1
|
Mathiaparanam KJ, Mulder RA, Hale R. Anthropogenic double jeopardy: Urban noise and artificial light at night interact synergistically to influence abundance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125078. [PMID: 39369865 DOI: 10.1016/j.envpol.2024.125078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Artificial light at night (ALAN) and urban noise are increasing globally and can have a range of impacts on wildlife. While ALAN and noise often co-occur and can affect wildlife in similar ways, their impacts have generally been studied in isolation. Information about possible interactive impacts, which can be more serious, is critical to guide conservation. We studied how noise and ALAN impact a common urban waterbird (Eurasian coot Fulica atra) around the city of Melbourne in south-eastern Australia. We aimed to examine: (1) the individual and (2) interactive impacts of noise and ALAN on abundance, and (3) the relative influence of these stressors and other environmental predictors. To do so, we used data from a large-scale (1,463 surveys across an area of 9,250 km2 with significant heterogeneity in noise and ALAN conditions), long-term (2008-2018) monitoring program, overlaid with georeferenced noise and light data. We used generalized linear mixed effects models and boosted regression trees to model individual and interactive effects of ALAN and noise on abundance. Abundance was negatively correlated with noise and ALAN individually. Furthermore, the two stressors had a negative synergistic effect, ultimately resulting in the absence of coots at the highest observed ALAN and noise levels. We also estimate that the combined influence of the two stressors on abundance was larger than that of other examined environmental factors. Our findings that noise and ALAN have detrimental interactive impacts is worrying for two reasons. First, Eurasian coots are thought to be tolerant to urbanisation, so impacts may be more severe for less tolerant species. Second, noise and ALAN commonly co-occur around cities, so similar impacts are likely elsewhere. By adopting more biologically and ecologically realistic analytical frameworks, future studies can better estimate the cumulative impacts of multiple stressors to facilitate improved conservation and management.
Collapse
Affiliation(s)
| | - Raoul A Mulder
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Robin Hale
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
2
|
Feng X, Peterson AT, Aguirre-López LJ, Burger JR, Chen X, Papeş M. Rethinking ecological niches and geographic distributions in face of pervasive human influence in the Anthropocene. Biol Rev Camb Philos Soc 2024; 99:1481-1503. [PMID: 38597328 DOI: 10.1111/brv.13077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Species are distributed in predictable ways in geographic spaces. The three principal factors that determine geographic distributions of species are biotic interactions (B), abiotic conditions (A), and dispersal ability or mobility (M). A species is expected to be present in areas that are accessible to it and that contain suitable sets of abiotic and biotic conditions for it to persist. A species' probability of presence can be quantified as a combination of responses to B, A, and M via ecological niche modeling (ENM; also frequently referred to as species distribution modeling or SDM). This analytical approach has been used broadly in ecology and biogeography, as well as in conservation planning and decision-making, but commonly in the context of 'natural' settings. However, it is increasingly recognized that human impacts, including changes in climate, land cover, and ecosystem function, greatly influence species' geographic ranges. In this light, historical distinctions between natural and anthropogenic factors have become blurred, and a coupled human-natural landscape is recognized as the new norm. Therefore, B, A, and M (BAM) factors need to be reconsidered to understand and quantify species' distributions in a world with a pervasive signature of human impacts. Here, we present a framework, termed human-influenced BAM (Hi-BAM, for distributional ecology that (i) conceptualizes human impacts in the form of six drivers, and (ii) synthesizes previous studies to show how each driver modifies the natural BAM and species' distributions. Given the importance and prevalence of human impacts on species distributions globally, we also discuss implications of this framework for ENM/SDM methods, and explore strategies by which to incorporate increasing human impacts in the methodology. Human impacts are redefining biogeographic patterns; as such, future studies should incorporate signals of human impacts integrally in modeling and forecasting species' distributions.
Collapse
Affiliation(s)
- Xiao Feng
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | | | | | - Joseph R Burger
- Department of Biology, University of Kentucky, Lexington, KY, 40502, USA
| | - Xin Chen
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD, 21532, USA
| | - Monica Papeş
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
3
|
Beaugeard E, Brischoux F, Angelier F. Light pollution affects activity differentially across breeding stages in an urban exploiter: An experiment in the house sparrow (Passer domesticus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124055. [PMID: 38692388 DOI: 10.1016/j.envpol.2024.124055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/05/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Artificial Light At Night (ALAN) is a major urban perturbation, which can have detrimental effects on wildlife. Recent urban planning has led to an increased use of white light emission diodes (LEDs) in cities. However, little is known about the effects of this type of ALAN on wild vertebrates, especially during reproduction. We designed an experiment to test the impact of ALAN on the activity rhythms (daily time of first activity (TFA) and time of last activity (TLA)) of captive House sparrows (Passer domesticus) during several reproductive stages (from pre-breeding to post-breeding). We also tested the impact of ALAN on reproductive performance (laying date, clutch size, hatching and fledging success). Experimental birds were active earlier in the morning (earlier TFA) relative to controls although experimental and control birds did not differ in their TLA. The effect of ALAN on TFA was apparent during specific stages only (pre-breeding and chick-rearing stages), suggesting that sparrows actively adjust their activity in response to ALAN only during specific periods. This impact of ALAN on activity did not persist through the whole breeding season, suggesting that sparrows may habituate to ALAN. Alternatively, they may not be able to sustain a long-term increased activity in response to ALAN because of sleep deprivation and related physiological costs. Finally, we did not find any impact of ALAN on the reproductive performance of captive house sparrows held under optimal conditions. This suggests that ALAN may not be dramatically detrimental to the reproduction of this urban exploiter, at least when food availability is not constraining.
Collapse
Affiliation(s)
- Erika Beaugeard
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-LRU, 79360, Villiers en Bois, France
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-LRU, 79360, Villiers en Bois, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-LRU, 79360, Villiers en Bois, France.
| |
Collapse
|
4
|
Alaasam VJ, Hui C, Lomas J, Ferguson SM, Zhang Y, Yim WC, Ouyang JQ. What happens when the lights are left on? Transcriptomic and phenotypic habituation to light pollution. iScience 2024; 27:108864. [PMID: 38318353 PMCID: PMC10839644 DOI: 10.1016/j.isci.2024.108864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/30/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Artificial light at night (ALAN) is a ubiquitous pollutant worldwide. Exposure can induce immediate behavioral and physiological changes in animals, sometimes leading to severe health consequences. Nevertheless, many organisms persist in light-polluted environments and may have mechanisms of habituating, reducing responses to repeated exposure over time, but this has yet to be tested experimentally. Here, we tested whether zebra finches (Taeniopygia guttata) can habituate to dim (0.3 lux) ALAN, measuring behavior, physiology (oxidative stress and telomere attrition), and gene expression in a repeated measures design, over 6 months. We present evidence of tolerance to chronic exposure, persistent behavioral responses lasting 8 weeks post-exposure, and attenuation of responses to re-exposure. Oxidative stress decreased under chronic ALAN. Changes in the blood transcriptome revealed unique responses to past exposure and re-exposure. Results demonstrate organismal resilience to chronic stressors and shed light on the capacity of birds to persist in an increasingly light-polluted world.
Collapse
Affiliation(s)
| | - Cassandra Hui
- Department of Biology, University of Nevada-Reno, Reno 89503, NV, USA
| | - Johnathan Lomas
- Department of Biochemistry & Molecular Biology, University of Nevada-Reno, Reno 89503, NV, USA
| | | | - Yong Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Won Cheol Yim
- Department of Biochemistry & Molecular Biology, University of Nevada-Reno, Reno 89503, NV, USA
| | - Jenny Q. Ouyang
- Department of Biology, University of Nevada-Reno, Reno 89503, NV, USA
| |
Collapse
|
5
|
Nadal J, Sáez D, Volponi S, Serra L, Spina F, Margalida A. The effects of cities on quail (Coturnix coturnix) migration: a disturbing story of population connectivity, health, and ecography. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:266. [PMID: 38353774 PMCID: PMC10867070 DOI: 10.1007/s10661-023-12277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/29/2023] [Indexed: 02/16/2024]
Abstract
The increasing impact of human activities on ecosystems is provoking a profound and dangerous effect, particularly in wildlife. Examining the historical migration patterns of quail (Coturnix coturnix) offers a compelling case study to demonstrate the repercussions of human actions on biodiversity. Urbanization trends, where people gravitate toward mega-urban areas, amplify this effect. The proliferation of artificial urban ecosystems extends its influence across every biome, as human reliance on infrastructure and food sources alters ecological dynamics extensively. We examine European quail migrations pre- and post-World War II and in the present day. Our study concentrates on the Italian peninsula, investigating the historical and contemporary recovery of ringed quail populations. To comprehend changes in quail migration, we utilize trajectory analysis, open statistical data, and linear generalized models. We found that while human population and economic growth have shown a linear increase, quail recovery rates exhibit a U-shaped trajectory, and cereal and legume production displays an inverse U-shaped pattern. Generalized linear models have unveiled the significant influence of several key factors-time periods, cereal and legume production, and human demographics-on quail recovery rates. These factors closely correlate with the levels of urbanization observed across these timeframes. These insights underscore the profound impact of expanding human populations and the rise of mega-urbanization on ecosystem dynamics and services. As our planet becomes more urbanized, the pressure on ecosystems intensifies, highlighting the urgent need for concerted efforts directed toward conserving and revitalizing ecosystem integrity. Simultaneously, manage the needs and demands of burgeoning mega-urban areas. Achieving this balance is pivotal to ensuring sustainable coexistence between urban improvement and the preservation of our natural environment.
Collapse
Affiliation(s)
- Jesús Nadal
- Department of Animal Science, Division of Wildlife, Faculty of Life Sciences and Engineering, University of Lleida, Avd. Alcalde Rovira Roure 191, 25198, Lleida, Spain.
| | - David Sáez
- Department of Animal Science, Division of Wildlife, Faculty of Life Sciences and Engineering, University of Lleida, Avd. Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Stefano Volponi
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Via Cà Fornacetta, 9, I-40064, Ozzano Emilia BO, Italy
| | - Lorenzo Serra
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Via Cà Fornacetta, 9, I-40064, Ozzano Emilia BO, Italy
| | - Fernando Spina
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Via Cà Fornacetta, 9, I-40064, Ozzano Emilia BO, Italy
| | - Antoni Margalida
- Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), 13005, Ciudad Real, Spain
- Pyrenean Institute of Ecology (CSIC), Avda. Nuestra Señora de la Victoria, 12, 22700, Jaca, Spain
| |
Collapse
|
6
|
Ferguson LA, Taff BD, Blanford JI, Mennitt DJ, Mowen AJ, Levenhagen M, White C, Monz CA, Francis CD, Barber JR, Newman P. Understanding park visitors' soundscape perception using subjective and objective measurement. PeerJ 2024; 12:e16592. [PMID: 38313034 PMCID: PMC10838067 DOI: 10.7717/peerj.16592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/14/2023] [Indexed: 02/06/2024] Open
Abstract
Environmental noise knows no boundaries, affecting even protected areas. Noise pollution, originating from both external and internal sources, imposes costs on these areas. It is associated with adverse health effects, while natural sounds contribute to cognitive and emotional improvements as ecosystem services. When it comes to parks, individual visitors hold unique perceptions of soundscapes, which can be shaped by various factors such as their motivations for visiting, personal norms, attitudes towards specific sounds, and expectations. In this study, we utilized linear models and geospatial data to evaluate how visitors' personal norms and attitudes, the park's acoustic environment, visitor counts, and the acoustic environment of visitors' neighborhoods influenced their perception of soundscapes at Muir Woods National Monument. Our findings indicate that visitors' subjective experiences had a greater impact on their perception of the park's soundscape compared to purely acoustic factors like sound level of the park itself. Specifically, we found that motivations to hear natural sounds, interference caused by noise, sensitivity to noise, and the sound levels of visitors' home neighborhoods influenced visitors' perception of the park's soundscape. Understanding how personal factors shape visitors' soundscape perception can assist urban and non-urban park planners in effectively managing visitor experiences and expectations.
Collapse
Affiliation(s)
- Lauren A. Ferguson
- Recreation Management and Policy Department, University of New Hampshire, Durham, NH, United States of America
| | - B. Derrick Taff
- Department of Recreation, Park and Tourism Management, Pennsylvania State University, PA, United States of America
| | - Justine I. Blanford
- Geo-Information Science and Earth Observation, University of Twente, Enschede, Netherlands
| | - Daniel J. Mennitt
- Mechanical Engineering, Exponent, Inc., Denver, CO, United States of America
| | - Andrew J. Mowen
- Department of Recreation, Park and Tourism Management, Pennsylvania State University, PA, United States of America
| | - Mitchell Levenhagen
- Department of Biological Sciences, Boise State University, Boise, ID, United States of America
- Ramboll Americas Engineering Solutions, Inc., Milwaukee, WI, United States of America
| | - Crow White
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, United States of America
| | - Christopher A. Monz
- Department of Environment and Society, Utah State University, Logan, UT, United States of America
| | - Clinton D. Francis
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, United States of America
| | - Jesse R. Barber
- Department of Biological Sciences, Boise State University, Boise, ID, United States of America
| | - Peter Newman
- Department of Recreation, Park and Tourism Management, Pennsylvania State University, PA, United States of America
| |
Collapse
|
7
|
Cox DTC, Gaston KJ. Global erosion of terrestrial environmental space by artificial light at night. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166701. [PMID: 37652384 DOI: 10.1016/j.scitotenv.2023.166701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Artificial light at night (ALAN) disrupts natural light cycles, with biological impacts that span from behaviour of individual organisms to ecosystem functions, and across bacteria, fungi, plants and animals. Global consequences have almost invariably been inferred from the geographic distribution of ALAN. How ALAN is distributed in environmental space, and the extent to which combinations of environmental conditions with natural light cycles have been lost, is also key. Globally (between 60°N and 56°S), we ordinated four bioclimatic variables at 1.61 * 1.21 km resolution to map the position and density of terrestrial pixels within nighttime environmental space. We then used the Black Marble Nighttime Lights product to determine where direct ALAN emissions were present in environmental space in 2012 and how these had expanded in environmental space by 2022. Finally, we used the World Atlas of Artificial Sky Brightness to determine the proportion of environmental space that is unaffected by ALAN across its spatial distribution. We found that by 2012 direct ALAN emissions occurred across 71.9 % of possible nighttime terrestrial environmental conditions, with temperate nighttime environments and highly modified habitats disproportionately impacted. From 2012 to 2022 direct ALAN emissions primarily grew within 34.4 % of environmental space where it was already present, with this growth concentrated in tropical environments. Additionally considering skyglow, just 13.2 % of environmental space now only experiences natural light cycles throughout its distribution. With opportunities to maintain much of environmental space under such cycles fast disappearing, the removal, reduction and amelioration of ALAN from areas of environmental space in which it is already widespread is critical.
Collapse
Affiliation(s)
- Daniel T C Cox
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK.
| | - Kevin J Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| |
Collapse
|
8
|
Blackburn G, Ashton BJ, Thornton A, Woodiss-Field S, Ridley AR. Cognition mediates response to anthropogenic noise in wild Western Australian magpies (Gmynorhina tibicen dorsalis). GLOBAL CHANGE BIOLOGY 2023; 29:6912-6930. [PMID: 37846601 DOI: 10.1111/gcb.16975] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/18/2023]
Abstract
Anthropogenic noise is a pollutant of growing concern, with wide-ranging effects on taxa across ecosystems. Until recently, studies investigating the effects of anthropogenic noise on animals focused primarily on population-level consequences, rather than individual-level impacts. Individual variation in response to anthropogenic noise may result from extrinsic or intrinsic factors. One such intrinsic factor, cognitive performance, varies between individuals and is hypothesised to aid behavioural response to novel stressors. Here, we combine cognitive testing, behavioural focals and playback experiments to investigate how anthropogenic noise affects the behaviour and anti-predator response of Western Australian magpies (Gymnorhina tibicen dorsalis), and to determine whether this response is linked to cognitive performance. We found a significant population-level effect of anthropogenic noise on the foraging effort, foraging efficiency, vigilance, vocalisation rate and anti-predator response of magpies, with birds decreasing their foraging, vocalisation behaviours and anti-predator response, and increasing vigilance when loud anthropogenic noise was present. We also found that individuals varied in their response to playbacks depending on their cognitive performance, with individuals that performed better in an associative learning task maintaining their anti-predator response when an alarm call was played in anthropogenic noise. Our results add to the growing body of literature documenting the adverse effects of anthropogenic noise on wildlife and provide the first evidence for an association between individual cognitive performance and behavioural responses to anthropogenic noise.
Collapse
Affiliation(s)
- Grace Blackburn
- Centre of Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Benjamin J Ashton
- Centre of Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Sarah Woodiss-Field
- Centre of Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Amanda R Ridley
- Centre of Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
9
|
Ellis-Soto D, Oliver RY, Brum-Bastos V, Demšar U, Jesmer B, Long JA, Cagnacci F, Ossi F, Queiroz N, Hindell M, Kays R, Loretto MC, Mueller T, Patchett R, Sims DW, Tucker MA, Ropert-Coudert Y, Rutz C, Jetz W. A vision for incorporating human mobility in the study of human-wildlife interactions. Nat Ecol Evol 2023; 7:1362-1372. [PMID: 37550509 DOI: 10.1038/s41559-023-02125-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/19/2023] [Indexed: 08/09/2023]
Abstract
As human activities increasingly shape land- and seascapes, understanding human-wildlife interactions is imperative for preserving biodiversity. Habitats are impacted not only by static modifications, such as roads, buildings and other infrastructure, but also by the dynamic movement of people and their vehicles occurring over shorter time scales. Although there is increasing realization that both components of human activity substantially affect wildlife, capturing more dynamic processes in ecological studies has proved challenging. Here we propose a conceptual framework for developing a 'dynamic human footprint' that explicitly incorporates human mobility, providing a key link between anthropogenic stressors and ecological impacts across spatiotemporal scales. Specifically, the dynamic human footprint integrates a range of metrics to fully acknowledge the time-varying nature of human activities and to enable scale-appropriate assessments of their impacts on wildlife behaviour, demography and distributions. We review existing terrestrial and marine human-mobility data products and provide a roadmap for how these could be integrated and extended to enable more comprehensive analyses of human impacts on biodiversity in the Anthropocene.
Collapse
Affiliation(s)
- Diego Ellis-Soto
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
- Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA.
| | - Ruth Y Oliver
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
- Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA.
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, USA.
| | - Vanessa Brum-Bastos
- School of Geography and Sustainable Development, University of St Andrews, St Andrews, UK
- Institute of Geodesy and Geoinformatics, Wroclaw University of Environmental Sciences, Wroclaw, Poland
- School of Earth and Environment, University of Canterbury, Christchurch, New Zealand
| | - Urška Demšar
- School of Geography and Sustainable Development, University of St Andrews, St Andrews, UK
| | - Brett Jesmer
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA
| | - Jed A Long
- Department of Geography & Environment, Centre for Animals on the Move, Western University, London, Ontario, Canada
| | - Francesca Cagnacci
- Animal Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- National Biodiversity Future Center S.C.A.R.L., Palermo, Italy
| | - Federico Ossi
- Animal Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Nuno Queiroz
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado/BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Universidade do Porto, Vairão, Portugal
- Marine Biological Association, Plymouth, UK
| | - Mark Hindell
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
- Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Roland Kays
- North Carolina Museum of Natural Sciences, Raleigh, NC, USA
- Dept Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| | - Matthias-Claudio Loretto
- Ecosystem Dynamics and Forest Management Group, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Berchtesgaden National Park, Berchtesgaden, Germany
- Department of Migration, Max-Planck Institute of Animal Behavior, Radolfzell, Germany
| | - Thomas Mueller
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt (Main), Germany
- Department of Biological Sciences, Goethe University, Frankfurt (Main), Germany
| | - Robert Patchett
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | - David W Sims
- Marine Biological Association, Plymouth, UK
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Marlee A Tucker
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Yan Ropert-Coudert
- Centre d'Etudes Biologiques de Chizé, La Rochelle Université - CNRS, Villiers en Bois, France
| | - Christian Rutz
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | - Walter Jetz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA
| |
Collapse
|
10
|
Shuai LY, Wang LQ, Xia Y, Xia JY, Hong K, Wu YN, Tian XY, Zhang FS. Combined effects of light pollution and vegetation height on behavior and body weight in a nocturnal rodent. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121676. [PMID: 37098367 DOI: 10.1016/j.envpol.2023.121676] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023]
Abstract
At a global scale, organisms are under threat due to various kinds of environmental changes, such as artificial light at night (ALAN), noise, climatic change and vegetation destruction. Usually, these changes co-vary in time and space and may take effect simultaneously. Although impacts of ALAN on biological processes have been well documented, our knowledge on the combined effects of ALAN and other environmental changes on animals remains limited. In this study, we conducted field experiments in semi-natural enclosures to explore the combined effects of ALAN and vegetation height on foraging behavior, vigilance, activity patterns and body weight in dwarf striped hamsters (Cricetulus barabensis), a nocturnal rodent widely distributed in East Asia. We find that ALAN and vegetation height affected different aspects of behavior. ALAN negatively affected search speed and positively affected handling speed, while vegetation height negatively affected giving-up density and positively affected body weight. ALAN and vegetation height also additively shaped total time spent in a food patch. No significant interactive effect of ALAN and vegetation height was detected. C. barabensis exposed to ALAN and short vegetation suffered a significant loss in body weight, and possessed a much narrower temporal niche (i.e. initiated activity later but became inactive earlier) than those under other combinations of treatments. The observed behavioral responses to ALAN and changes in vegetation height may bring fitness consequences, as well as further changes in structure and functioning of local ecosystems.
Collapse
Affiliation(s)
- Ling-Ying Shuai
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Li-Qing Wang
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Yang Xia
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Jin-Yu Xia
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Kang Hong
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Ya-Nan Wu
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Xin-Yi Tian
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Fu-Shun Zhang
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot, China.
| |
Collapse
|
11
|
Chen S, Liu Y, Patrick SC, Goodale E, Safran RJ, Pagani‐Núñez E. A multidimensional framework to quantify the effects of urbanization on avian breeding fitness. Ecol Evol 2023; 13:e10259. [PMID: 37404704 PMCID: PMC10316489 DOI: 10.1002/ece3.10259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023] Open
Abstract
Urbanization has dramatically altered Earth's landscapes and changed a multitude of environmental factors. This has resulted in intense land-use change, and adverse consequences such as the urban heat island effect (UHI), noise pollution, and artificial light at night (ALAN). However, there is a lack of research on the combined effects of these environmental factors on life-history traits and fitness, and on how these interactions shape food resources and drive patterns of species persistence. Here, we systematically reviewed the literature and created a comprehensive framework of the mechanistic pathways by which urbanization affects fitness and thus favors certain species. We found that urbanization-induced changes in urban vegetation, habitat quality, spring temperature, resource availability, acoustic environment, nighttime light, and species behaviors (e.g., laying, foraging, and communicating) influence breeding choices, optimal time windows that reduce phenological mismatch, and breeding success. Insectivorous and omnivorous species that are especially sensitive to temperature often experience advanced laying behaviors and smaller clutch sizes in urban areas. By contrast, some granivorous and omnivorous species experience little difference in clutch size and number of fledglings because urban areas make it easier to access anthropogenic food resources and to avoid predation. Furthermore, the interactive effect of land-use change and UHI on species could be synergistic in locations where habitat loss and fragmentation are greatest and when extreme-hot weather events take place in urban areas. However, in some instances, UHI may mitigate the impact of land-use changes at local scales and provide suitable breeding conditions by shifting the environment to be more favorable for species' thermal limits and by extending the time window in which food resources are available in urban areas. As a result, we determined five broad directions for further research to highlight that urbanization provides a great opportunity to study environmental filtering processes and population dynamics.
Collapse
Affiliation(s)
- Sihao Chen
- Department of Health and Environmental SciencesXi'an Jiaotong‐Liverpool UniversitySuzhouChina
- Department of Earth, Ocean and Ecological Sciences, School of Environmental SciencesUniversity of LiverpoolLiverpoolUK
| | - Yu Liu
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, College of Life SciencesBeijing Normal UniversityBeijingChina
| | - Samantha C. Patrick
- Department of Earth, Ocean and Ecological Sciences, School of Environmental SciencesUniversity of LiverpoolLiverpoolUK
| | - Eben Goodale
- Department of Health and Environmental SciencesXi'an Jiaotong‐Liverpool UniversitySuzhouChina
| | - Rebecca J. Safran
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderColoradoUSA
| | - Emilio Pagani‐Núñez
- Department of Health and Environmental SciencesXi'an Jiaotong‐Liverpool UniversitySuzhouChina
- School of Applied SciencesEdinburgh Napier UniversityEdinburghUK
- Centre for Conservation and Restoration ScienceEdinburgh Napier UniversityEdinburghUK
| |
Collapse
|
12
|
Grunst AS, Grunst ML, Fort J. Contaminant-by-environment interactive effects on animal behavior in the context of global change: Evidence from avian behavioral ecotoxicology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163169. [PMID: 37003321 DOI: 10.1016/j.scitotenv.2023.163169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 03/01/2023] [Accepted: 03/26/2023] [Indexed: 05/17/2023]
Abstract
The potential for chemical contaminant exposure to interact with other stressors to affect animal behavioral responses to environmental variability is of mounting concern in the context of anthropogenic environmental change. We systematically reviewed the avian literature to evaluate evidence for contaminant-by-environment interactive effects on animal behavior, as birds are prominent models in behavioral ecotoxicology and global change research. We found that only 17 of 156 (10.9 %) avian behavioral ecotoxicological studies have explored contaminant-by-environment interactions. However, 13 (76.5 %) have found evidence for interactive effects, suggesting that contaminant-by-environment interactive effects on behavior are understudied but important. We draw on our review to develop a conceptual framework to understand such interactive effects from a behavioral reaction norm perspective. Our framework highlights four patterns in reaction norm shapes that can underlie contaminant-by-environment interactive effects on behavior, termed exacerbation, inhibition, mitigation and convergence. First, contamination can render individuals unable to maintain critical behaviors across gradients in additional stressors, exacerbating behavioral change (reaction norms steeper) and generating synergy. Second, contamination can inhibit behavioral adjustment to other stressors, antagonizing behavioral plasticity (reaction norms shallower). Third, a second stressor can mitigate (antagonize) toxicological effects of contamination, causing steeper reaction norms in highly contaminated individuals, with improvement of performance upon exposure to additional stress. Fourth, contamination can limit behavioral plasticity in response to permissive conditions, such that performance of more and less contaminated individuals converges under more stressful conditions. Diverse mechanisms might underlie such shape differences in reaction norms, including combined effects of contaminants and other stressors on endocrinology, energy balance, sensory systems, and physiological and cognitive limits. To encourage more research, we outline how the types of contaminant-by-environment interactive effects proposed in our framework might operate across multiple behavioral domains. We conclude by leveraging our review and framework to suggest priorities for future research.
Collapse
Affiliation(s)
- Andrea S Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000 La Rochelle, France.
| | - Melissa L Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000 La Rochelle, France
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000 La Rochelle, France
| |
Collapse
|
13
|
Wilson EC, Cousins S, Etter DR, Humphreys JM, Roloff GJ, Carter NH. Habitat and climatic associations of climate-sensitive species along a southern range boundary. Ecol Evol 2023; 13:e10083. [PMID: 37214615 PMCID: PMC10191803 DOI: 10.1002/ece3.10083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Climate change and habitat loss are recognized as important drivers of shifts in wildlife species' geographic distributions. While often considered independently, there is considerable overlap between these drivers, and understanding how they contribute to range shifts can predict future species assemblages and inform effective management. Our objective was to evaluate the impacts of habitat, climatic, and anthropogenic effects on the distributions of climate-sensitive vertebrates along a southern range boundary in Northern Michigan, USA. We combined multiple sources of occurrence data, including harvest and citizen-science data, then used hierarchical Bayesian spatial models to determine habitat and climatic associations for four climate-sensitive vertebrate species (American marten [Martes americana], snowshoe hare [Lepus americanus], ruffed grouse [Bonasa umbellus] and moose [Alces alces]). We used total basal area of at-risk forest types to represent habitat, and temperature and winter habitat indices to represent climate. Marten associated with upland spruce-fir and lowland riparian forest types, hares with lowland conifer and aspen-birch, grouse with lowland riparian hardwoods, and moose with upland spruce-fir. Species differed in climatic drivers with hares positively associated with cooler annual temperatures, moose with cooler summer temperatures and grouse with colder winter temperatures. Contrary to expectations, temperature variables outperformed winter habitat indices. Model performance varied greatly among species, as did predicted distributions along the southern edge of the Northwoods region. As multiple species were associated with lowland riparian and upland spruce-fir habitats, these results provide potential for efficient prioritization of habitat management. Both direct and indirect effects from climate change are likely to impact the distribution of climate-sensitive species in the future and the use of multiple data types and sources in the modelling of species distributions can result in more accurate predictions resulting in improved management at policy-relevant scales.
Collapse
Affiliation(s)
- Evan C. Wilson
- School for Environment and SustainabilityUniversity of MichiganAnn ArborMichiganUSA
| | - Stella Cousins
- School for Environment and SustainabilityUniversity of MichiganAnn ArborMichiganUSA
| | | | - John M. Humphreys
- Department of Fisheries and WildlifeMichigan State UniversityEast LansingMichiganUSA
- United States Department of Agriculture, Agricultural Research ServiceSidneyMontanaUSA
| | - Gary J. Roloff
- Department of Fisheries and WildlifeMichigan State UniversityEast LansingMichiganUSA
| | - Neil H. Carter
- School for Environment and SustainabilityUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
14
|
Gilbert NA, McGinn KA, Nunes LA, Shipley AA, Bernath-Plaisted J, Clare JDJ, Murphy PW, Keyser SR, Thompson KL, Maresh Nelson SB, Cohen JM, Widick IV, Bartel SL, Orrock JL, Zuckerberg B. Daily activity timing in the Anthropocene. Trends Ecol Evol 2023; 38:324-336. [PMID: 36402653 DOI: 10.1016/j.tree.2022.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/12/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022]
Abstract
Animals are facing novel 'timescapes' in which the stimuli entraining their daily activity patterns no longer match historical conditions due to anthropogenic disturbance. However, the ecological effects (e.g., altered physiology, species interactions) of novel activity timing are virtually unknown. We reviewed 1328 studies and found relatively few focusing on anthropogenic effects on activity timing. We suggest three hypotheses to stimulate future research: (i) activity-timing mismatches determine ecological effects, (ii) duration and timing of timescape modification influence effects, and (iii) consequences of altered activity timing vary biogeographically due to broad-scale variation in factors compressing timescapes. The continued growth of sampling technologies promises to facilitate the study of the consequences of altered activity timing, with emerging applications for biodiversity conservation.
Collapse
Affiliation(s)
- Neil A Gilbert
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kate A McGinn
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Laura A Nunes
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Amy A Shipley
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA; School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Jacy Bernath-Plaisted
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John D J Clare
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA; Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - Penelope W Murphy
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Spencer R Keyser
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kimberly L Thompson
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA; German Centre for Integrative Biodiversity Research (iDiv), 04103 Halle-Jena-Leipzig, Germany
| | - Scott B Maresh Nelson
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jeremy M Cohen
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Ivy V Widick
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Savannah L Bartel
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John L Orrock
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Benjamin Zuckerberg
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
15
|
Morelli F, Tryjanowski P, Ibáñez-Álamo JD, Díaz M, Suhonen J, Pape Møller A, Prosek J, Moravec D, Bussière R, Mägi M, Kominos T, Galanaki A, Bukas N, Markó G, Pruscini F, Reif J, Benedetti Y. Effects of light and noise pollution on avian communities of European cities are correlated with the species' diet. Sci Rep 2023; 13:4361. [PMID: 36928766 PMCID: PMC10020436 DOI: 10.1038/s41598-023-31337-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Urbanization affects avian community composition in European cities, increasing biotic homogenization. Anthropic pollution (such as light at night and noise) is among the most important drivers shaping bird use in urban areas, where bird species are mainly attracted by urban greenery. In this study, we collected data on 127 breeding bird species at 1349 point counts distributed along a gradient of urbanization in fourteen different European cities. The main aim was to explore the effects of anthropic pollution and city characteristics, on shaping the avian communities, regarding species' diet composition. The green cover of urban areas increased the number of insectivorous and omnivorous bird species, while slightly decreasing the overall diet heterogeneity of the avian communities. The green heterogeneity-a measure of evenness considering the relative coverage of grass, shrubs and trees-was positively correlated with the richness of granivorous, insectivorous, and omnivorous species, increasing the level of diet heterogeneity in the assemblages. Additionally, the effects of light pollution on avian communities were associated with the species' diet. Overall, light pollution negatively affected insectivorous and omnivorous bird species while not affecting granivorous species. The noise pollution, in contrast, was not significantly associated with changes in species assemblages. Our results offer some tips to urban planners, managers, and ecologists, in the challenge of producing more eco-friendly cities for the future.
Collapse
Affiliation(s)
- Federico Morelli
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague 6, Czech Republic.
- Department of Life and Environmental Sciences, Bournemouth University, Fern Barrow, Poole, 12 5BB, BH, UK.
| | - Piotr Tryjanowski
- Institute of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71C, 60-625, Poznan, Poland
| | | | - Mario Díaz
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (BGC-MNCN-CSIC), 28006, Madrid, Spain
| | - Jukka Suhonen
- Department of Biology, University of Turku, Turku, Finland
| | - Anders Pape Møller
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91405, Orsay Cedex, France
| | - Jiri Prosek
- Faculty of Environmental Sciences, Department of Applied Geoinformatics and Spatial Planning, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague 6, Czech Republic
| | - David Moravec
- Faculty of Environmental Sciences, Department of Applied Geoinformatics and Spatial Planning, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague 6, Czech Republic
| | | | - Marko Mägi
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Theodoros Kominos
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Antonia Galanaki
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Nikos Bukas
- Plegadis, Riga Feraiou 6A, 45444, Ioannina, Greece
| | - Gábor Markó
- Department of Plant Pathology, Institute of Plant Protection Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | | | - Jiri Reif
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Prague, Czech Republic
- Department of Zoology, Faculty of Science, Palacky University in Olomouc, Olomouc, Czech Republic
| | - Yanina Benedetti
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague 6, Czech Republic
| |
Collapse
|
16
|
Veon JT, McClung MR. Disturbance of wintering waterbirds by simulated road traffic noise in Arkansas wetlands. J Wildl Manage 2023. [DOI: 10.1002/jwmg.22387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- John T. Veon
- Department of Biology and Health Sciences Hendrix College 1600 Washington Avenue Conway AR 72032 USA
| | - Maureen R. McClung
- Department of Biology and Health Sciences Hendrix College 1600 Washington Avenue Conway AR 72032 USA
| |
Collapse
|
17
|
Yorzinski JL, Troscianko J, Briolat E, Schapiro SJ, Whitham W. A songbird can detect the eyes of conspecifics under daylight and artificial nighttime lighting. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120000. [PMID: 35995296 DOI: 10.1016/j.envpol.2022.120000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/25/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Eyes convey important information about the external and internal worlds of animals. Individuals can follow the gaze of others to learn about the location of salient objects as well as assess eye qualities to evaluate the health, age or other internal states of conspecifics. Because of the increasing prevalence of artificial lighting at night (ALAN), urbanized individuals can potentially garner information from conspecific eyes under both daylight and ALAN. We tested this possibility using a visual modeling approach in which we estimated the maximum distance at which individuals could detect conspecific eyes under daylight and high levels of ALAN. We also estimated the minimum light level at which individuals could detect conspecific eyes. Great-tailed grackles (Quiscalus mexicanus) were used as our study species because they are highly social and are unusual among birds in that they regularly gather at nocturnal roosts in areas with high levels of ALAN. This visual modelling approach revealed that grackles can detect conspecific eyes under both daylight and ALAN, regardless of iris coloration. The grackles could detect conspecific eyes at farther distances in daylight compared to ALAN. Our results highlight the potential importance of lighting conditions in shaping social interactions.
Collapse
Affiliation(s)
- Jessica L Yorzinski
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA.
| | - Jolyon Troscianko
- Centre for Ecology & Conservation, University of Exeter, Penryn, United Kingdom
| | - Emmanuelle Briolat
- Centre for Ecology & Conservation, University of Exeter, Penryn, United Kingdom
| | - Steven J Schapiro
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Will Whitham
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA; Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| |
Collapse
|
18
|
Impact of light pollution on nocturnal pollinators and their pollination services. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Cronin AD, Smit JAH, Halfwerk W. Anthropogenic noise and light alter temporal but not spatial breeding behavior in a wild frog. Behav Ecol 2022; 33:1115-1122. [PMID: 36518635 PMCID: PMC9735234 DOI: 10.1093/beheco/arac077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 11/20/2023] Open
Abstract
Increasing urbanization has led to large-scale land-use changes, exposing persistent populations to drastically altered environments. Sensory pollutants, including low-frequency anthropogenic noise and artificial light at night (ALAN), are typically associated with urban environments and known to impact animal populations in a variety of ways. Both ALAN and anthropogenic noise can alter behavioral and physiological processes important for survival and reproduction, including communication and circadian rhythms. Although noise and light pollution typically co-occur in urbanized areas, few studies have addressed their combined impact on species' behavior. Here, we assessed how anthropogenic noise and ALAN can influence spatial and temporal variation in breeding activity of a wild frog population. By exposing artificial breeding sites inside a tropical rainforest to multiple sensory environments, we found that both anthropogenic noise and ALAN impact breeding behavior of túngara frogs (Engystomops pustulosus), albeit in different ways. Males arrived later in the night at their breeding sites in response to anthropogenic noise. ALAN, on the other hand, led to an increase in calling effort. We found no evidence that noise or light pollution either attracted frogs to or repelled frogs from breeding sites. Thus, anthropogenic noise may negatively affect calling males by shifting the timing of sexual signaling. Conversely, ALAN may increase the attractiveness of calling males. These changes in breeding behavior highlight the complex ways that urban multisensory pollution can influence behavior and suggest that such changes may have important ecological implications for the wildlife that are becoming increasingly exposed to urban multisensory pollution.
Collapse
Affiliation(s)
- Andrew D Cronin
- Amsterdam Institute for Life and Environment, Vrije Universiteit, De Boelelaan, HV, Amsterdam, The Netherlands
| | - Judith A H Smit
- Amsterdam Institute for Life and Environment, Vrije Universiteit, De Boelelaan, HV, Amsterdam, The Netherlands
| | - Wouter Halfwerk
- Amsterdam Institute for Life and Environment, Vrije Universiteit, De Boelelaan, HV, Amsterdam, The Netherlands
| |
Collapse
|
20
|
de Framond L, Brumm H. Long-term effects of noise pollution on the avian dawn chorus: a natural experiment facilitated by the closure of an international airport. Proc Biol Sci 2022; 289:20220906. [PMID: 36100015 PMCID: PMC9470256 DOI: 10.1098/rspb.2022.0906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The impacts of noise pollution on birdsong have been extensively investigated but potential long-term effects are neglected. Near airports, where noise levels are particularly high, birds start singing earlier in the morning, probably to gain more time of uninterrupted singing before air traffic sets in. In a previous study, we documented this phenomenon in the vicinity of Berlin Tegel airport. In 2020, Tegel airport closed down, giving us the opportunity to investigate potential long-term effects after noise removal and to gain insight into the mechanisms underlying the advancement of dawn singing. We found that several species at the airport shifted their song onset back after the closure and now had similar schedules to their conspecifics at a control site. Some species, however, still sang earlier near the closed airport. While the first suggests plastic adaptation, the latter suggests selection for early singing males in areas with long-lasting noise pollution. Our findings indicate that a uniform behavioural response to anthropogenic change in a community can be based on diverging evolutionary mechanisms. Overall, we show that noise pollution can have long-lasting effects on animal behaviour and noise removal may not lead to immediate recovery in some species.
Collapse
Affiliation(s)
- Léna de Framond
- Communication and Social Behaviour Group, Max Planck Institute for Ornithology, Eberhard-Gwinner-Straße, Seewiesen 82319, Germany
| | - Henrik Brumm
- Communication and Social Behaviour Group, Max Planck Institute for Ornithology, Eberhard-Gwinner-Straße, Seewiesen 82319, Germany
| |
Collapse
|
21
|
Smit JAH, Cronin AD, van der Wiel I, Oteman B, Ellers J, Halfwerk W. Interactive and independent effects of light and noise pollution on sexual signaling in frogs. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.934661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Urbanization drastically changes environmental conditions, including the introduction of sensory pollutants, such as artificial light at night (ALAN) and anthropogenic noise. To settle in urban habitats, animals need to cope with this new sensory environment. On a short timescale, animals might cope with sensory pollutants via behavioral adjustments, such as changes in sexual signaling, which can have important fitness consequences. While ALAN and anthropogenic noise generally co-occur in urban habitats and are known to be able to interact to modify behavioral responses, few studies have addressed their combined impact. Our aim was, therefore, to assess the effects of ALAN, anthropogenic noise, and their interaction on sexual signaling in túngara frogs (Engystomops pustulosus). We observed the calling behavior of frogs in urban and forest areas, and subsequently recorded these frogs in a laboratory set-up while independently manipulating light and noise levels. Frogs in urban areas called with a higher call rate and complexity, which was correlated with local sensory conditions. Furthermore, our lab experiment revealed that ALAN can directly alter sexual signaling independently as well as in combination with anthropogenic noise. Exposure to ALAN alone increased call amplitude, whereas a combination of ALAN and anthropogenic noise interacted to lead to a higher call complexity and amplitude. Overall, the response patterns consistently showed that exposure to ALAN and anthropogenic noise led to more conspicuous sexual signals than expected based on the additive effects of single pollutants. Our results support the notion that urban and forest population differences in sexual signaling can be partially explained by exposure to ALAN and anthropogenic noise. Furthermore, by demonstrating interactive effects between light and noise pollution, our study highlights the importance of examining the effects of multisensory pollution, instead of single pollutants, when trying to understand phenotypic divergence in urbanized vs. natural areas.
Collapse
|
22
|
Alberti M, Wang T. Detecting patterns of vertebrate biodiversity across the multidimensional urban landscape. Ecol Lett 2022; 25:1027-1045. [PMID: 35113498 DOI: 10.1111/ele.13969] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022]
Abstract
Explicit characterisation of the complexity of urban landscapes is critical for understanding patterns of biodiversity and for detecting the underlying social and ecological processes that shape them. Urban environments exhibit variable heterogeneity and connectivity, influenced by different historical contingencies, that affect community assembly across scales. The multidimensional nature of urban disturbance and co-occurrence of multiple stressors can cause synergistic effects leading to nonlinear responses in populations and communities. Yet, current research design of urban ecology and evolutionary studies typically relies on simple representation of the parameter space that can be observed. Sampling approaches apply simple urban gradients such as linear transects in space or comparisons of urban sites across the urban mosaic accounting for a few variables. This rarely considers multiple dimensions and scales of biodiversity, and proves to be inadequate to explain observed patterns. We apply a multidimensional approach that integrates distinctive social, ecological and built characteristics of urban landscapes, representing variations along dimensions of heterogeneity, connectivity and historical contingency. Measuring species richness and beta diversity across 100 US metropolitan areas at the city and 1-km scales, we show that distinctive signatures of urban biodiversity can result from interactions between socioecological heterogeneity and connectivity, mediated by historical contingency.
Collapse
Affiliation(s)
- Marina Alberti
- Department of Urban Design and Planning, University of Washington, Seattle, Washington, USA.,Urban Ecology Research Lab, University of Washington, Seattle, Washington, USA
| | - Tianzhe Wang
- Department of Urban Design and Planning, University of Washington, Seattle, Washington, USA.,Urban Ecology Research Lab, University of Washington, Seattle, Washington, USA
| |
Collapse
|
23
|
Hölker F, Bolliger J, Davies TW, Giavi S, Jechow A, Kalinkat G, Longcore T, Spoelstra K, Tidau S, Visser ME, Knop E. 11 Pressing Research Questions on How Light Pollution Affects Biodiversity. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.767177] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Artificial light at night (ALAN) is closely associated with modern societies and is rapidly increasing worldwide. A dynamically growing body of literature shows that ALAN poses a serious threat to all levels of biodiversity—from genes to ecosystems. Many “unknowns” remain to be addressed however, before we fully understand the impact of ALAN on biodiversity and can design effective mitigation measures. Here, we distilled the findings of a workshop on the effects of ALAN on biodiversity at the first World Biodiversity Forum in Davos attended by several major research groups in the field from across the globe. We argue that 11 pressing research questions have to be answered to find ways to reduce the impact of ALAN on biodiversity. The questions address fundamental knowledge gaps, ranging from basic challenges on how to standardize light measurements, through the multi-level impacts on biodiversity, to opportunities and challenges for more sustainable use.
Collapse
|
24
|
Richard FJ, Southern I, Gigauri M, Bellini G, Rojas O, Runde A. Warning on nine pollutants and their effects on avian communities. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
25
|
Halfwerk W, Jerem P. A Systematic Review of Research Investigating the Combined Ecological Impact of Anthropogenic Noise and Artificial Light at Night. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.765950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Levels of anthropogenic noise and artificial light at night (ALAN) are rapidly rising on a global scale. Both sensory pollutants are well known to affect animal behavior and physiology, which can lead to substantial ecological impacts. Most studies on noise or light pollution to date have focused on single stressor impacts, studying both pollutants in isolation despite their high spatial and temporal co-occurrence. However, few studies have addressed their combined impact, known as multisensory pollution, with the specific aim to assess whether the interaction between noise and light pollution leads to predictable, additive effects, or less predictable, synergistic or antagonistic effects. We carried out a systematic review of research investigating multisensory pollution and found 28 studies that simultaneously assessed the impact of anthropogenic noise and ALAN on animal function (e.g., behavior, morphology or life-history), physiology (e.g., stress, oxidative, or immune status), or population demography (e.g., abundance or species richness). Only fifteen of these studies specifically tested for possible interactive effects when both sensory pollutants were combined. Four out of eight experimental studies revealed a significant interaction effect, in contrast to only three out seven observational studies. We discuss the benefits and limitations of experimental vs. observational studies addressing multisensory pollution and call for more specific testing of the diverse ways in which noise and light pollution can interact to affect wildlife.
Collapse
|
26
|
DeGregorio BA, Gale C, V. Lassiter E, Massey A, Roberts CP, T. Veon J. Nine-banded armadillo ( Dasypus novemcinctus) activity patterns are influenced by human activity. Ecol Evol 2021; 11:15874-15881. [PMID: 34824796 PMCID: PMC8601930 DOI: 10.1002/ece3.8257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 11/08/2022] Open
Abstract
As the human footprint upon the landscape expands, wildlife seeking to avoid human contact are losing the option of altering their spatial distribution and instead are shifting their daily activity patterns to be active at different times than humans. In this study, we used game cameras to evaluate how human development and activity were related to the daily activity patterns of the nine-banded armadillo (Dasypus novemcinctus) along an urban to rural gradient in Arkansas, USA during the winter of 2020-2021. We found that armadillos had substantial behavioral plasticity in regard to the timing of their activity patterns; >95% of armadillo activity was nocturnal at six of the study sites, whereas between 30% and 60% of activity occurred during the day at three other sites. The likelihood of diurnal armadillo activity was best explained by the distance to downtown Fayetteville (the nearest population center) and estimated ambient sound level (both indices of human activity) with armadillos being most active during the day at quiet sites far from Fayetteville. Furthermore, armadillo activity occurred later during the night period (minutes after sunset) at sites near downtown and with higher anthropogenic sound. Anecdotal evidence suggests that the observed activity shift may be in response to not only human activity but also the presence of domestic dogs. Our results provide further evidence that human activity has subtle nonlethal impacts on even common, widespread wildlife species. Because armadillos have low body temperatures and basal metabolism, being active during cold winter nights likely has measurable fitness costs. Nature reserves near human population centers may not serve as safe harbors for wildlife as we intend, and managers could benefit from considering these nonlethal responses in how they manage recreation and visitation in these natural areas.
Collapse
Affiliation(s)
- Brett A. DeGregorio
- U.S. Geological SurveyFish and Wildlife Cooperative Research UnitUniversity of ArkansasFayettevilleArkansasUSA
| | - Connor Gale
- Department of Biological SciencesUniversity of ArkansasFayettevilleArkansasUSA
| | - Ellery V. Lassiter
- Department of Biological SciencesUniversity of ArkansasFayettevilleArkansasUSA
| | - Andrhea Massey
- Department of Biological SciencesUniversity of ArkansasFayettevilleArkansasUSA
| | - Caleb P. Roberts
- U.S. Geological SurveyFish and Wildlife Cooperative Research UnitUniversity of ArkansasFayettevilleArkansasUSA
| | - John T. Veon
- Department of Biological SciencesUniversity of ArkansasFayettevilleArkansasUSA
| |
Collapse
|
27
|
Alaasam VJ, Ouyang JQ. The power of large-scale community science in addressing anthropogenic change. GLOBAL CHANGE BIOLOGY 2021; 27:3953-3955. [PMID: 34101303 DOI: 10.1111/gcb.15741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Affiliation(s)
| | - Jenny Q Ouyang
- Department of Biology, University of Nevada, Reno, NV, USA
| |
Collapse
|