1
|
Chai H, Ma J, Zhang J, Li J, Meng B, Wang C, Pan D, Li J, Sun W, Zhou X. Nonlinear responses of ecosystem carbon fluxes to precipitation change in a semiarid grassland. FRONTIERS IN PLANT SCIENCE 2025; 16:1519879. [PMID: 39980482 PMCID: PMC11840572 DOI: 10.3389/fpls.2025.1519879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025]
Abstract
Carbon (C) fluxes in semiarid grasslands subject to precipitation variability play a critical role in the terrestrial C cycle. However, how ecosystem C fluxes respond to variability in precipitation (both decreases and increases precipitation along a gradient) remains unclear. In this study, we conducted a three-year field experiment in a semiarid grassland, with six precipitation treatments (precipitation decreased by 70%, 50%, and 30% [P-70%, P-50%, and P-30%], natural precipitation [P+0%], and precipitation increased by 30% and 50% [P+30% and P+50%]) to examine how variations in precipitation influence ecosystem C fluxes, specifically focusing on gross ecosystem productivity (GEP), ecosystem respiration (ER), and net ecosystem CO2 exchange (NEE). We found that both decreased and increased precipitation significantly altered the GEP (from -26% to 14%), but only decreased precipitation significantly reduced the ER and NEE (from 1% to 31%), relative to their values during natural precipitation. This suggests that ecosystem C fluxes are more sensitive to decreased precipitation, and respond nonlinearly to the precipitation gradient. Furthermore, structural equation modeling indicated that the soil water content was the primary controlling factor driving changes in ecosystem C fluxes. Our research underscores the nonlinear response of ecosystem C fluxes to changes in precipitation within semiarid ecosystems, particularly their sensitivity to extreme drought. Considering this nonlinear response, it is crucial to improve dynamic models of the C cycle and predict ecosystem responses to precipitation variability.
Collapse
Affiliation(s)
- Hua Chai
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, School of Ecology, Northeast Forestry University, Harbin, China
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Jianying Ma
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Jinwei Zhang
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Junqin Li
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Bo Meng
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Chengliang Wang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Duofeng Pan
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Jie Li
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, School of Ecology, Northeast Forestry University, Harbin, China
| | - Wei Sun
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Xuhui Zhou
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, School of Ecology, Northeast Forestry University, Harbin, China
| |
Collapse
|
2
|
Gomarasca U, Migliavacca M, Kattge J, Nelson JA, Niinemets Ü, Wirth C, Cescatti A, Bahn M, Nair R, Acosta ATR, Arain MA, Beloiu M, Black TA, Bruun HH, Bucher SF, Buchmann N, Byun C, Carrara A, Conte A, da Silva AC, Duveiller G, Fares S, Ibrom A, Knohl A, Komac B, Limousin JM, Lusk CH, Mahecha MD, Martini D, Minden V, Montagnani L, Mori AS, Onoda Y, Peñuelas J, Perez-Priego O, Poschlod P, Powell TL, Reich PB, Šigut L, van Bodegom PM, Walther S, Wohlfahrt G, Wright IJ, Reichstein M. Leaf-level coordination principles propagate to the ecosystem scale. Nat Commun 2023; 14:3948. [PMID: 37402725 DOI: 10.1038/s41467-023-39572-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/15/2023] [Indexed: 07/06/2023] Open
Abstract
Fundamental axes of variation in plant traits result from trade-offs between costs and benefits of resource-use strategies at the leaf scale. However, it is unclear whether similar trade-offs propagate to the ecosystem level. Here, we test whether trait correlation patterns predicted by three well-known leaf- and plant-level coordination theories - the leaf economics spectrum, the global spectrum of plant form and function, and the least-cost hypothesis - are also observed between community mean traits and ecosystem processes. We combined ecosystem functional properties from FLUXNET sites, vegetation properties, and community mean plant traits into three corresponding principal component analyses. We find that the leaf economics spectrum (90 sites), the global spectrum of plant form and function (89 sites), and the least-cost hypothesis (82 sites) all propagate at the ecosystem level. However, we also find evidence of additional scale-emergent properties. Evaluating the coordination of ecosystem functional properties may aid the development of more realistic global dynamic vegetation models with critical empirical data, reducing the uncertainty of climate change projections.
Collapse
Affiliation(s)
- Ulisse Gomarasca
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany.
| | | | - Jens Kattge
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Jacob A Nelson
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Ülo Niinemets
- Chair of Plant and Crop Science, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Christian Wirth
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena Leipzig, Leipzig, Germany
| | | | - Michael Bahn
- Universität Innsbruck, Institut für Ökologie, Innsbruck, Austria
| | - Richard Nair
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
- Discipline of Botany, School of Natural Sciences Trinity College Dublin, Dublin, Ireland
| | - Alicia T R Acosta
- Dipartimento di Scienze - Università Roma TRE - V.le Marconi 446, 00146, Roma, Italy
| | - M Altaf Arain
- School of Earth, Environment & Society and McMaster Centre for Climate Change, McMaster University, Hamilton, ON, Canada
| | - Mirela Beloiu
- Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
| | - T Andrew Black
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada
| | - Hans Henrik Bruun
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen Ø, Denmark
| | - Solveig Franziska Bucher
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena Leipzig, Leipzig, Germany
- Institute of Ecology and Evolution - Friedrich Schiller University Jena, Philosophenweg 16, 07743, Jena, Germany
| | - Nina Buchmann
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Chaeho Byun
- Department of Biological Sciences, Andong National University, Andong, 36729, Republic of Korea
| | - Arnaud Carrara
- Fundación Centro de Estudios Ambientales del Mediterráneo (CEAM), Paterna, Spain
| | - Adriano Conte
- National Research Council of Italy (CNR), Institute for Sustainable Plant Protection (IPSP), Metaponto, 75012, Italy
| | - Ana C da Silva
- Santa Catarina State University, Agroveterinary Center, Forestry Department, Av Luiz de Camões, 2090, Conta Dinheiro, 88.520-000, Lages, SC, Brazil
| | - Gregory Duveiller
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Silvano Fares
- National Research Council of Italy (CNR), Institute for Agriculture and Forestry Systems in the Mediterranean (ISAFOM), Naples, 80055, Italy
| | - Andreas Ibrom
- Technical University of Denmark (DTU), Environmental Engineering and Resource Management, Bygningstorvet 115, 2800 Kgs., Lyngby, Denmark
| | - Alexander Knohl
- Bioclimatology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| | - Benjamin Komac
- Andorra Research + Innovation; Avinguda Rocafort 21-23, Edifici Molí, 3r pis, AD600, Sant Julià de Lòria, Andorra
| | | | - Christopher H Lusk
- Environmenal Research Institute, University of Waikato, Private Bag, 3105, Hamilton, New Zealand
| | - Miguel D Mahecha
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena Leipzig, Leipzig, Germany
- Remote Sensing Centre for Earth System Research, Leipzig University, 04103, Leipzig, Germany
| | - David Martini
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Vanessa Minden
- Department of Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
| | - Leonardo Montagnani
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Akira S Mori
- Research Center for Advanced Science and Technology, the University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8904, Japan
| | - Yusuke Onoda
- Graduate School of Agriculture, Kyoto University, Oiwake, Kitashirakawa, Kyoto, 606-8502, Japan
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona, 08193, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Barcelona, 08193, Catalonia, Spain
| | - Oscar Perez-Priego
- Department of Forestry Engineering, University of Córdoba, Edif. Leonardo da Vinci, Campus de Rabanales s/n, 14071, Córdoba, Spain
| | - Peter Poschlod
- Ecology and Conservation Biology, Institute of Plant Sciences - Faculty of Biology and Preclinical Medicine - University of Regensburg, Universitaetsstrasse 31, D-93053, Regensburg, Germany
| | - Thomas L Powell
- The Department of Earth and Environmental Systems, The University of the South, Sewanee, TN, USA
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St. Paul, MN, 55108, USA
- Institute for Global Change Biology, and School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, 48109, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2753, Australia
| | - Ladislav Šigut
- Department of Matter and Energy Fluxes, Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic
| | - Peter M van Bodegom
- Institute of Environmental Sciences, Leiden University, Einsteinweg 2, 2333 CC, Leiden, the Netherlands
| | - Sophia Walther
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Georg Wohlfahrt
- Universität Innsbruck, Institut für Ökologie, Innsbruck, Austria
| | - Ian J Wright
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2753, Australia
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW, 2109, Australia
| | - Markus Reichstein
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena Leipzig, Leipzig, Germany
| |
Collapse
|
3
|
Arslan AM, Wang X, Liu BY, Xu YN, Li L, Gong XY. Photosynthetic resource-use efficiency trade-offs triggered by vapour pressure deficit and nitrogen supply in a C 4 species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107666. [PMID: 37001304 DOI: 10.1016/j.plaphy.2023.107666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/19/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Trade-offs in resource-use efficiency (including water-, nitrogen-, and light-use efficiency, i.e., WUE, NUE, and LUE) are an important acclimation strategy of plants to environmental stresses. C4 photosynthesis, featured by a CO2 concentrating mechanism, is believed to be more efficient in using resources compared to C3 photosynthesis. However, response of photosynthetic resource-use efficiency trade-offs in C4 plants to vapour pressure deficit (VPD) and N supply has rarely been studied. Here, we studied the photosynthetic acclimation of Cleistogenes squarrosa, a perennial C4 grass, to controlled growth conditions with high or low VPD and N supply. High VPD increased WUE by 12% and decreased NUE by 16%, the ratio of net photosynthetic rate (A) to electron transport rate (J) (A/J) by 7% and the apparent quantum yield by 6%. High N supply tended to reduce NUE and increased maximum phosphoenol pyruvate carboxylation rate by 71% and slightly increased WUE. Stomatal conductance showed acclimation to VPD according to the Ball-Berry model, while a balanced cost of carboxylation and transpiration capacity was found across VPD and N treatments based on the least-cost model. WUE correlated negatively with NUE and LUE indicating that there was a trade-off between them, which is likely associated with acclimations in stomatal conductance and CO2 concentrating mechanisms.
Collapse
Affiliation(s)
- Ashraf Muhammad Arslan
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Xuming Wang
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China; Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China; Fujian Provincial Key Laboratory for Plant Eco-physiology, Fuzhou, 350007, China.
| | - Bo Ya Liu
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Yi Ning Xu
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Lei Li
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Xiao Ying Gong
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China; Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China; Fujian Provincial Key Laboratory for Plant Eco-physiology, Fuzhou, 350007, China.
| |
Collapse
|
4
|
Potkay A, Feng X. Do stomata optimize turgor-driven growth? A new framework for integrating stomata response with whole-plant hydraulics and carbon balance. THE NEW PHYTOLOGIST 2023; 238:506-528. [PMID: 36377138 DOI: 10.1111/nph.18620] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Every existing optimal stomatal model uses photosynthetic carbon assimilation as a proxy for plant evolutionary fitness. However, assimilation and growth are often decoupled, making assimilation less ideal for representing fitness when optimizing stomatal conductance to water vapor and carbon dioxide. Instead, growth should be considered a closer proxy for fitness. We hypothesize stomata have evolved to maximize turgor-driven growth, instead of assimilation, over entire plants' lifetimes, improving their abilities to compete and reproduce. We develop a stomata model that dynamically maximizes whole-stem growth following principles from turgor-driven growth models. Stomata open to assimilate carbohydrates that supply growth and osmotically generate turgor, while stomata close to prevent losses of turgor and growth due to negative water potentials. In steady state, the growth optimization model captures realistic stomatal, growth, and carbohydrate responses to environmental cues, reconciles conflicting interpretations within existing stomatal optimization theories, and explains patterns of carbohydrate storage and xylem conductance observed during and after drought. Our growth optimization hypothesis introduces a new paradigm for stomatal optimization models, elevates the role of whole-plant carbon use and carbon storage in stomatal functioning, and has the potential to simultaneously predict gross productivity, net productivity, and plant mortality through a single, consistent modeling framework.
Collapse
Affiliation(s)
- Aaron Potkay
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
- Saint Anthony Falls Laboratory, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
| | - Xue Feng
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
- Saint Anthony Falls Laboratory, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
| |
Collapse
|
5
|
Guo W, Cherubini P, Zhang J, Li MH, Qi L. Leaf stomatal traits rather than anatomical traits regulate gross primary productivity of moso bamboo ( Phyllostachys edulis) stands. FRONTIERS IN PLANT SCIENCE 2023; 14:1117564. [PMID: 36998690 PMCID: PMC10043342 DOI: 10.3389/fpls.2023.1117564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Leaf stomatal and anatomical traits strongly influence plant productivity. Understanding the environmental adaptation mechanisms of leaf stomatal and anatomical traits and their relationship with ecosystem productivity is essential to better understand and predict the long-term adaptation strategies to climate change of moso bamboo forests. Here, we selected 6 sites within the moso bamboo distribution area, measured 3 leaf stomatal traits and 10 leaf anatomical traits of unmanaged moso bamboo stands. We explored the spatial variation characteristics of these traits and their response to environmental changes, assessed the relationships among these traits at regional scales through network analysis, and tested the direct and indirect effects of environmental, leaf stomatal and anatomical traits on gross primary productivity (GPP) of bamboo stands using structural equation modeling (SEM). The results showed that both climate and soil factors significantly affected leaf stomatal and anatomical traits of moso bamboo. Solar radiation (SR) and mean annual precipitation (MAP) out of the climatic factors were the key drivers of variation in leaf stomatal and anatomical traits, respectively. Soil moisture and nutrients out of the soil properties significantly affected both leaf stomatal and anatomical traits of moso bamboo. Network analysis further indicated that there was a significant correlation between leaf stomata and anatomical traits. Stomatal size (SS) showed the highest centrality value at the regional scale, indicating that it plays a key role in adjusting the adaptation of plants to external environmental conditions. SEM analysis showed that environment did not directly but indirectly affect GPP via stomatal performance. The environment explained 53.3% and 39.2% of the variation in leaf stomatal and anatomical traits, respectively, and leaf stomatal traits explained 20.8% of the regional variation in GPP. Our results demonstrate a direct effect of leaf stomatal traits rather than leaf anatomical traits on bamboo ecosystem productivity, which provides new insights into model predictions of bamboo forests under global climate change.
Collapse
Affiliation(s)
- Wen Guo
- Key Laboratory of National Forestry and Grassland Administration/Beijing Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing, China
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Paolo Cherubini
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - Jian Zhang
- Key Laboratory of National Forestry and Grassland Administration/Beijing Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing, China
| | - Mai-He Li
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
- School of Life Science, Hebei University, Baoding, China
| | - Lianghua Qi
- Key Laboratory of National Forestry and Grassland Administration/Beijing Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing, China
| |
Collapse
|
6
|
Palmer L, Robertson I, Lavergne A, Hemming D, Loader NJ, Young G, Davies D, Rinne‐Garmston K, Los S, Williams J. Spatio-Temporal Variations in Carbon Isotope Discrimination Predicted by the JULES Land Surface Model. JOURNAL OF GEOPHYSICAL RESEARCH. BIOGEOSCIENCES 2022; 127:e2022JG007041. [PMID: 37034424 PMCID: PMC10078459 DOI: 10.1029/2022jg007041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/19/2023]
Abstract
Stable carbon isotopes in plants can help evaluate and improve the representation of carbon and water cycles in land-surface models, increasing confidence in projections of vegetation response to climate change. Here, we evaluated the predictive skills of the Joint UK Land Environmental Simulator (JULES) to capture spatio-temporal variations in carbon isotope discrimination (Δ13C) reconstructed by tree rings at 12 sites in the United Kingdom over the period 1979-2016. Modeled and measured Δ13C time series were compared at each site and their relationships with local climate investigated. Modeled Δ13C time series were significantly correlated (p < 0.05) with tree-ring Δ13C at eight sites, but JULES underestimated mean Δ13C values at all sites, by up to 2.6‰. Differences in mean Δ13C may result from post-photosynthetic isotopic fractionations that were not considered in JULES. Inter-annual variability in Δ13C was also underestimated by JULES at all sites. While modeled Δ13C typically increased over time across the UK, tree-ring Δ13C values increased only at five sites located in the northern regions but decreased at the southern-most sites. Considering all sites together, JULES captured the overall influence of environmental drivers on Δ13C but failed to capture the direction of change in Δ13C caused by air temperature, atmospheric CO2 and vapor pressure deficit at some sites. Results indicate that the representation of carbon-water coupling in JULES could be improved to reproduce both the trend and magnitude of interannual variability in isotopic records, the influence of local climate on Δ13C, and to reduce uncertainties in predicting vegetation-environment interactions.
Collapse
Affiliation(s)
- Lewis Palmer
- Department of GeographySwansea UniversitySwanseaUK
- Modelling and InformaticsSoils, Crops, and WaterRSK ADAS LimitedBristolUK
| | | | - Aliénor Lavergne
- Department of Geography and Environmental ScienceUniversity of ReadingReadingUK
- Department of PhysicsImperial College LondonLondonUK
| | | | | | - Giles Young
- Natural Resources Institute Finland (Luke)HelsinkiFinland
| | | | | | - Sietse Los
- Department of GeographySwansea UniversitySwanseaUK
- Wetland Conservation UnitWildfowl and Wetland Trust (WWT)GloucestershireUK
| | | |
Collapse
|
7
|
Manninen S, Zverev V, Kozlov MV. Foliar stable isotope ratios of carbon and nitrogen in boreal forest plants exposed to long-term pollution from the nickel-copper smelter at Monchegorsk, Russia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:48880-48892. [PMID: 35199271 PMCID: PMC9252950 DOI: 10.1007/s11356-022-19261-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Long-term exposure to primary air pollutants, such as sulphur dioxide (SO2) and nitrogen oxides (NOx), alters the structure and functions of forest ecosystems. Many biochemical and biogeochemical processes discriminate against the heavier isotopes in a mixture; thus, the values of δ13C and δ15N (i.e. the ratio of stable isotopes 13C to 12C and that of 15 N to 14 N, respectively) may give insights into changes in ecosystem processes and identify the immediate drivers of these changes. We studied sources of variation in the δ13C and δ15N values in the foliage of eight boreal forest C3 plants at 10 sites located at the distance of 1-40 km from the Monchegorsk nickel-copper smelter in Russia. From 1939‒2019, this smelter emitted over 14,000,000 metric tons (t) of SO2, 250,000 t of metals, primarily nickel and copper, and 140,000 t of NOx. The δ13C value in evergreen plants and the δ15N value in all plants increased near the smelter independently of the plant mycorrhizal type. We attribute the pollution-related increase in the foliar δ13C values of evergreen species mainly to direct effects of SO2 on stomatal conductance, in combination with pollution-related water stress, which jointly override the potential opposite effect of increasing ambient CO2 concentration on δ13C values. Stomatal uptake of NOx and root uptake of 15N-enriched organic N compounds and NH4+ may explain the increased foliar δ15N values and elevated foliar N concentrations, especially in the evergreen trees (Pinus sylvestris), close to Monchegorsk, where the soil inorganic N supply is reduced due to the impact of long-term SO2 and heavy metal emissions on plant biomass. We conclude that, despite the uncertainties in interpreting δ13C and δ15N responses to pollution, the Monchegorsk smelter has imposed and still imposes a great impact on C and N cycling in the surrounding N-limited subarctic forest ecosystems.
Collapse
Affiliation(s)
- Sirkku Manninen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, P.O. Box 65 , 00014, Helsinki, Finland
| | - Vitali Zverev
- Department of Biology, University of Turku, 20014, Turku, Finland
| | - Mikhail V Kozlov
- Department of Biology, University of Turku, 20014, Turku, Finland.
| |
Collapse
|
8
|
Lavergne A, Hemming D, Prentice IC, Guerrieri R, Oliver RJ, Graven H. Global decadal variability of plant carbon isotope discrimination and its link to gross primary production. GLOBAL CHANGE BIOLOGY 2022; 28:524-541. [PMID: 34626040 PMCID: PMC9298043 DOI: 10.1111/gcb.15924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/29/2021] [Indexed: 05/31/2023]
Abstract
Carbon isotope discrimination (Δ13 C) in C3 woody plants is a key variable for the study of photosynthesis. Yet how Δ13 C varies at decadal scales, and across regions, and how it is related to gross primary production (GPP), are still incompletely understood. Here we address these questions by implementing a new Δ13 C modelling capability in the land-surface model JULES incorporating both photorespiratory and mesophyll-conductance fractionations. We test the ability of four leaf-internal CO2 concentration models embedded in JULES to reproduce leaf and tree-ring (TR) carbon isotopic data. We show that all the tested models tend to overestimate average Δ13 C values, and to underestimate interannual variability in Δ13 C. This is likely because they ignore the effects of soil water stress on stomatal behavior. Variations in post-photosynthetic isotopic fractionations across species, sites and years, may also partly explain the discrepancies between predicted and TR-derived Δ13 C values. Nonetheless, the "least-cost" (Prentice) model shows the lowest biases with the isotopic measurements, and lead to improved predictions of canopy-level carbon and water fluxes. Overall, modelled Δ13 C trends vary strongly between regions during the recent (1979-2016) historical period but stay nearly constant when averaged over the globe. Photorespiratory and mesophyll effects modulate the simulated global Δ13 C trend by 0.0015 ± 0.005‰ and -0.0006 ± 0.001‰ ppm-1 , respectively. These predictions contrast with previous findings based on atmospheric carbon isotope measurements. Predicted Δ13 C and GPP tend to be negatively correlated in wet-humid and cold regions, and in tropical African forests, but positively related elsewhere. The negative correlation between Δ13 C and GPP is partly due to the strong dominant influences of temperature on GPP and vapor pressure deficit on Δ13 C in those forests. Our results demonstrate that the combined analysis of Δ13 C and GPP can help understand the drivers of photosynthesis changes in different climatic regions.
Collapse
Affiliation(s)
| | - Deborah Hemming
- Met Office Hadley CentreExeterUK
- Birmingham Institute of Forest ResearchBirminghamUK
| | - Iain Colin Prentice
- Department of Life SciencesGeorgina Mace Centre for the Living PlanetImperial College LondonAscotUK
- Grantham Institute – Climate Change and the EnvironmentImperial College LondonLondonUK
- Department of Biological SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
- Department of Earth System ScienceTsinghua UniversityBeijingChina
| | - Rossella Guerrieri
- Department of Agricultural and Food SciencesUniversity of BolognaBolognaItaly
| | | | - Heather Graven
- Department of PhysicsImperial College LondonLondonUK
- Grantham Institute – Climate Change and the EnvironmentImperial College LondonLondonUK
| |
Collapse
|
9
|
Xu H, Wang H, Prentice IC, Harrison SP, Wright IJ. Coordination of plant hydraulic and photosynthetic traits: confronting optimality theory with field measurements. THE NEW PHYTOLOGIST 2021; 232:1286-1296. [PMID: 34324717 PMCID: PMC9291854 DOI: 10.1111/nph.17656] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/26/2021] [Indexed: 05/13/2023]
Abstract
Close coupling between water loss and carbon dioxide uptake requires coordination of plant hydraulics and photosynthesis. However, there is still limited information on the quantitative relationships between hydraulic and photosynthetic traits. We propose a basis for these relationships based on optimality theory, and test its predictions by analysis of measurements on 107 species from 11 sites, distributed along a nearly 3000-m elevation gradient. Hydraulic and leaf economic traits were less plastic, and more closely associated with phylogeny, than photosynthetic traits. The two sets of traits were linked by the sapwood to leaf area ratio (Huber value, vH ). The observed coordination between vH and sapwood hydraulic conductivity (KS ) and photosynthetic capacity (Vcmax ) conformed to the proposed quantitative theory. Substantial hydraulic diversity was related to the trade-off between KS and vH . Leaf drought tolerance (inferred from turgor loss point, -Ψtlp ) increased with wood density, but the trade-off between hydraulic efficiency (KS ) and -Ψtlp was weak. Plant trait effects on vH were dominated by variation in KS , while effects of environment were dominated by variation in temperature. This research unifies hydraulics, photosynthesis and the leaf economics spectrum in a common theoretical framework, and suggests a route towards the integration of photosynthesis and hydraulics in land-surface models.
Collapse
Affiliation(s)
- Huiying Xu
- Ministry of Education Key Laboratory for Earth System ModelingDepartment of Earth System ScienceTsinghua UniversityBeijing100084China
- Joint Center for Global Change Studies (JCGCS)Beijing100875China
| | - Han Wang
- Ministry of Education Key Laboratory for Earth System ModelingDepartment of Earth System ScienceTsinghua UniversityBeijing100084China
- Joint Center for Global Change Studies (JCGCS)Beijing100875China
| | - I. Colin Prentice
- Ministry of Education Key Laboratory for Earth System ModelingDepartment of Earth System ScienceTsinghua UniversityBeijing100084China
- Department of Life SciencesGeorgina Mace Centre for the Living PlanetImperial College LondonSilwood Park Campus, Buckhurst RoadAscotSL5 7PYUK
- Department of Biological SciencesMacquarie UniversityNorth RydeNSW2109Australia
| | - Sandy P. Harrison
- Ministry of Education Key Laboratory for Earth System ModelingDepartment of Earth System ScienceTsinghua UniversityBeijing100084China
- School of Archaeology, Geography and Environmental Sciences (SAGES)University of ReadingReadingRG6 6AHUK
| | - Ian J. Wright
- Department of Biological SciencesMacquarie UniversityNorth RydeNSW2109Australia
| |
Collapse
|
10
|
Harrison SP, Cramer W, Franklin O, Prentice IC, Wang H, Brännström Å, de Boer H, Dieckmann U, Joshi J, Keenan TF, Lavergne A, Manzoni S, Mengoli G, Morfopoulos C, Peñuelas J, Pietsch S, Rebel KT, Ryu Y, Smith NG, Stocker BD, Wright IJ. Eco-evolutionary optimality as a means to improve vegetation and land-surface models. THE NEW PHYTOLOGIST 2021; 231:2125-2141. [PMID: 34131932 DOI: 10.1111/nph.17558] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Global vegetation and land-surface models embody interdisciplinary scientific understanding of the behaviour of plants and ecosystems, and are indispensable to project the impacts of environmental change on vegetation and the interactions between vegetation and climate. However, systematic errors and persistently large differences among carbon and water cycle projections by different models highlight the limitations of current process formulations. In this review, focusing on core plant functions in the terrestrial carbon and water cycles, we show how unifying hypotheses derived from eco-evolutionary optimality (EEO) principles can provide novel, parameter-sparse representations of plant and vegetation processes. We present case studies that demonstrate how EEO generates parsimonious representations of core, leaf-level processes that are individually testable and supported by evidence. EEO approaches to photosynthesis and primary production, dark respiration and stomatal behaviour are ripe for implementation in global models. EEO approaches to other important traits, including the leaf economics spectrum and applications of EEO at the community level are active research areas. Independently tested modules emerging from EEO studies could profitably be integrated into modelling frameworks that account for the multiple time scales on which plants and plant communities adjust to environmental change.
Collapse
Affiliation(s)
- Sandy P Harrison
- Department of Geography and Environmental Science, University of Reading, Reading, RG6 6AB, UK
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Wolfgang Cramer
- Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale, Aix Marseille Université, CNRS, IRD, Avignon Université, Technopôle Arbois-Méditerranée, Aix-en-Provence Cedex 04, F-13545, France
| | - Oskar Franklin
- International Institute for Applied Systems Analysis, Schlossplatz 1, Laxenburg, 2361, Austria
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| | - Iain Colin Prentice
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Han Wang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Åke Brännström
- International Institute for Applied Systems Analysis, Schlossplatz 1, Laxenburg, 2361, Austria
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, 901 87, Sweden
| | - Hugo de Boer
- Copernicus Institute of Sustainable Development, Environmental Sciences, Faculty of Geosciences, Utrecht University, Vening Meinesz Building, Princetonlaan 8a, Utrecht, 3584 CB, the Netherlands
| | - Ulf Dieckmann
- International Institute for Applied Systems Analysis, Schlossplatz 1, Laxenburg, 2361, Austria
- Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies (Sokendai), Hayama, Kanagawa, 240-0193, Japan
| | - Jaideep Joshi
- International Institute for Applied Systems Analysis, Schlossplatz 1, Laxenburg, 2361, Austria
| | - Trevor F Keenan
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Aliénor Lavergne
- Department of Physics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Stefano Manzoni
- Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Giulia Mengoli
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| | - Catherine Morfopoulos
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| | - Josep Peñuelas
- CSIC, Global Ecology, CREAF-CSIC-UAB, Bellaterra, Barcelona, Catalonia, 08193, Spain
- CREAF, Cerdanyola del Valles, Barcelona, Catalonia, 08193, Spain
| | - Stephan Pietsch
- International Institute for Applied Systems Analysis, Schlossplatz 1, Laxenburg, 2361, Austria
- BOKU - University of Life Sciences and Natural Resources, Gregor-Medel-Strasse 33, Vienna, 1180, Austria
| | - Karin T Rebel
- Copernicus Institute of Sustainable Development, Environmental Sciences, Faculty of Geosciences, Utrecht University, Vening Meinesz Building, Princetonlaan 8a, Utrecht, 3584 CB, the Netherlands
| | - Youngryel Ryu
- Department of Landscape Architecture and Rural Systems Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Nicholas G Smith
- Department of Biological Sciences, Texas Tech University, 2901 Main Street, Lubbock, TX, 79409, USA
| | - Benjamin D Stocker
- Department of Environmental System Science, ETH, Universitätstrasse 2, Zürich, CH-8092, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zrcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| |
Collapse
|
11
|
Peng Y, Bloomfield KJ, Cernusak LA, Domingues TF, Colin Prentice I. Global climate and nutrient controls of photosynthetic capacity. Commun Biol 2021; 4:462. [PMID: 33846550 PMCID: PMC8042000 DOI: 10.1038/s42003-021-01985-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/10/2021] [Indexed: 11/08/2022] Open
Abstract
There is huge uncertainty about how global exchanges of carbon between the atmosphere and land will respond to continuing environmental change. A better representation of photosynthetic capacity is required for Earth System models to simulate carbon assimilation reliably. Here we use a global leaf-trait dataset to test whether photosynthetic capacity is quantitatively predictable from climate, based on optimality principles; and to explore how this prediction is modified by soil properties, including indices of nitrogen and phosphorus availability, measured in situ. The maximum rate of carboxylation standardized to 25 °C (Vcmax25) was found to be proportional to growing-season irradiance, and to increase-as predicted-towards both colder and drier climates. Individual species' departures from predicted Vcmax25 covaried with area-based leaf nitrogen (Narea) but community-mean Vcmax25 was unrelated to Narea, which in turn was unrelated to the soil C:N ratio. In contrast, leaves with low area-based phosphorus (Parea) had low Vcmax25 (both between and within communities), and Parea increased with total soil P. These findings do not support the assumption, adopted in some ecosystem and Earth System models, that leaf-level photosynthetic capacity depends on soil N supply. They do, however, support a previously-noted relationship between photosynthesis and soil P supply.
Collapse
Affiliation(s)
- Yunke Peng
- Masters Programme in Ecosystems and Environmental Change, Department of Life Sciences, Imperial College London, Ascot, UK
- Department of Environmental Systems Science, ETH, Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | | | - Lucas A Cernusak
- Centre for Tropical Environmental Sustainability Studies, James Cook University, Cairns, QLD, Australia
| | - Tomas F Domingues
- FFCLRP, Department of Biology, University of São Paulo, Ribeirão Preto, Brazil
| | - I Colin Prentice
- Department of Life Sciences, Imperial College London, Ascot, UK.
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia.
- Department of Earth System Science, Tsinghua University, Beijing, China.
| |
Collapse
|