1
|
Sharpe G, Zhao L, Meyer MG, Gong W, Burns SM, Tagliabue A, Buck KN, Santoro AE, Graff JR, Marchetti A, Gifford S. Synechococcus nitrogen gene loss in iron-limited ocean regions. ISME COMMUNICATIONS 2023; 3:107. [PMID: 37783796 PMCID: PMC10545762 DOI: 10.1038/s43705-023-00314-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Synechococcus are the most abundant cyanobacteria in high latitude regions and are responsible for an estimated 17% of annual marine net primary productivity. Despite their biogeochemical importance, Synechococcus populations have been unevenly sampled across the ocean, with most studies focused on low-latitude strains. In particular, the near absence of Synechococcus genomes from high-latitude, High Nutrient Low Chlorophyll (HNLC) regions leaves a gap in our knowledge of picocyanobacterial adaptations to iron limitation and their influence on carbon, nitrogen, and iron cycles. We examined Synechococcus populations from the subarctic North Pacific, a well-characterized HNLC region, with quantitative metagenomics. Assembly with short and long reads produced two near complete Synechococcus metagenome-assembled genomes (MAGs). Quantitative metagenome-derived abundances of these populations matched well with flow cytometry counts, and the Synechococcus MAGs were estimated to comprise >99% of the Synechococcus at Station P. Whereas the Station P Synechococcus MAGs contained multiple genes for adaptation to iron limitation, both genomes lacked genes for uptake and assimilation of nitrate and nitrite, suggesting a dependence on ammonium, urea, and other forms of recycled nitrogen leading to reduced iron requirements. A global analysis of Synechococcus nitrate reductase abundance in the TARA Oceans dataset found nitrate assimilation genes are also lower in other HNLC regions. We propose that nitrate and nitrite assimilation gene loss in Synechococcus may represent an adaptation to severe iron limitation in high-latitude regions where ammonium availability is higher. Our findings have implications for models that quantify the contribution of cyanobacteria to primary production and subsequent carbon export.
Collapse
Affiliation(s)
- Garrett Sharpe
- Environment Ecology and Energy Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Liang Zhao
- Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Meredith G Meyer
- Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Weida Gong
- Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shannon M Burns
- College of Marine Science, University of South Florida, St. Petersburg, FL, USA
| | | | - Kristen N Buck
- College of Marine Science, University of South Florida, St. Petersburg, FL, USA
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| | - Alyson E Santoro
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Jason R Graff
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Adrian Marchetti
- Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott Gifford
- Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Anugerahanti P, Tagliabue A. Process controlling iron-manganese regulation of the Southern Ocean biological carbon pump. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220065. [PMID: 37150202 PMCID: PMC10164462 DOI: 10.1098/rsta.2022.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/07/2023] [Indexed: 05/09/2023]
Abstract
Iron (Fe) is a key limiting nutrient driving the biological carbon pump and is routinely represented in global ocean biogeochemical models. However, in the Southern Ocean, the potential role for other micronutrients has not received the same attention. For example, although manganese (Mn) is essential to photosynthetic oxygen production and combating oxidative stress, it is not included in ocean models and a clear understanding of its interaction with Fe in the region is lacking. This is especially important for the Southern Ocean because both Mn and Fe are strongly depleted. We use a hierarchical modelling approach to explore how the physiological traits associated with Fe and Mn contribute to driving the footprint of micronutrient stress across different phytoplankton functional types (PFTs). We find that PFT responses are driven by physiological traits associated with their physiological requirements and acclimation to environmental conditions. Southern Ocean-specific adaptations to prevailing low Fe, such as large photosynthetic antenna sizes, are of major significance for the regional biological carbon pump. Other traits more strongly linked to Mn, such as dealing with oxidative stress, may become more important under a changing Fe supply regime. This article is part of a discussion meeting issue 'Heat and carbon uptake in the Southern Ocean: the state of the art and future priorities'.
Collapse
Affiliation(s)
- Prima Anugerahanti
- Department of Earth, University of Liverpool, Ocean, and Ecological Sciences, 4 Brownlow Street, Liverpool L69 3GP, UK
| | - Alessandro Tagliabue
- Department of Earth, University of Liverpool, Ocean, and Ecological Sciences, 4 Brownlow Street, Liverpool L69 3GP, UK
| |
Collapse
|
3
|
Hawco NJ, Tagliabue A, Twining BS. Manganese Limitation of Phytoplankton Physiology and Productivity in the Southern Ocean. GLOBAL BIOGEOCHEMICAL CYCLES 2022; 36:e2022GB007382. [PMID: 37034112 PMCID: PMC10078217 DOI: 10.1029/2022gb007382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 05/24/2023]
Abstract
Although iron and light are understood to regulate the Southern Ocean biological carbon pump, observations have also indicated a possible role for manganese. Low concentrations in Southern Ocean surface waters suggest manganese limitation is possible, but its spatial extent remains poorly constrained and direct manganese limitation of the marine carbon cycle has been neglected by ocean models. Here, using available observations, we develop a new global biogeochemical model and find that phytoplankton in over half of the Southern Ocean cannot attain maximal growth rates because of manganese deficiency. Manganese limitation is most extensive in austral spring and depends on phytoplankton traits related to the size of photosynthetic antennae and the inhibition of manganese uptake by high zinc concentrations in Antarctic waters. Importantly, manganese limitation expands under the increased iron supply of past glacial periods, reducing the response of the biological carbon pump. Overall, these model experiments describe a mosaic of controls on Southern Ocean productivity that emerge from the interplay of light, iron, manganese and zinc, shaping the evolution of Antarctic phytoplankton since the opening of the Drake Passage.
Collapse
Affiliation(s)
- Nicholas J. Hawco
- Department of OceanographyUniversity of Hawaiʻi at MānoaHonoluluHIUSA
| | | | | |
Collapse
|
4
|
Ren Z, Jia X, Zhang Y, Ma K, Zhang C, Li X. Biogeography and environmental drivers of zooplankton communities in permafrost-affected lakes on the Qinghai-Tibet Plateau. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|