on physical and chemical protection. On average, NT improves macro-aggregation by 32.7%, and lowers SOC mineralization in macro-aggregates compared with CT. Chemical protection is also important due to the direct adsorption of organic molecules and the enhancement of aggregation by soil minerals. Higher microbial activity in NT could also produce binding agents to promote aggregation and the formation of metal-oxidant organic complexes. Thus, microbial residues could be stabilized in soils over the long term through their attachment to mineral surfaces and entrapment of aggregates under NT. On average, NT reduces SOC mineralization by 18.8% and PE intensities after fresh carbon inputs by 21.0% compared with CT (p < .05). Although higher temperature sensitivity (Q10 ) is observed in NT due to greater Q10 in macro-aggregates, an increase of soil moisture regime in NT could potentially constrain the improvement of Q10 . This review improves process-based understanding of the physical and chemical mechanism of protection that can act, independently or interactively, to enhance SOC preservation. It is concluded that SOC sequestered in NT systems is likely to be stabilized over the long term.
Collapse
Affiliation(s)
- Zheng-Rong Kan
- College of Agronomy and Biotechnology, China Agricultural University, Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, China
| | - Wen-Xuan Liu
- College of Agronomy and Biotechnology, China Agricultural University, Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, China
| | - Wen-Sheng Liu
- College of Agronomy and Biotechnology, China Agricultural University, Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, China
| | - Rattan Lal
- CFAES Rattan Lal Center for Carbon Management and Sequestration, School of Environment and Natural Resources, The Ohio State University, Columbus, Ohio, USA
| | - Yash Pal Dang
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Xin Zhao
- College of Agronomy and Biotechnology, China Agricultural University, Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, China
| | - Hai-Lin Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, China
| |
Collapse
|
14
|
Yu J, Wan L, Liu G, Ma K, Cheng H, Shen Y, Liu Y, Su X. A Meta-Analysis on Degraded Alpine Grassland Mediated by Climate Factors: Enlightenment for Ecological Restoration. FRONTIERS IN PLANT SCIENCE 2022; 12:821954. [PMID: 35069673 PMCID: PMC8777074 DOI: 10.3389/fpls.2021.821954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Alpine grassland is the main ecosystem on the Qinghai-Tibet Plateau (QTP). Degradation and restoration of alpine grassland are related to ecosystem function and production, livelihood, and wellbeing of local people. Although a large number of studies research degraded alpine grassland, there are debates about degradation patterns of alpine grassland in different areas and widely applicable ecological restoration schemes due to the huge area of the QTP. In this study, we used the meta-analysis method to synthesize 80 individual published studies which were conducted to examine aboveground and underground characteristics in non-degradation (ND), light degradation (LD), moderate degradation (MD), heavy degradation (HD), and extreme degradation (ED) of alpine grassland on the QTP. Results showed that aboveground biomass (AGB), belowground biomass (BGB), Shannon-Wiener index (H'), soil moisture (SM), soil organic carbon (SOC), soil total nitrogen (TN), and available nitrogen (AN) gradually decreased along the degradation gradient, whereas soil bulk density (BD) and soil pH gradually increased. In spite of a tendency to soil desertification, losses of other soil nutrients and reduction of enzymes, there was no linear relationship between the variations with degradation gradient. Moreover, the decreasing extent of TN was smaller in areas with higher precipitation and temperature, and the decreasing extent of AGB, SOC, and TN was larger in areas with a higher extent of corresponding variables in the stage of ND during alpine grassland degradation. These findings suggest that in areas with higher precipitation and temperature, reseeding and sward cleavage can be used for restoration on degraded alpine grassland. Fencing and fertilization can be used for alpine grassland restoration in areas with lower precipitation and temperature. Microbial enzymes should not be used to restore degraded alpine grassland on a large scale on the QTP without detailed investigation and analysis. Future studies should pay more attention to the effects of climate factors on degradation processes and specific ecological restoration strategies in different regions of the QTP.
Collapse
Affiliation(s)
- Jiale Yu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Lingfan Wan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Guohua Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Keming Ma
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Hao Cheng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Shen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yuqing Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xukun Su
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Bai Y, Guo C, Li S, Degen AA, Ahmad AA, Wang W, Zhang T, Huang M, Shang Z. Instability of decoupling livestock greenhouse gas emissions from economic growth in livestock products in the Tibetan highland. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112334. [PMID: 33735676 DOI: 10.1016/j.jenvman.2021.112334] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/07/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
Livestock production is the major livelihood for a growing local population on the Tibetan plateau. However, government policy is to reduce the number of livestock due to the large quantities of greenhouse gasses (GHG), in particular methane, produced by ruminants and the degradation of the grasslands. For this policy to be effective, with little effect on livelihoods, there should be a decoupling of GHG emissions from economic growth of livestock products. This study examined the synergetic effects of policies, extreme climate events and GHG emissions from livestock at the headwater region of the Yellow River since 1980. Optimization models of GHG emissions efficiency and drivers were developed and parameterized. Trade-offs between GHG emissions from livestock and economic growth from livestock, determined by the decoupling model, showed that from 1980 to 2015: 1) the GHG emissions decreased by 39%; (2) CH4 emissions from livestock decreased by 33%, and yaks emitted the most (accounted for 99.6%) among livestock; (3) N2O emissions decreased by 34%; (4) trade-offs between livestock GHG emissions and grassland uptake indicated that the grazing livestock system functioned as a net carbon sink; (5) the efficiency factor, especially technical efficiency, was the main driver of GHG emissions; and (6) GHG emissions from livestock were in a decoupling state from economic growth from livestock. However, decoupling has not been stable as inter-annual fluctuations have been large mainly due to extreme climatic events, such as snowstorm disasters, which indicates that the grazing system was still relatively fragile. The GHG emissions can be reduced further by mitigating CH4 emissions, and enhancing CO2 sequestration on grazed pastureland. The ongoing transformation of livestock industry development on the Tibetan plateau is associated with uncertainty under the background of global GHG mitigation.
Collapse
Affiliation(s)
- Yanfu Bai
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Cancan Guo
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shanshan Li
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - A Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva, 8410500, Israel
| | - Anum Ali Ahmad
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Wenyin Wang
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tao Zhang
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mei Huang
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhanhuan Shang
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China; Qinghai Provincial Key Laboratory of Restoration Ecology of Cold Area, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, 810008, China; Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining, 810016, China.
| |
Collapse
|