1
|
Cortese MR, Freestone AL. When species don't move together: Non-concurrent range shifts in Eastern Pacific kelp forest communities. PLoS One 2024; 19:e0303536. [PMID: 38787811 PMCID: PMC11125554 DOI: 10.1371/journal.pone.0303536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Species range shifts due to changing ocean conditions are occurring around the world. As species move, they build new interaction networks as they shift from or into new ecological communities. Typically, species ranges are modeled individually, but biotic interactions have been shown to be important to creating more realistic modeling outputs for species. To understand the importance of consumer interactions in Eastern Pacific kelp forest species distributions, we used a Maxent framework to model a key foundation species, giant kelp (Macrocystis pyrifera), and a dominant herbivore, purple sea urchins (Strongylocentrotus purpuratus). With neither species having previously been modeled in the Eastern Pacific, we found evidence for M. pyrifera expansion in the northern section of its range, with no projected contraction at the southern range edge. Despite its known co-occurrence with M. pyrifera, models of S. purpuratus showed a non-concurrent southern range contraction and a co-occurring northern range expansion. While the co-occurring shifts may lead to increased spatial competition for suitable substrate, this non-concurrent contraction could result in community wide impacts such as herbivore release, tropicalization, or ecosystem restructuring.
Collapse
Affiliation(s)
- Mary R. Cortese
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Amy L. Freestone
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
2
|
Vivanco-Bercovich M, Sandoval-Gil JM, Bonet-Meliá P, Cabello-Pasini A, Muñiz-Salazar R, Montoya LR, Schubert N, Marín-Guirao L, Procaccini G, Ferreira-Arrieta A. Marine heatwaves recurrence aggravates thermal stress in the surfgrass Phyllospadix scouleri. MARINE POLLUTION BULLETIN 2024; 199:115943. [PMID: 38176159 DOI: 10.1016/j.marpolbul.2023.115943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
The surfgrass Phyllospadix scouleri grows in highly productive meadows along the Pacific coast of North America. This region has experienced increasingly severe marine heatwaves (MHWs) in recent years. Our study evaluated the impact of consecutive MHWs, simulated in mesocosms, on essential ecophysiological features of P. scouleri. Overall, our findings show that the plants' overall physiological status has been progressively declining. Interestingly, the indicators of physiological stress in photosynthesis only showed up once the initial heat exposure stopped (i.e., during the recovery period). The warming caused increased oxidative damage and a decrease in nitrate uptake rates. However, the levels of non-structural carbohydrates and relative growth rates were not affected. Our findings emphasize the significance of incorporating recovery periods in this type of study as they expose delayed stress responses. Furthermore, experiencing consecutive intense MHWs can harm surfgrasses over time, compromising the health of their meadows and the services they offer to the ecosystem.
Collapse
Affiliation(s)
- Manuel Vivanco-Bercovich
- Universidad Autónoma de Baja California (UABC), Instituto de Investigaciones Oceanológicas (IIO), Marine Botany Research Group, Ensenada, Baja California, Mexico
| | - Jose Miguel Sandoval-Gil
- Universidad Autónoma de Baja California (UABC), Instituto de Investigaciones Oceanológicas (IIO), Marine Botany Research Group, Ensenada, Baja California, Mexico.
| | - Paula Bonet-Meliá
- Universidad Autónoma de Baja California (UABC), Instituto de Investigaciones Oceanológicas (IIO), Marine Botany Research Group, Ensenada, Baja California, Mexico
| | - Alejandro Cabello-Pasini
- Universidad Autónoma de Baja California (UABC), Instituto de Investigaciones Oceanológicas (IIO), Marine Botany Research Group, Ensenada, Baja California, Mexico
| | - Raquel Muñiz-Salazar
- Universidad Autónoma de Baja California (UABC), Instituto de Investigaciones Oceanológicas (IIO), Marine Botany Research Group, Ensenada, Baja California, Mexico; Universidad Autónoma de Baja California (UABC), Escuela de Ciencias de la Salud, Ensenada, Baja California, Mexico
| | - Leonardo Ruiz Montoya
- Universidad Autónoma de Baja California (UABC), Instituto de Investigaciones Oceanológicas (IIO), Marine Botany Research Group, Ensenada, Baja California, Mexico
| | - Nadine Schubert
- CCMAR - Center of Marine Sciences, University of Algarve, Faro, Portugal
| | - Lázaro Marín-Guirao
- Instituto Español de Oceanografía (IEO), Centro Oceanográfico de Murcia, Seagrass Ecology Group, C/Varadero s/n, 30740 San Pedro del Pinatar, Murcia, Spain
| | - Gabriele Procaccini
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Comunale, Naples, Italy
| | - Alejandra Ferreira-Arrieta
- Universidad Autónoma de Baja California (UABC), Instituto de Investigaciones Oceanológicas (IIO), Marine Botany Research Group, Ensenada, Baja California, Mexico
| |
Collapse
|
3
|
Thompson PL, Nephin J, Davies SC, Park AE, Lyons DA, Rooper CN, Angelica Peña M, Christian JR, Hunter KL, Rubidge E, Holdsworth AM. Groundfish biodiversity change in northeastern Pacific waters under projected warming and deoxygenation. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220191. [PMID: 37246387 DOI: 10.1098/rstb.2022.0191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/11/2023] [Indexed: 05/30/2023] Open
Abstract
In the coming decades, warming and deoxygenation of marine waters are anticipated to result in shifts in the distribution and abundance of fishes, with consequences for the diversity and composition of fish communities. Here, we combine fisheries-independent trawl survey data spanning the west coast of the USA and Canada with high-resolution regional ocean models to make projections of how 34 groundfish species will be impacted by changes in temperature and oxygen in British Columbia (BC) and Washington. In this region, species that are projected to decrease in occurrence are roughly balanced by those that are projected to increase, resulting in considerable compositional turnover. Many, but not all, species are projected to shift to deeper depths as conditions warm, but low oxygen will limit how deep they can go. Thus, biodiversity will likely decrease in the shallowest waters (less than 100 m), where warming will be greatest, increase at mid-depths (100-600 m) as shallow species shift deeper, and decrease at depths where oxygen is limited (greater than 600 m). These results highlight the critical importance of accounting for the joint role of temperature, oxygen and depth when projecting the impacts of climate change on marine biodiversity. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.
Collapse
Affiliation(s)
- Patrick L Thompson
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, British Columbia, Canada V8L 5T5
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Jessica Nephin
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, British Columbia, Canada V8L 5T5
| | - Sarah C Davies
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada V9T 6N7
| | - Ashley E Park
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, British Columbia, Canada V8L 5T5
| | - Devin A Lyons
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova Scotia, Canada B2Y 4A2
| | - Christopher N Rooper
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada V9T 6N7
| | - M Angelica Peña
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, British Columbia, Canada V8L 5T5
| | - James R Christian
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, British Columbia, Canada V8L 5T5
| | - Karen L Hunter
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada V9T 6N7
| | - Emily Rubidge
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, British Columbia, Canada V8L 5T5
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Amber M Holdsworth
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, British Columbia, Canada V8L 5T5
| |
Collapse
|
4
|
Koehlinger JA, Newton J, Mickett J, Thompson L, Klinger T. Large and transient positive temperature anomalies in Washington's coastal nearshore waters during the 2013-2015 northeast Pacific marine heatwave. PLoS One 2023; 18:e0280646. [PMID: 36724168 PMCID: PMC9891519 DOI: 10.1371/journal.pone.0280646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 01/04/2023] [Indexed: 02/02/2023] Open
Abstract
The northern portion of Washington's outer coast-known locally as the Olympic coast-is a dynamic region characterized by seasonal upwelling that predominates during summer interrupted by occasional periods of downwelling. We examined spring-to-fall water temperature records collected along this coast from 2001-2015 from April to October at four nearshore locations (Cape Elizabeth to Makah Bay) that span one degree of latitude and are located within 15 km of the shore. When compared against a long-term climatology created for 2001-2013, seven-day smoothed temperature anomalies of up to 4.5°C at 40 m depth during 2014 and 2015 show short-term warm events lasting 10-20 days. These periods of warming occurred within the well documented marine heatwave in the Northeast Pacific and were about twice the seasonal temperature range in the climatology at that depth. These warm events were strongly correlated with periods of northward long-shore winds and upper ocean currents, consistent with what is expected for the response to downwelling-favorable winds. While our focus a priori was on 2014 and 2015, we also found large positive temperature events in 2013, which were potentially related to the early stage of the marine heatwave, and in 2011, which did not have a documented marine heatwave. This indicates that near-shore short-term warm events occur during periods of large-scale offshore marine heatwave events, but also can occur in the absence of a large-scale marine heatwave event when downwelling-favorable winds occur during the summer/early fall.
Collapse
Affiliation(s)
- Julie Ann Koehlinger
- School of Marine and Environmental Affairs, University of Washington, Seattle, Washington, United States of America,* E-mail:
| | - Jan Newton
- Applied Physics Laboratory, University of Washington, Seattle, Washington, United States of America
| | - John Mickett
- Applied Physics Laboratory, University of Washington, Seattle, Washington, United States of America
| | - LuAnne Thompson
- School of Oceanography, University of Washington, Seattle, Washington, United States of America
| | - Terrie Klinger
- School of Marine and Environmental Affairs, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|