1
|
Zucconi L, Cavallini G, Canini F. Trends in Antarctic soil fungal research in the context of environmental changes. Braz J Microbiol 2024; 55:1625-1634. [PMID: 38652442 PMCID: PMC11153391 DOI: 10.1007/s42770-024-01333-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
Antarctic soils represent one of the most pristine environments on Earth, where highly adapted and often endemic microbial species withstand multiple extremes. Specifically, fungal diversity is extremely low in Antarctic soils and species distribution and diversity are still not fully characterized in the continent. Despite the unique features of this environment and the international interest in its preservation, several factors pose severe threats to the conservation of inhabiting ecosystems. In this light, we aimed to provide an overview of the effects on fungal communities of the main changes endangering the soils of the continent. Among these, the increasing human presence, both for touristic and scientific purposes, has led to increased use of fuels for transport and energy supply, which has been linked to an increase in unintentional environmental contamination. It has been reported that several fungal species have evolved cellular processes in response to these soil contamination episodes, which may be exploited for restoring contaminated areas at low temperatures. Additionally, the effects of climate change are another significant threat to Antarctic ecosystems, with the expected merging of previously isolated ecosystems and their homogenization. A possible reduction of biodiversity due to the disappearance of well-adapted, often endemic species, as well as an increase of biodiversity, due to the spreading of non-native, more competitive species have been suggested. Despite some studies describing the specialization of fungal communities and their correlation with environmental parameters, our comprehension of how soil communities may respond to these changes remains limited. The majority of studies attempting to precisely define the effects of climate change, including in situ and laboratory simulations, have mainly focused on the bacterial components of these soils, and further studies are necessary, including the other biotic components.
Collapse
Affiliation(s)
- Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy.
- National Research Council, Institute of Polar Sciences, Messina, Italy.
| | - Giorgia Cavallini
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Fabiana Canini
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|
2
|
Khan A, Ball BA. Soil microbial responses to simulated climate change across polar ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168556. [PMID: 37979872 DOI: 10.1016/j.scitotenv.2023.168556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
The polar regions are among the most biologically constrained in the world, characterized by cold temperatures and reduced liquid water. These limitations make them among the most climate-sensitive regions on Earth. Despite the overwhelming constraints from low temperatures and resource availability, many polar ecosystems, including polar deserts and tundras across the Arctic and Antarctic host uniquely diverse microbial communities. Polar regions have warmed more rapidly than the global average, with continued warming predicted for the future, which will reduce constraints on soil microbial activity. This could alter polar carbon (C) cycles, increasing CO2 emissions into the atmosphere. The objective of this study was to determine how increased temperature and moisture availability impacts microbial respiration in polar regions, by focusing on a diversity of ecosystem types (polar desert vs. tundra) that are geographically distant across Antarctica and the Arctic. We found that polar desert soil microbes were co-limited by temperature and moisture, though C and nitrogen (N) mineralization were only stimulated at the coldest and driest of the two polar deserts. Only bacterial biomass was impacted at the less harsh of the polar deserts, suggesting microbial activity is limited by factors other than temperature and moisture. Of the tundra sites, only the Antarctic tundra was climate-sensitive, where increased temperature decreased C and N mineralization while water availability stimulated it. The greater availability of soil resources and vegetative biomass at the Arctic tundra site might lead to its lack of climate-sensitivity. Notably, while C and N dynamics were climate-sensitive at some of our polar sites, P availability was not impacted at any of them. Our results demonstrate that soil microbial processes in some polar ecosystems are more sensitive to changes in temperature and moisture than others, with implications for soil C and N storage that are not uniformly predictable across polar regions.
Collapse
Affiliation(s)
- Ana Khan
- School of Mathematical and Natural Sciences, Arizona State University at the West Campus, Glendale, AZ 85306, USA
| | - Becky A Ball
- School of Mathematical and Natural Sciences, Arizona State University at the West Campus, Glendale, AZ 85306, USA.
| |
Collapse
|
3
|
Purcell AM, Dijkstra P, Hungate BA, McMillen K, Schwartz E, van Gestel N. Rapid growth rate responses of terrestrial bacteria to field warming on the Antarctic Peninsula. THE ISME JOURNAL 2023; 17:2290-2302. [PMID: 37872274 PMCID: PMC10689830 DOI: 10.1038/s41396-023-01536-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
Ice-free terrestrial environments of the western Antarctic Peninsula are expanding and subject to colonization by new microorganisms and plants, which control biogeochemical cycling. Measuring growth rates of microbial populations and ecosystem carbon flux is critical for understanding how terrestrial ecosystems in Antarctica will respond to future warming. We implemented a field warming experiment in early (bare soil; +2 °C) and late (peat moss-dominated; +1.2 °C) successional glacier forefield sites on the western Antarctica Peninsula. We used quantitative stable isotope probing with H218O using intact cores in situ to determine growth rate responses of bacterial taxa to short-term (1 month) warming. Warming increased the growth rates of bacterial communities at both sites, even doubling the number of taxa exhibiting significant growth at the early site. Growth responses varied among taxa. Despite that warming induced a similar response for bacterial relative growth rates overall, the warming effect on ecosystem carbon fluxes was stronger at the early successional site-likely driven by increased activity of autotrophs which switched the ecosystem from a carbon source to a carbon sink. At the late-successional site, warming caused a significant increase in growth rate of many Alphaproteobacteria, but a weaker and opposite gross ecosystem productivity response that decreased the carbon sink-indicating that the carbon flux rates were driven more strongly by the plant communities. Such changes to bacterial growth and ecosystem carbon cycling suggest that the terrestrial Antarctic Peninsula can respond fast to increases in temperature, which can have repercussions for long-term elemental cycling and carbon storage.
Collapse
Affiliation(s)
- Alicia M Purcell
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA.
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.
| | - Paul Dijkstra
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Kelly McMillen
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Natasja van Gestel
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
- TTU Climate Center, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
4
|
Taylor AF, Freitag TE, Robinson L, White D, Hedley P, Britton AJ. Nitrogen deposition and temperature structure fungal communities associated with alpine moss-sedge heath in the UK. FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2022.101191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
5
|
Newsham KK, Misiak M, Goodall-Copestake WP, Dahl MS, Boddy L, Hopkins DW, Davey ML. Experimental warming increases fungal alpha diversity in an oligotrophic maritime Antarctic soil. Front Microbiol 2022; 13:1050372. [PMID: 36439821 PMCID: PMC9684652 DOI: 10.3389/fmicb.2022.1050372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2023] Open
Abstract
The climate of maritime Antarctica has altered since the 1950s. However, the effects of increased temperature, precipitation and organic carbon and nitrogen availability on the fungal communities inhabiting the barren and oligotrophic fellfield soils that are widespread across the region are poorly understood. Here, we test how warming with open top chambers (OTCs), irrigation and the organic substrates glucose, glycine and tryptone soy broth (TSB) influence a fungal community inhabiting an oligotrophic maritime Antarctic fellfield soil. In contrast with studies in vegetated soils at lower latitudes, OTCs increased fungal community alpha diversity (Simpson's index and evenness) by 102-142% in unamended soil after 5 years. Conversely, OTCs had few effects on diversity in substrate-amended soils, with their only main effects, in glycine-amended soils, being attributable to an abundance of Pseudogymnoascus. The substrates reduced alpha and beta diversity metrics by 18-63%, altered community composition and elevated soil fungal DNA concentrations by 1-2 orders of magnitude after 5 years. In glycine-amended soil, OTCs decreased DNA concentrations by 57% and increased the relative abundance of the yeast Vishniacozyma by 45-fold. The relative abundance of the yeast Gelidatrema declined by 78% in chambered soil and increased by 1.9-fold in irrigated soil. Fungal DNA concentrations were also halved by irrigation in TSB-amended soils. In support of regional- and continental-scale studies across climatic gradients, the observations indicate that soil fungal alpha diversity in maritime Antarctica will increase as the region warms, but suggest that the accumulation of organic carbon and nitrogen compounds in fellfield soils arising from expanding plant populations are likely, in time, to attenuate the positive effects of warming on diversity.
Collapse
Affiliation(s)
| | - Marta Misiak
- British Antarctic Survey, NERC, Cambridge, United Kingdom
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - William P. Goodall-Copestake
- British Antarctic Survey, NERC, Cambridge, United Kingdom
- The Scottish Association for Marine Science, Oban, United Kingdom
| | | | - Lynne Boddy
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | - Marie L. Davey
- Department of Biology, University of Oslo, Oslo, Norway
- Norwegian Institute for Nature Research, Trondheim, Norway
| |
Collapse
|
6
|
Temperature and pH Profiling of Extracellular Amylase from Antarctic and Arctic Soil Microfungi. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
While diversity studies and screening for enzyme activities are important elements of understanding fungal roles in the soil ecosystem, extracting and purifying the target enzyme from the fungal cellular system is also required to characterize the enzyme. This is, in particular, necessary before developing the enzyme for industrial-scale production. In the present study, partially purified α-amylase was obtained from strains of Pseudogymnoascus sp. obtained from Antarctic and Arctic locations. Partially purified α-amylases from these polar fungi exhibited very similar characteristics, including being active at 15 °C, although having a small difference in optimum pH. Both fungal taxa are good candidates for the potential application of cold-active enzymes in biotechnological industries, and further purification and characterization steps are now required. The α-amylases from polar fungi are attractive in terms of industrial development because they are active at lower temperatures and acidic pH, thus potentially creating energy and cost savings. Furthermore, they prevent the production of maltulose, which is an undesirable by-product often formed under alkaline conditions. Psychrophilic amylases from the polar Pseudogymnoascus sp. investigated in the present study could provide a valuable future contribution to biotechnological applications.
Collapse
|
7
|
Tedersoo L, Mikryukov V, Zizka A, Bahram M, Hagh‐Doust N, Anslan S, Prylutskyi O, Delgado‐Baquerizo M, Maestre FT, Pärn J, Öpik M, Moora M, Zobel M, Espenberg M, Mander Ü, Khalid AN, Corrales A, Agan A, Vasco‐Palacios A, Saitta A, Rinaldi AC, Verbeken A, Sulistyo BP, Tamgnoue B, Furneaux B, Ritter CD, Nyamukondiwa C, Sharp C, Marín C, Gohar D, Klavina D, Sharmah D, Dai DQ, Nouhra E, Biersma EM, Rähn E, Cameron E, De Crop E, Otsing E, Davydov EA, Albornoz F, Brearley FQ, Buegger F, Zahn G, Bonito G, Hiiesalu I, Barrio IC, Heilmann‐Clausen J, Ankuda J, Kupagme JY, Maciá‐Vicente JG, Fovo JD, Geml J, Alatalo JM, Alvarez‐Manjarrez J, Põldmaa K, Runnel K, Adamson K, Bråthen KA, Pritsch K, Tchan KI, Armolaitis K, Hyde KD, Newsham K, Panksep K, Lateef AA, Tiirmann L, Hansson L, Lamit LJ, Saba M, Tuomi M, Gryzenhout M, Bauters M, Piepenbring M, Wijayawardene N, Yorou NS, Kurina O, Mortimer PE, Meidl P, Kohout P, Nilsson RH, Puusepp R, Drenkhan R, Garibay‐Orijel R, Godoy R, Alkahtani S, Rahimlou S, Dudov SV, Põlme S, Ghosh S, Mundra S, Ahmed T, Netherway T, Henkel TW, Roslin T, Nteziryayo V, Fedosov VE, Onipchenko V, Yasanthika WAE, Lim YW, Soudzilovskaia NA, Antonelli A, Kõljalg U, Abarenkov K. Global patterns in endemicity and vulnerability of soil fungi. GLOBAL CHANGE BIOLOGY 2022; 28:6696-6710. [PMID: 36056462 PMCID: PMC9826061 DOI: 10.1111/gcb.16398] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/09/2022] [Indexed: 05/29/2023]
Abstract
Fungi are highly diverse organisms, which provide multiple ecosystem services. However, compared with charismatic animals and plants, the distribution patterns and conservation needs of fungi have been little explored. Here, we examined endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. We found that the endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa, Sri Lanka, and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are predominantly vulnerable to drought, heat and land-cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests, and woodlands. We stress that more attention should be focused on the conservation of fungi, especially root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi in tropical regions as well as unicellular early-diverging groups and macrofungi in general. Given the low overlap between the endemicity of fungi and macroorganisms, but high conservation needs in both groups, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms.
Collapse
Affiliation(s)
- Leho Tedersoo
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
| | | | | | - Mohammad Bahram
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | | | - Sten Anslan
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Oleh Prylutskyi
- Department of Mycology and Plant Resistance, School of BiologyV.N. Karazin Kharkiv National UniversityKharkivUkraine
| | - Manuel Delgado‐Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, and Unidad Asociada CSIC‐UPO (BioFun)Universidad Pablo de OlavideSevillaSpain
| | - Fernando T. Maestre
- Departamento de Ecología, Instituto Multidisciplinar para el Estudio del Medio ‘Ramón Margalef’Universidad de AlicanteAlicanteSpain
| | - Jaan Pärn
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Maarja Öpik
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Mari Moora
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Martin Zobel
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Mikk Espenberg
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Ülo Mander
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | | | - Adriana Corrales
- Centro de Investigaciones en Microbiología y Biotecnología‐UR (CIMBIUR)Universidad del RosarioBogotáColombia
| | - Ahto Agan
- Institute of Forestry and EngineeringEstonian University of Life SciencesTartuEstonia
| | - Aída‐M. Vasco‐Palacios
- BioMicro, Escuela de MicrobiologíaUniversidad de Antioquia UdeAMedellinAntioquiaColombia
| | - Alessandro Saitta
- Department of Agricultural, Food and Forest SciencesUniversity of PalermoPalermoItaly
| | - Andrea C. Rinaldi
- Department of Biomedical SciencesUniversity of CagliariCagliariItaly
| | | | - Bobby P. Sulistyo
- Department of BiomedicineIndonesia International Institute for Life SciencesJakartaIndonesia
| | - Boris Tamgnoue
- Department of Crop ScienceUniversity of DschangDschangCameroon
| | - Brendan Furneaux
- Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| | | | - Casper Nyamukondiwa
- Department of Biological Sciences and BiotechnologyBotswana International University of Science and TechnologyPalapyeBotswana
| | - Cathy Sharp
- Natural History Museum of ZimbabweBulawayoZimbabwe
| | - César Marín
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC)Universidad SantoTomásSantiagoChile
| | - Daniyal Gohar
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
| | - Darta Klavina
- Latvian State Forest Research Insitute SilavaSalaspilsLatvia
| | - Dipon Sharmah
- Department of Botany, Jawaharlal Nehru Rajkeeya MahavidyalayaPondicherry UniversityPort BlairIndia
| | - Dong Qin Dai
- College of Biological Resource and Food EngineeringQujing Normal UniversityQujingChina
| | - Eduardo Nouhra
- Instituto Multidisciplinario de Biología Vegetal (CONICET)Universidad Nacional de CórdobaCordobaArgentina
| | | | - Elisabeth Rähn
- Institute of Forestry and EngineeringEstonian University of Life SciencesTartuEstonia
| | - Erin K. Cameron
- Department of Environmental ScienceSaint Mary's UniversityHalifaxCanada
| | | | - Eveli Otsing
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
| | | | | | - Francis Q. Brearley
- Department of Natural SciencesManchester Metropolitan UniversityManchesterUK
| | | | | | - Gregory Bonito
- Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Inga Hiiesalu
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Isabel C. Barrio
- Faculty of Natural and Environmental SciencesAgricultural University of IcelandHvanneyriIceland
| | | | - Jelena Ankuda
- Department of Silviculture and EcologyInstitute of Forestry of Lithuanian Research Centre for Agriculture and Forestry (LAMMC)GirionysLithuania
| | - John Y. Kupagme
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
| | - Jose G. Maciá‐Vicente
- Plant Ecology and Nature ConservationWageningen University & ResearchWageningenThe Netherlands
| | | | - József Geml
- ELKH‐EKKE Lendület Environmental Microbiome Research GroupEszterházy Károly Catholic UniversityEgerHungary
| | | | | | - Kadri Põldmaa
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Kadri Runnel
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Kalev Adamson
- Institute of Forestry and EngineeringEstonian University of Life SciencesTartuEstonia
| | - Kari Anne Bråthen
- Department of Arctic and Marine BiologyThe Arctic University of NorwayTromsøNorway
| | | | - Kassim I. Tchan
- Research Unit Tropical Mycology and Plants‐Soil Fungi InteractionsUniversity of ParakouParakouBenin
| | - Kęstutis Armolaitis
- Department of Silviculture and EcologyInstitute of Forestry of Lithuanian Research Centre for Agriculture and Forestry (LAMMC)GirionysLithuania
| | - Kevin D. Hyde
- Center of Excellence in Fungal ResearchMae Fah Luang UniversityChiang RaiThailand
| | | | - Kristel Panksep
- Chair of Hydrobiology and FisheryEstonian University of Life SciencesTartuEstonia
| | | | - Liis Tiirmann
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
| | - Linda Hansson
- Gothenburg Centre for Sustainable DevelopmentGothenburgSweden
| | - Louis J. Lamit
- Department of BiologySyracuse UniversitySyracuseNew YorkUSA
- Department of Environmental and Forest BiologyState University of New York College of Environmental Science and ForestrySyracuseNew YorkUSA
| | - Malka Saba
- Department of Plant SciencesQuaid‐i‐Azam UniversityIslamabadPakistan
| | - Maria Tuomi
- Department of Arctic and Marine BiologyThe Arctic University of NorwayTromsøNorway
| | - Marieka Gryzenhout
- Department of GeneticsUniversity of the Free StateBloemfonteinSouth Africa
| | | | - Meike Piepenbring
- Mycology Working GroupGoethe University Frankfurt am MainFrankfurt am MainGermany
| | - Nalin Wijayawardene
- College of Biological Resource and Food EngineeringQujing Normal UniversityQujingChina
| | - Nourou S. Yorou
- Research Unit Tropical Mycology and Plants‐Soil Fungi InteractionsUniversity of ParakouParakouBenin
| | - Olavi Kurina
- Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
| | - Peter E. Mortimer
- Center For Mountain Futures, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Peter Meidl
- Institut für BiologieFreie Universität BerlinBerlinGermany
| | - Petr Kohout
- Institute of MicrobiologyCzech Academy of SciencesPragueCzech Republic
| | - Rolf Henrik Nilsson
- Gothenburg Global Biodiversity CentreUniversity of GothenburgGothenburgSweden
| | - Rasmus Puusepp
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
| | - Rein Drenkhan
- Institute of Forestry and EngineeringEstonian University of Life SciencesTartuEstonia
| | | | - Roberto Godoy
- Instituto Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
| | - Saad Alkahtani
- College of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Saleh Rahimlou
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
| | - Sergey V. Dudov
- Department of Ecology and Plant GeographyMoscow Lomonosov State UniversityMoscowRussia
| | - Sergei Põlme
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
| | - Soumya Ghosh
- Department of GeneticsUniversity of the Free StateBloemfonteinSouth Africa
| | - Sunil Mundra
- Department of Biology, College of ScienceUnited Arab Emirates UniversityAbu DhabiUAE
| | - Talaat Ahmed
- Environmental Science CenterQatar UniversityDohaQatar
| | - Tarquin Netherway
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Terry W. Henkel
- Department of Biological SciencesCalifornia State Polytechnic UniversityArcataCaliforniaUSA
| | - Tomas Roslin
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Vincent Nteziryayo
- Department of Food Science and TechnologyUniversity of BurundiBujumburaBurundi
| | - Vladimir E. Fedosov
- Department of Ecology and Plant GeographyMoscow Lomonosov State UniversityMoscowRussia
| | | | | | - Young Woon Lim
- School of Biological Sciences and Institute of MicrobiologySeoul National UniversitySeoulSouth Korea
| | | | | | - Urmas Kõljalg
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | | |
Collapse
|
8
|
Soil Mycobiome Diversity under Different Tillage Practices in the South of West Siberia. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081169. [PMID: 36013348 PMCID: PMC9409700 DOI: 10.3390/life12081169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022]
Abstract
Managing soil biodiversity by reduced or no tillage is an increasingly popular approach. Soil mycobiome in Siberian agroecosystems has been scarcely studied; little is known about its changes due to tillage. We studied mycobiome in Chernozem under natural steppe vegetation and cropped for wheat by conventional or no tillage in a long-term field trial in West Siberia, Russia, by using ITS2 rDNA gene marker (Illumina MiSeq sequencing). Half of the identified OTUs were Ascomycota with 82% of the total number of sequence reads and showing, like other phyla (Basidiomycota, Zygomycota, Mortierellomycota, Chytridiomycota, Glomeromycota), field-related differential abundance. Several dominant genera (Mortierella, Chaetomium, Clonostachys, Gibberella, Fusarium, and Hypocrea) had increased abundance in both cropped soils as compared with the undisturbed one and therefore can be safely assumed to be associated with wheat residues. Fungal OTUs' richness in cropped soils was less than in the undisturbed one; however, no tillage shifted soil mycobiome composition closer to the latter, albeit, it was still similar to the ploughed soil, despite different organic matter and wheat residue content. The study provided the first inventory of soil mycobiome under different tillage treatments in the south of West Siberia, where wheat production is an important section of the regional economy.
Collapse
|
9
|
Cambisol Mycobiome in a Long-Term Field Experiment with Korean Pine as a Sole Edificator: A Case Study. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2030036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A culture-independent mycobiome survey in Haplic Cambisol under Korean pine in a long-term field experiment in the Russian Far East was conducted using sequence analysis of the ITS region amplified with ITS3/ITS4 primers using the metagenomic DNA as a matrix. Overall 758 fungal OTUs were identified, representing 15 phyla, 47 classes, 104 orders, 183 families, and 258 genera. More OTUs represented the Ascomycota phylum (513) than Basidiomycota (113), with both phyla together comprising 95% of the relative abundance. The Leotiomycetes class was ultimately prevailing; apparently contributing significantly to the organic matter decomposition and microbial biomass in soil, as shown by a PCA. Only two dominant OTUs (Pseudogymnoascus sp. and Hyaloscyphaceae, both Ascomycota) were common in the studied samples. The presented high mycobiome diversity in soil under the monospecies artificial forest, where Korean pine had been the sole edificator for forty years, allows concluding that plant chemistry diversity is the main factor shaping the soil mycobiome in such an environment. The obtained data provide a reference for further studies of soil mycobiota, especially under Korean pine with its aesthetic, as well as nut-producing, potential. The results can be helpful in the targeted creating of a soil mycobiome beneficial for pines in afforestation and remediation contexts.
Collapse
|
10
|
Sivasankar P, Poongodi S, Sivakumar K, Al-Qahtani WH, Arokiyaraj S, Jothiramalingam R. Exogenous production of cold-active cellulase from polar Nocardiopsis sp. with increased cellulose hydrolysis efficiency. Arch Microbiol 2022; 204:218. [PMID: 35333982 DOI: 10.1007/s00203-022-02830-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 03/08/2022] [Indexed: 12/01/2022]
Abstract
The present work was designed to isolate and characterise the actinobacteria in the Polar Front region of the Southern Ocean waters and species of Nocardiopsis and Streptomyces were identified. Among those, the psychrophilic actinobacterium, Nocardiopsis dassonvillei PSY13 was found to have good cellulolytic activity and it was further studied for the production and characterisation of cold-active cellulase enzyme. The latter was found to have a specific activity of 6.36 U/mg and a molar mass of 48 kDa with a 22.9-fold purification and 5% recovery at an optimum pH of 7.5 and a temperature of 10 °C. Given the importance of psychrophilic actinobacteria, N. dassonvillei PSY13 can be further exploited for its benefits, meaning that the Southern Ocean harbours biotechnologically important microorganisms that can be further explored for versatile biotechnological and industrial applications.
Collapse
Affiliation(s)
- Palaniappan Sivasankar
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland. .,Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India.
| | - Subramaniam Poongodi
- Department of Microbiology, Shri Sakthikailassh Women's College, Salem, 636 003, Tamil Nadu, India
| | - Kannan Sivakumar
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India
| | - Wahidah H Al-Qahtani
- Department of Food Sciences & Nutrition, College of Food & Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science and Biotechnology, Sejong University, Seoul, South Korea
| | - R Jothiramalingam
- Department of Food Sciences & Nutrition, College of Food & Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
11
|
Barnes PW, Robson TM, Neale PJ, Williamson CE, Zepp RG, Madronich S, Wilson SR, Andrady AL, Heikkilä AM, Bernhard GH, Bais AF, Neale RE, Bornman JF, Jansen MAK, Klekociuk AR, Martinez-Abaigar J, Robinson SA, Wang QW, Banaszak AT, Häder DP, Hylander S, Rose KC, Wängberg SÅ, Foereid B, Hou WC, Ossola R, Paul ND, Ukpebor JE, Andersen MPS, Longstreth J, Schikowski T, Solomon KR, Sulzberger B, Bruckman LS, Pandey KK, White CC, Zhu L, Zhu M, Aucamp PJ, Liley JB, McKenzie RL, Berwick M, Byrne SN, Hollestein LM, Lucas RM, Olsen CM, Rhodes LE, Yazar S, Young AR. Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2021. Photochem Photobiol Sci 2022; 21:275-301. [PMID: 35191005 PMCID: PMC8860140 DOI: 10.1007/s43630-022-00176-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/14/2022] [Indexed: 12/07/2022]
Abstract
The Environmental Effects Assessment Panel of the Montreal Protocol under the United Nations Environment Programme evaluates effects on the environment and human health that arise from changes in the stratospheric ozone layer and concomitant variations in ultraviolet (UV) radiation at the Earth's surface. The current update is based on scientific advances that have accumulated since our last assessment (Photochem and Photobiol Sci 20(1):1-67, 2021). We also discuss how climate change affects stratospheric ozone depletion and ultraviolet radiation, and how stratospheric ozone depletion affects climate change. The resulting interlinking effects of stratospheric ozone depletion, UV radiation, and climate change are assessed in terms of air quality, carbon sinks, ecosystems, human health, and natural and synthetic materials. We further highlight potential impacts on the biosphere from extreme climate events that are occurring with increasing frequency as a consequence of climate change. These and other interactive effects are examined with respect to the benefits that the Montreal Protocol and its Amendments are providing to life on Earth by controlling the production of various substances that contribute to both stratospheric ozone depletion and climate change.
Collapse
Affiliation(s)
- P W Barnes
- Biological Sciences and Environment Program, Loyola University New Orleans, New Orleans, USA
| | - T M Robson
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - P J Neale
- Smithsonian Environmental Research Center, Edgewater, USA
| | | | - R G Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, GA, USA
| | - S Madronich
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, USA
| | - S R Wilson
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia
| | - A L Andrady
- Chemical and Biomolecular Engineering, North Carolina State University, Apex, USA
| | - A M Heikkilä
- Finnish Meteorological Institute, Helsinki, Finland
| | | | - A F Bais
- Laboratory of Atmospheric Physics, Department of Physics, Aristotle University, Thessaloniki, Greece
| | - R E Neale
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - J F Bornman
- Food Futures Institute, Murdoch University, Perth, Australia.
| | | | - A R Klekociuk
- Antarctic Climate Program, Australian Antarctic Division, Kingston, Australia
| | - J Martinez-Abaigar
- Faculty of Science and Technology, University of La Rioja, La Rioja, Logroño, Spain
| | - S A Robinson
- Securing Antarctica's Environmental Future, Global Challenges Program and School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia
| | - Q-W Wang
- Institute of Applied Ecology, Chinese Academy of Sciences (CAS), Shenyang, China
| | - A T Banaszak
- Unidad Académica De Sistemas Arrecifales, Universidad Nacional Autónoma De México, Puerto Morelos, Mexico
| | - D-P Häder
- Department of Biology, Friedrich-Alexander University, Möhrendorf, Germany
| | - S Hylander
- Centre for Ecology and Evolution in Microbial Model Systems-EEMiS, Linnaeus University, Kalmar, Sweden.
| | - K C Rose
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, USA
| | - S-Å Wängberg
- Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - B Foereid
- Environment and Natural Resources, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - W-C Hou
- Environmental Engineering, National Cheng Kung University, Tainan, Taiwan
| | - R Ossola
- Environmental System Science (D-USYS), ETH Zürich, Zürich, Switzerland
| | - N D Paul
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - J E Ukpebor
- Chemistry Department, Faculty of Physical Sciences, University of Benin, Benin City, Nigeria
| | - M P S Andersen
- Department of Chemistry and Biochemistry, California State University, Northridge, USA
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - J Longstreth
- The Institute for Global Risk Research, LLC, Bethesda, USA
| | - T Schikowski
- Research Group of Environmental Epidemiology, Leibniz Institute of Environmental Medicine, Düsseldorf, Germany
| | - K R Solomon
- Centre for Toxicology, School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - B Sulzberger
- Academic Guest, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - L S Bruckman
- Materials Science and Engineering, Case Western Reserve University, Cleveland, USA
| | - K K Pandey
- Wood Processing Division, Institute of Wood Science and Technology, Bangalore, India
| | - C C White
- Polymer Science and Materials Chemistry (PSMC), Exponent, Bethesda, USA
| | - L Zhu
- College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - M Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, China
| | - P J Aucamp
- Ptersa Environmental Consultants, Pretoria, South Africa
| | - J B Liley
- National Institute of Water and Atmospheric Research, Alexandra, New Zealand
| | - R L McKenzie
- National Institute of Water and Atmospheric Research, Alexandra, New Zealand
| | - M Berwick
- Internal Medicine, University of New Mexico, Albuquerque, USA
| | - S N Byrne
- Applied Medical Science, University of Sydney, Sydney, Australia
| | - L M Hollestein
- Department of Dermatology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - R M Lucas
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australia
| | - C M Olsen
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - L E Rhodes
- Photobiology Unit, Dermatology Research Centre, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - S Yazar
- Garvan Institute of Medical Research, Sydney, Australia
| | - A R Young
- St John's Institute of Dermatology, King's College London (KCL), London, UK
| |
Collapse
|
12
|
Waschulin V, Borsetto C, James R, Newsham KK, Donadio S, Corre C, Wellington E. Biosynthetic potential of uncultured Antarctic soil bacteria revealed through long-read metagenomic sequencing. THE ISME JOURNAL 2022; 16:101-111. [PMID: 34253854 PMCID: PMC8692599 DOI: 10.1038/s41396-021-01052-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 12/31/2022]
Abstract
The growing problem of antibiotic resistance has led to the exploration of uncultured bacteria as potential sources of new antimicrobials. PCR amplicon analyses and short-read sequencing studies of samples from different environments have reported evidence of high biosynthetic gene cluster (BGC) diversity in metagenomes, indicating their potential for producing novel and useful compounds. However, recovering full-length BGC sequences from uncultivated bacteria remains a challenge due to the technological restraints of short-read sequencing, thus making assessment of BGC diversity difficult. Here, long-read sequencing and genome mining were used to recover >1400 mostly full-length BGCs that demonstrate the rich diversity of BGCs from uncultivated lineages present in soil from Mars Oasis, Antarctica. A large number of highly divergent BGCs were not only found in the phyla Acidobacteriota, Verrucomicrobiota and Gemmatimonadota but also in the actinobacterial classes Acidimicrobiia and Thermoleophilia and the gammaproteobacterial order UBA7966. The latter furthermore contained a potential novel family of RiPPs. Our findings underline the biosynthetic potential of underexplored phyla as well as unexplored lineages within seemingly well-studied producer phyla. They also showcase long-read metagenomic sequencing as a promising way to access the untapped genetic reservoir of specialised metabolite gene clusters of the uncultured majority of microbes.
Collapse
Affiliation(s)
| | - Chiara Borsetto
- School of Life Sciences, University of Warwick, Coventry, UK
| | | | | | | | - Christophe Corre
- School of Life Sciences, University of Warwick, Coventry, UK
- Department of Chemistry, University of Warwick, Coventry, UK
| | | |
Collapse
|
13
|
Abu Bakar N, Lau Yii Chung B, Smykla J, Karsani SA, Alias SA. Protein homeostasis, regulation of energy production and activation of DNA damage-repair pathways are involved in the heat stress response of Pseudogymnoascus spp. Environ Microbiol 2021; 24:1849-1864. [PMID: 34528369 DOI: 10.1111/1462-2920.15776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 11/30/2022]
Abstract
Proteome changes can be used as an instrument to measure the effects of climate change, predict the possible future state of an ecosystem and the direction in which is headed. In this study, proteomic and GO functional enrichment analysis of six Pseudogymnoascus spp. isolated from various global biogeographical regions were carried out to determine their response to heat stress. In total, 2,122 proteins were identified with high confidence. Comparative quantitative analysis showed that changes in proteome profiles varied greatly between isolates from different biogeographical regions. Although the identities of the proteins that changed varied between the different regions, the functions they governed were similar. Gene Ontology analysis showed enrichment of proteins involved in multiple protective mechanisms, including the modulation of protein homeostasis, regulation of energy production, and activation of DNA damage and repair pathways. Our proteomic analysis did not show any clear relationship between protein changes and the strains' biogeographical origins. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nurlizah Abu Bakar
- Institute of Ocean and Earth Sciences, C308, Institute of Advanced Studies Building, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.,National Antarctic Research Centre, B303, Institute of Advanced Studies Building, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Benjamin Lau Yii Chung
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Jerzy Smykla
- Department of Biodiversity, Institute of Nature Conservation Polish Academy of Sciences, Mickiewicza 33, 31-120 Krakow, Poland
| | - Saiful Anuar Karsani
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Siti Aisyah Alias
- Institute of Ocean and Earth Sciences, C308, Institute of Advanced Studies Building, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.,National Antarctic Research Centre, B303, Institute of Advanced Studies Building, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|