1
|
Gibb R, Redding DW, Friant S, Jones KE. Towards a 'people and nature' paradigm for biodiversity and infectious disease. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230259. [PMID: 39780600 PMCID: PMC11712283 DOI: 10.1098/rstb.2023.0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 01/11/2025] Open
Abstract
Zoonotic and vector-borne infectious diseases are among the most direct human health consequences of biodiversity change. The COVID-19 pandemic increased health policymakers' attention on the links between ecological degradation and disease, and sparked discussions around nature-based interventions to mitigate zoonotic emergence and epidemics. Yet, although disease ecology provides an increasingly granular knowledge of wildlife disease in changing ecosystems, we still have a poor understanding of the net consequences for human disease. Here, we argue that a renewed focus on wildlife-borne diseases as complex socio-ecological systems-a 'people and nature' paradigm-is needed to identify local interventions and transformative system-wide changes that could reduce human disease burden. We discuss longstanding scientific narratives of human involvement in zoonotic disease systems, which have largely framed people as ecological disruptors, and discuss three emerging research areas that provide wider system perspectives: how anthropogenic ecosystems construct new niches for infectious disease, feedbacks between disease, biodiversity and social vulnerability and the role of human-to-animal pathogen transmission ('spillback') in zoonotic disease systems. We conclude by discussing new opportunities to better understand the predictability of human disease outcomes from biodiversity change and to integrate ecological drivers of disease into health intervention design and evaluation.This article is part of the discussion meeting issue 'Bending the curve towards nature recovery: building on Georgina Mace's legacy for a biodiverse future'.
Collapse
Affiliation(s)
- Rory Gibb
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment,, University College London, LondonWC1E 6BT, UK
| | | | - Sagan Friant
- Department of Anthropology, Pennsylvania State University, University Park, PA16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA16802, USA
| | - Kate E. Jones
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment,, University College London, LondonWC1E 6BT, UK
| |
Collapse
|
2
|
Langmüller AM, Chandrasekher KA, Haller BC, Champer SE, Murdock CC, Messer PW. Gaussian Process Emulation for Modeling Dengue Outbreak Dynamics. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.28.24318136. [PMID: 39649594 PMCID: PMC11623728 DOI: 10.1101/2024.11.28.24318136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Epidemiological models that aim for a high degree of biological realism by simulating every individual in a population are unavoidably complex, with many free parameters, which makes systematic explorations of their dynamics computationally challenging. This study investigates the potential of Gaussian Process emulation to overcome this obstacle. To simulate disease dynamics, we developed an individual-based model of dengue transmission that includes factors such as social structure, seasonality, and variation in human movement. We trained three Gaussian Process surrogate models on three outcomes: outbreak probability, maximum incidence, and epidemic duration. These models enable the rapid prediction of outcomes at any point in the eight-dimensional parameter space of the original model. Our analysis revealed that average infectivity and average human mobility are key drivers of these epidemiological metrics, while the seasonal timing of the first infection can influence the course of the epidemic outbreak. We use a dataset comprising more than 1,000 dengue epidemics observed over 12 years in Colombia to calibrate our Gaussian Process model and evaluate its predictive power. The calibrated Gaussian Process model identifies a subset of municipalities with consistently higher average infectivity estimates, highlighting them as promising areas for targeted public health interventions. Overall, this work underscores the potential of Gaussian Process emulation to enable the use of more complex individual-based models in epidemiology, allowing a higher degree of realism and accuracy that should increase our ability to control important diseases such as dengue.
Collapse
Affiliation(s)
- Anna M. Langmüller
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Mathematics, University of Vienna, Vienna 1090, Austria
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus C 8000, Denmark
| | | | - Benjamin C. Haller
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
| | - Samuel E. Champer
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
| | - Courtney C. Murdock
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens GA, USA
| | - Philipp W. Messer
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
3
|
Taconet P, Zogo B, Ahoua Alou LP, Amanan Koffi A, Dabiré RK, Pennetier C, Moiroux N. Landscape and meteorological determinants of malaria vectors' presence and abundance in the rural health district of Korhogo, Côte d'Ivoire, 2016-2018, and comparison with the less anthropized area of Diébougou, Burkina Faso. PLoS One 2024; 19:e0312132. [PMID: 39432506 PMCID: PMC11493267 DOI: 10.1371/journal.pone.0312132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Understanding how weather and landscape shape the fine-scale distribution and diversity of malaria vectors is crucial for efficient and locally tailored vector control. This study examines the meteorological and landscape determinants of (i) the spatiotemporal distribution (presence and abundance) of the major malaria vectors in the rural region of Korhogo (northern Côte d'Ivoire) and (ii) the differences in vector probability of presence, abundance, and diversity observed between that area and another rural West African region located 300 km away in Diébougou, Burkina Faso. METHODS We monitored Anopheles human-biting activity in 28 villages of the Korhogo health district for 18 months (2016 to 2018), and extracted fine-scale environmental variables (meteorological and landscape) from high-resolution satellite imagery. We used a state-of-the-art statistical modeling framework to associate these data and identify environmental determinants of the presence and abundance of malaria vectors in the area. We then compared the results of this analysis with those of a similar, previously published study conducted in the Diébougou area. RESULTS The spatiotemporal distribution of malaria vectors in the Korhogo area was highly heterogeneous and appeared to be strongly determined and constrained by meteorological conditions. Rice paddies, temporary sites filled by rainfall, rivers and riparian forests appeared to be the larval habitats of Anopheles mosquitoes. As in Diébougou, meteorological conditions (temperatures, rainfall) appeared to significantly affect all developmental stages of the mosquitoes. Additionally, ligneous savannas were associated with lower abundance of malaria vectors. Anopheles species diversity was lower in Korhogo compared to Diébougou, while biting rates were much higher. Our results suggest that these differences may be due to the more anthropized nature of the Korhogo region in comparison to Diébougou (less forested areas, more agricultural land), supporting the hypothesis of higher malaria vector densities and lower mosquito diversity in more anthropized landscapes in rural West Africa. CONCLUSION This study offers valuable insights into the landscape and meteorological determinants of the spatiotemporal distribution of malaria vectors in the Korhogo region and, more broadly, in rural west-Africa. The results emphasize the adverse effects of the ongoing landscape anthropization process in the sub-region, including deforestation and agricultural development, on malaria vector control.
Collapse
Affiliation(s)
- Paul Taconet
- MIVEGEC, CNRS, IRD, Université de Montpellier, Montpellier, France
| | - Barnabas Zogo
- MIVEGEC, CNRS, IRD, Université de Montpellier, Montpellier, France
- Institut Pierre Richet (IPR), Bouaké, Côte d’Ivoire
| | | | | | - Roch Kounbobr Dabiré
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Cedric Pennetier
- MIVEGEC, CNRS, IRD, Université de Montpellier, Montpellier, France
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Nicolas Moiroux
- MIVEGEC, CNRS, IRD, Université de Montpellier, Montpellier, France
| |
Collapse
|
4
|
Izquierdo-Suzán M, Zavala-Guerrero PB, Mendoza H, Portela Salomão R, Vázquez-Pichardo M, Von Thaden JJ, Medellín RA. Mosquito (Diptera: Culicidae) diversity and arbovirus detection across an urban and agricultural landscape. Acta Trop 2024; 257:107321. [PMID: 38972559 DOI: 10.1016/j.actatropica.2024.107321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Fragmented landscapes in Mexico, characterized by a mix of agricultural, urban, and native vegetation cover, presents unique ecological characteristics that shape the mosquito community composition and mosquito-borne diseases. The extent to which landscape influences mosquito populations and mosquito-borne diseases is still poorly understood. This work assessed the effect of landscape metrics -agriculture, urban, and native vegetation cover- on mosquito diversity and arbovirus presence in fragmented tropical deciduous forests in Central Mexico during 2021. Among the 21 mosquito species across six genera we identified, Culex quinquefasciatus was the most prevalent species, followed by Aedes aegypti, Ae. albopictus, and Ae. epactius. Notably, areas with denser native vegetation cover displayed higher mosquito species richness, which could have an impact on phenomena such as the dilution effect. Zika and dengue virus were detected in 85% of captured species, with first reports of DENV in several Aedes species and ZIKV in multiple Aedes and Culex species. These findings underscore the necessity of expanding arbovirus surveillance beyond Ae. aegypti and advocate for a deeper understanding of vector ecology in fragmented landscapes to adequately address public health strategies.
Collapse
Affiliation(s)
- Mónica Izquierdo-Suzán
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, Ciudad Universitaria Coyoacán, CP 04510 CDMX, Mexico; Instituto de Ecología, Universidad Nacional Autónoma de México, Apdo. Postal 70-275, Circuito Exterior, Ciudad Universitaria Coyoacán, 04510 Ciudad de México, Mexico.
| | - Paula B Zavala-Guerrero
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de México, Ciudad de México, Mexico
| | - Hugo Mendoza
- Instituto de Ecología, Universidad Nacional Autónoma de México, Apdo. Postal 70-275, Circuito Exterior, Ciudad Universitaria Coyoacán, 04510 Ciudad de México, Mexico
| | - Renato Portela Salomão
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Mexico; Pós-graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brasil
| | - Mauricio Vázquez-Pichardo
- Laboratorios de Arbovirus y Virus Hemorrágicos, Instituto de Diagnóstico y Referencia Epidemiológicoos. Centro Colaborador de la OPS/OMS en arbovirus, Ciudad de México, Mexico
| | - Juan José Von Thaden
- Laboratorio de Planeación Ambiental, Universidad Autónoma Metropolitana- Xochimilco, Ciudad de México, Mexico
| | - Rodrigo A Medellín
- Instituto de Ecología, Universidad Nacional Autónoma de México, Apdo. Postal 70-275, Circuito Exterior, Ciudad Universitaria Coyoacán, 04510 Ciudad de México, Mexico
| |
Collapse
|
5
|
Titcomb G, Uelmen J, Janko M, Nunn C. Infectious disease responses to human climate change adaptations. GLOBAL CHANGE BIOLOGY 2024; 30:e17433. [PMID: 39171421 PMCID: PMC11646313 DOI: 10.1111/gcb.17433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 08/23/2024]
Abstract
Many recent studies have examined the impact of predicted changes in temperature and precipitation patterns on infectious diseases under different greenhouse gas emissions scenarios. But these emissions scenarios symbolize more than altered temperature and precipitation regimes; they also represent differing levels of change in energy, transportation, and food production at a global scale to reduce the effects of climate change. The ways humans respond to climate change, either through adaptation or mitigation, have underappreciated, yet hugely impactful effects on infectious disease transmission, often in complex and sometimes nonintuitive ways. Thus, in addition to investigating the direct effects of climate changes on infectious diseases, it is critical to consider how human preventative measures and adaptations to climate change will alter the environments and hosts that support pathogens. Here, we consider the ways that human responses to climate change will likely impact disease risk in both positive and negative ways. We evaluate the evidence for these impacts based on the available data, and identify research directions needed to address climate change while minimizing externalities associated with infectious disease, especially for vulnerable communities. We identify several different human adaptations to climate change that are likely to affect infectious disease risk independently of the effects of climate change itself. We categorize these changes into adaptation strategies to secure access to water, food, and shelter, and mitigation strategies to decrease greenhouse gas emissions. We recognize that adaptation strategies are more likely to have infectious disease consequences for under-resourced communities, and call attention to the need for socio-ecological studies to connect human behavioral responses to climate change and their impacts on infectious disease. Understanding these effects is crucial as climate change intensifies and the global community builds momentum to slow these changes and reduce their impacts on human health, economic productivity, and political stability.
Collapse
Affiliation(s)
- Georgia Titcomb
- Department of Fish, Wildlife, and Conservation Biology, Warner College of Natural Resources, Colorado State University, Fort Collins, Colorado, USA
| | - Johnny Uelmen
- Triangle Center for Evolutionary Medicine, Durham, North Carolina, USA
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mark Janko
- Duke Global Health Institute, Durham, North Carolina, USA
| | - Charles Nunn
- Triangle Center for Evolutionary Medicine, Durham, North Carolina, USA
- Duke Global Health Institute, Durham, North Carolina, USA
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
6
|
Vanslembrouck A, Jansen S, De Witte J, Janssens C, Vereecken S, Helms M, Lange U, Lühken R, Schmidt-Chanasit J, Heitmann A, Müller R. Larval Competition between Aedes and Culex Mosquitoes Carries over to Higher Arboviral Infection during Their Adult Stage. Viruses 2024; 16:1202. [PMID: 39205176 PMCID: PMC11359221 DOI: 10.3390/v16081202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
The common house mosquito (Culex pipiens) is a native vector for West Nile virus (WNV). Invasive species like the tiger mosquito (Aedes albopictus) and Asian bush mosquito (Aedes japonicus) are rapidly spreading through Europe, posing a major threat as vectors for dengue, chikungunya (CHIKV), and Japanese encephalitis virus (JEV). These mosquitoes share a similar ecological niche as larvae, but the carry-over effects of aquatic larval interactions to the terrestrial adult stage remain largely unknown and their medical relevance requires further investigation. This study examines the context dependency of larval interactions among Aedes albopictus, Aedes japonicus, and Culex pipiens. The survival, development time, growth, and energetic storage were measured in different European populations within density-response (intraspecific) experiments and replacement (interspecific) experiments at 20 °C and 26 °C. Overall, Ae. japonicus was the weakest competitor, while competition between Ae. albopictus and Cx. pipiens varied with temperature. Adults emerging from this larval competition were infected as follows: Culex pipiens with WNV, Ae. albopictus with CHIKV, and Ae. japonicus with JEV. While no JEV infection was observed, mosquitoes experiencing interspecific interactions during their larval stages exhibited higher infection rates and viral RNA titers for CHIKV and WNV. This increased susceptibility to viral infection after larval competition suggests a higher risk of arbovirus transmission in co-occurring populations.
Collapse
Affiliation(s)
- Adwine Vanslembrouck
- Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium; (J.D.W.); (C.J.); (S.V.); (R.M.)
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Stephanie Jansen
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany; (S.J.); (M.H.); (U.L.); (R.L.); (J.S.-C.); (A.H.)
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Bundesstraße 55, 20146 Hamburg, Germany
| | - Jacobus De Witte
- Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium; (J.D.W.); (C.J.); (S.V.); (R.M.)
| | - Corneel Janssens
- Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium; (J.D.W.); (C.J.); (S.V.); (R.M.)
| | - Stien Vereecken
- Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium; (J.D.W.); (C.J.); (S.V.); (R.M.)
| | - Michelle Helms
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany; (S.J.); (M.H.); (U.L.); (R.L.); (J.S.-C.); (A.H.)
| | - Unchana Lange
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany; (S.J.); (M.H.); (U.L.); (R.L.); (J.S.-C.); (A.H.)
| | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany; (S.J.); (M.H.); (U.L.); (R.L.); (J.S.-C.); (A.H.)
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany; (S.J.); (M.H.); (U.L.); (R.L.); (J.S.-C.); (A.H.)
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Bundesstraße 55, 20146 Hamburg, Germany
| | - Anna Heitmann
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany; (S.J.); (M.H.); (U.L.); (R.L.); (J.S.-C.); (A.H.)
| | - Ruth Müller
- Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium; (J.D.W.); (C.J.); (S.V.); (R.M.)
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| |
Collapse
|
7
|
Neumann AE, Suarez-Rubio M, Renner SC. Haemosporidian intensity and nestlings' life-history along an urban-to-rural gradient. Sci Rep 2024; 14:17018. [PMID: 39043828 PMCID: PMC11266576 DOI: 10.1038/s41598-024-67824-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Urban areas, i.e. dense housing and reduced green spaces, can significantly impact avian health, through altering land use and increasing biotic and abiotic stress. This study assessed the association of urbanization on haemosporidian infections, vectors, immune response, and body condition in Parus major nestlings, across four classes of urbanization along an urban-to-rural gradient in Vienna, Austria. Contrary to our expectations, vector abundance remained consistent across the gradient, while an increase in leukocyte count is positively associated with total parasite intensity. We found that nestlings in more urbanized areas exhibited higher parasite intensity and altered immune response, as evidenced by variations in the heterophil to lymphocyte ratio and leukocyte counts. Culicidae female vectors were associated with nestlings' total parasites, scaled mass index, and industrial units. Nestlings in highly developed areas had higher infection rates than those in forests, suggesting increased exposure to infections. However, there was no clear relationship between total female vectors and total parasites. The level of urbanization negatively affected nestling body condition, with a decrease in fat deposits from forested to highly urbanized areas. Our findings highlight the complex interplay between urbanization, vector-borne parasite transmission, and host immune response, emphasizing the need for comprehensive urban planning to improve wildlife health and guarantee ecosystem functioning. Understanding how urbanization affects bird immunity and parasite infections is critical for adapting urban landscapes for wildlife health and ecosystem integrity.
Collapse
Affiliation(s)
- Astrid E Neumann
- Urban Productive Ecosystems, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Hans Carl-von-Carlowitz Platz 2, 85354, Freising, Germany
- Institute of Zoology, Department of Integrative Biology and Biodiversity Research, BOKU University, Gregor-Mendel-Straße 33/I, 1180, Vienna, Austria
| | - Marcela Suarez-Rubio
- Institute of Zoology, Department of Integrative Biology and Biodiversity Research, BOKU University, Gregor-Mendel-Straße 33/I, 1180, Vienna, Austria
| | - Swen C Renner
- Natural History Museum Vienna, Burgring 7, 1080, Vienna, Austria.
| |
Collapse
|
8
|
Damiani G, Sebastiano M, Dell'Omo G, Costantini D. Blood transcriptome analysis of common kestrel nestlings living in urban and non-urban environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172585. [PMID: 38641099 DOI: 10.1016/j.scitotenv.2024.172585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024]
Abstract
Urbanisation is one of the main anthropogenic forms of land cover affecting an ever-increasing number of wild animals and their habitats. Physiological plasticity represents an important process through which animals can adjust to the novel conditions of anthropogenic environments. Relying on the analysis of gene expression, it is possible to identify the molecular responses to the habitat conditions and infer possible environmental factors that affect the organismal physiology. We have quantified for the first time the blood transcriptome of common kestrel (Falco tinnunculus) nestlings living in urban sites and compared it to the transcriptome of kestrel nestlings inhabiting rural and natural environments. We found mild differences in the expression of genes among sites, indicating adaptability or acclimation of the birds to the urban habitat. We identified 58 differentially expressed genes between urban and natural kestrels, and 12 differentially expressed genes between urban and rural kestrels. The most striking differences among sites involved inflammatory-immunological, metabolic, apoptosis, DNA repair and development genes. In particular, we found that (i) urban kestrel nestlings had higher expression of genes linked to inflammation, repair of DNA damage, or apoptosis than natural kestrel nestlings, and (ii) natural and rural kestrel nestlings had higher expression of genes linked to the development and activation of immune cells, type I interferon response, or major histocompatibility complex than urban kestrel nestlings. Finally, the KEGG enrichment analysis identified the insulin signalling as the main pathway that differed between natural and urban kestrel nestlings. This is one of a limited number of studies on vertebrates that revealed habitat-associated differences in the transcriptome. It paves the way for further in-depth studies on the links between physiological variation and habitat structure at different spatial and temporal scales.
Collapse
Affiliation(s)
- Gianluca Damiani
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy; Ornis italica, Piazza Crati 15, 00199 Rome, Italy.
| | - Manrico Sebastiano
- Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | | | - David Costantini
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy; Ornis italica, Piazza Crati 15, 00199 Rome, Italy; Unité Physiologie Moléculaire et Adaptation, UMR7221-Muséum National d'Histoire Naturelle-CNRS, 75005 Paris, France.
| |
Collapse
|
9
|
Rodríguez-González S, Izquierdo-Suzán M, Rocha-Ortega M, Córdoba-Aguilar A. Vector mosquito distribution and richness are predicted by socio-economic, and ecological variables. Acta Trop 2024; 254:107179. [PMID: 38522629 DOI: 10.1016/j.actatropica.2024.107179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024]
Abstract
Mosquitoes of vectorial importance represent a ubiquitous and constant threat of potentially devastating arboviral outbreaks. Our ability to predict such outcomes is still restricted. To answer this, we have used an extensive data collection of 23 vector and 233 non-vector mosquito species distributed throughout the Mexican territory and linked them to social and environmental factors. Our aim was to predict vector and non-vector mosquitoes' distribution and species richness based on socioeconomic and environmental data. We found that lack of health services, human population variation, ecological degradation, and urban-rural categorization contributed significantly to explain the distribution of vector mosquitoes. mosquitoes. This phenomenon is probably attributed to the degradation of natural ecosystems as it creates favorable conditions for the proliferation of vector mosquitoes. The richness of vector mosquitoes was similarly explained by most of these variables as well as altitude. As for non-vector mosquitoes, social marginalization, ecological degradation, anthropogenic impact, and altitude explain species richness and distribution. These findings illustrate the complex interaction of environmental and socioeconomic factors behind the distribution of mosquitoes, and the potential for arboviral disease outbreaks. Areas with human populations at highest risk for mosquito-borne diseases should be primary targets for vector control.
Collapse
Affiliation(s)
- Stephany Rodríguez-González
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, Coyoacán, 04510, Ciudad de México, Mexico
| | - Mónica Izquierdo-Suzán
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, Coyoacán, 04510, Ciudad de México, Mexico
| | - Maya Rocha-Ortega
- Instituto de Ecología, Universidad Nacional Autónoma de México, Apdo. Postal 70-275, Circuito Exterior, Ciudad Universitaria 04510 Coyoacán, Ciudad de México, Mexico
| | - Alex Córdoba-Aguilar
- Instituto de Ecología, Universidad Nacional Autónoma de México, Apdo. Postal 70-275, Circuito Exterior, Ciudad Universitaria 04510 Coyoacán, Ciudad de México, Mexico.
| |
Collapse
|
10
|
Krambrich J, Akaberi D, Lindahl JF, Lundkvist Å, Hesson JC. Vector competence of Swedish Culex pipiens mosquitoes for Japanese encephalitis virus. Parasit Vectors 2024; 17:220. [PMID: 38741172 PMCID: PMC11092019 DOI: 10.1186/s13071-024-06269-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/02/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Japanese encephalitis virus (JEV) is an emerging mosquito-borne Orthoflavivirus that poses a significant public health risk in many temperate and tropical regions in Asia. Since the climate in some endemic countries is similar to temperate climates observed in Europe, understanding the role of specific mosquito species in the transmission of JEV is essential for predicting and effectively controlling the potential for the introduction and establishment of JEV in Europe. METHODS This study aimed to investigate the vector competence of colonized Culex pipiens biotype molestus mosquitoes for JEV. The mosquitoes were initially collected from the field in southern Sweden. The mosquitoes were offered a blood meal containing the Nakayama strain of JEV (genotype III), and infection rates, dissemination rates, and transmission rates were evaluated at 14, 21, and 28 days post-feeding. RESULTS The study revealed that colonized Swedish Cx. pipiens are susceptible to JEV infection, with a stable infection rate of around 10% at all timepoints. However, the virus was only detected in the legs of one mosquito at 21 days post-feeding, and no mosquito saliva contained JEV. CONCLUSIONS Overall, this research shows that Swedish Cx. pipiens can become infected with JEV, and emphasizes the importance of further understanding of the thresholds and barriers for JEV dissemination in mosquitoes.
Collapse
Affiliation(s)
- Janina Krambrich
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 75237, Uppsala, Sweden.
| | - Dario Akaberi
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 75237, Uppsala, Sweden
| | - Johanna F Lindahl
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 75237, Uppsala, Sweden
- International Livestock Research Institute, Hanoi, Vietnam
- Department of Animal Health and Antibiotic Strategies, Swedish National Veterinary Institute, Uppsala, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 75237, Uppsala, Sweden
| | - Jenny C Hesson
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 75237, Uppsala, Sweden
- Biologisk Myggkontroll, Nedre Dalälvens Utvecklings AB, Gysinge, Sweden
| |
Collapse
|
11
|
Johnson BJ, Weber M, Al-Amin HM, Geier M, Devine GJ. Automated differentiation of mixed populations of free-flying female mosquitoes under semi-field conditions. Sci Rep 2024; 14:3494. [PMID: 38347111 PMCID: PMC10861447 DOI: 10.1038/s41598-024-54233-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/10/2024] [Indexed: 02/15/2024] Open
Abstract
Great advances in automated identification systems, or 'smart traps', that differentiate insect species have been made in recent years, yet demonstrations of field-ready devices under free-flight conditions remain rare. Here, we describe the results of mixed-species identification of female mosquitoes using an advanced optoacoustic smart trap design under free-flying conditions. Point-of-capture classification was assessed using mixed populations of congeneric (Aedes albopictus and Aedes aegypti) and non-congeneric (Ae. aegypti and Anopheles stephensi) container-inhabiting species of medical importance. Culex quinquefasciatus, also common in container habitats, was included as a third species in all assessments. At the aggregate level, mixed collections of non-congeneric species (Ae. aegypti, Cx. quinquefasciatus, and An. stephensi) could be classified at accuracies exceeding 90% (% error = 3.7-7.1%). Conversely, error rates increased when analysing individual replicates (mean % error = 48.6; 95% CI 8.1-68.6) representative of daily trap captures and at the aggregate level when Ae. albopictus was released in the presence of Ae. aegypti and Cx. quinquefasciatus (% error = 7.8-31.2%). These findings highlight the many challenges yet to be overcome but also the potential operational utility of optoacoustic surveillance in low diversity settings typical of urban environments.
Collapse
Affiliation(s)
- Brian J Johnson
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia.
| | - Michael Weber
- Biogents AG, Weissenburgstr. 22, 93055, Regensburg, Germany
| | - Hasan Mohammad Al-Amin
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Martin Geier
- Biogents AG, Weissenburgstr. 22, 93055, Regensburg, Germany
| | - Gregor J Devine
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| |
Collapse
|
12
|
Cardo MV, Vezzani D. Host-mosquito interactions in rural and urban equestrian facilities from temperate Argentina. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:816-825. [PMID: 37565364 DOI: 10.1111/mve.12686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023]
Abstract
Targeted vector surveillance informed by data on mosquito biting patterns can help limit arboviral zoonotic diseases. To characterise host-biting networks in rural and urban equestrian facilities from temperate Argentina, adult resting mosquitoes were collected (December 2018-April 2019) with a battery-powered aspirator. Engorged females were sorted to species, and their blood source was identified using molecular techniques. Bipartite network analysis was performed for rural and urban matrices. A total of 177 bloodmeals from 11 mosquito species of Aedes and Culex were identified, with seven mammal and 17 bird species recognised as hosts. Mammals represented 61% of the total feeds, mainly horse, dog and sheep; the best represented avian hosts were Columbiformes. Aedes species and Culex maxi fed only on mammals, while most other Culex species presented a wide range of hosts. The rural network had more nodes and interactions than its urban counterpart, both with some degree of host selection and aggregated patterns according to network indices. Culex quinquefasciatus was the strongest species in both networks, whereas Culex apicinus and Culex dolosus had a prominent role in the rural network. Bipartite network analysis will contribute to understanding the effects of urbanisation in the dynamics of vector-borne diseases.
Collapse
Affiliation(s)
- María V Cardo
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad, San Martín, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Darío Vezzani
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Instituto Multidisciplinario sobre Ecosistemas y Desarrollo Sustentable, UNCPBA-CICPBA, Tandil, Argentina
| |
Collapse
|
13
|
Mora-Rubio C, Ferraguti M, Magallanes S, Bravo-Barriga D, Hernandez-Caballero I, Marzal A, de Lope F. Unravelling the mosquito-haemosporidian parasite-bird host network in the southwestern Iberian Peninsula: insights into malaria infections, mosquito community and feeding preferences. Parasit Vectors 2023; 16:395. [PMID: 37915080 PMCID: PMC10619300 DOI: 10.1186/s13071-023-05964-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/07/2023] [Indexed: 11/03/2023] Open
Abstract
BAKGROUND Vector-borne diseases affecting humans, wildlife and livestock have significantly increased their incidence and distribution in the last decades. Because the interaction among vectors-parasite-vertebrate hosts plays a key role driving vector-borne disease transmission, the analyses of the diversity and structure of vector-parasite networks and host-feeding preference may help to assess disease risk. Also, the study of seasonal variations in the structure and composition of vector and parasite communities may elucidate the current patterns of parasite persistence and spread as well as facilitate prediction of how climate variations may impact vector-borne disease transmission. Avian malaria and related haemosporidian parasites constitute an exceptional model to understand the ecology and evolution of vector-borne diseases. However, the characterization of vector-haemosporidian parasite-bird host assemblages is largely unknown in many regions. METHODS Here, we analyzed 5859 female mosquitoes captured from May to November in five localities from southwestern Spain to explore the composition and seasonal variation of the vector-parasite-vertebrate host network. RESULTS We showed a gradual increase in mosquito abundance, peaking in July. A total of 16 different haemosporidian lineages were found infecting 13 mosquito species. Of these assemblages, more than 70% of these vector-parasite associations have not been described in previous studies. Moreover, three Haemoproteus lineages were reported for the first time in this study. The prevalence of avian malaria infections in mosquitoes varied significantly across the months, reaching a maximum in November. Mosquito blood-feeding preference was higher for mammals (62.5%), whereas 37.5% of vectors fed on birds, suggesting opportunistic feeding behavior. CONCLUSION These outcomes improve our understanding of disease transmission risk and help tovector control strategies.
Collapse
Affiliation(s)
- Carlos Mora-Rubio
- Departamento de Anatomía, Biología Celular y Zoología, Universidad de Extremadura, Facultad de Ciencias, Avenida de Elvas S/N, 06006, Badajoz, Spain.
| | - Martina Ferraguti
- Departamento de Anatomía, Biología Celular y Zoología, Universidad de Extremadura, Facultad de Ciencias, Avenida de Elvas S/N, 06006, Badajoz, Spain.
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana, EBD-CSIC, Avda. Américo Vespucio 26, 41092, Seville, Spain.
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | - Sergio Magallanes
- Departamento de Anatomía, Biología Celular y Zoología, Universidad de Extremadura, Facultad de Ciencias, Avenida de Elvas S/N, 06006, Badajoz, Spain
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana, EBD-CSIC, Avda. Américo Vespucio 26, 41092, Seville, Spain
| | - Daniel Bravo-Barriga
- Departamento de Sanidad Animal, Parasitología, Universidad de Extremadura, Facultad de Veterinaria, Avda. Universidad S/N, 10003, Cáceres, Spain
| | - Irene Hernandez-Caballero
- Departamento de Anatomía, Biología Celular y Zoología, Universidad de Extremadura, Facultad de Ciencias, Avenida de Elvas S/N, 06006, Badajoz, Spain
| | - Alfonso Marzal
- Departamento de Anatomía, Biología Celular y Zoología, Universidad de Extremadura, Facultad de Ciencias, Avenida de Elvas S/N, 06006, Badajoz, Spain
- Grupo de Investigaciones en Fauna Silvestre, Universidad Nacional de San Martín, Jr. Maynas 1777, 22021, Tarapoto, Perú
| | - Florentino de Lope
- Departamento de Anatomía, Biología Celular y Zoología, Universidad de Extremadura, Facultad de Ciencias, Avenida de Elvas S/N, 06006, Badajoz, Spain
| |
Collapse
|
14
|
Minias P. The effects of urban life on animal immunity: Adaptations and constraints. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165085. [PMID: 37379938 DOI: 10.1016/j.scitotenv.2023.165085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Land transformation, including urbanization, is a dominant form of anthropogenic change to the global environment at the dawn of the Anthropocene epoch. More and more species are brought into direct contact with humans, being either required to develop broad-scale adaptations to urban environment or filtered out from urbanized areas. While behavioural or physiological adaptations are at the forefront of urban biology research, there is accumulating evidence for divergent pathogen pressure across urbanization gradients, requiring adjustments in host immune function. At the same time, host immunity may be constrained by unfavourable components of an urban environment, such as poor-quality food resources, disturbance, or pollution. Here, I reviewed existing evidence for adaptations and constrains in the immune system of urban animals, focusing on the recent implementation of metabarcoding, genomic, transcriptomic, and epigenomic approaches in urban biology research. I show that spatial variation in pathogen pressure across urban and non-urban landscapes is highly complex and may be context-dependent, but there is solid evidence for pathogen-driven immunostimulation in urban-dwelling animals. I also show that genes coding for molecules directly involved in interactions with pathogens are the prime candidates for immunogenetic adaptations to urban life. Evidence emerging from landscape genomics and transcriptomics show that immune adaptations to urban life may have a polygenic nature, but immune traits may not be among the key biological functions experiencing broad-scale microevolutionary changes in response to urbanization. Finally, I provided recommendations for future research, including i) a better integration of different 'omic' approaches to obtain a more complete picture of immune adaptations to urban life in non-model animal taxa, ii) quantification of fitness landscapes for immune phenotypes and genotypes across urbanization gradient, and iii) much broader taxonomic coverage (including invertebrates) necessary to draw more robust conclusions on how general (or taxa-specific) are immune responses of animals to urbanization.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237 Łódź, Poland.
| |
Collapse
|
15
|
Hermanns K, Marklewitz M, Zirkel F, Kopp A, Kramer-Schadt S, Junglen S. Mosquito community composition shapes virus prevalence patterns along anthropogenic disturbance gradients. eLife 2023; 12:e66550. [PMID: 37702388 PMCID: PMC10547478 DOI: 10.7554/elife.66550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/12/2023] [Indexed: 09/14/2023] Open
Abstract
Previously unknown pathogens often emerge from primary ecosystems, but there is little knowledge on the mechanisms of emergence. Most studies analyzing the influence of land-use change on pathogen emergence focus on a single host-pathogen system and often observe contradictory effects. Here, we studied virus diversity and prevalence patterns in natural and disturbed ecosystems using a multi-host and multi-taxa approach. Mosquitoes sampled along a disturbance gradient in Côte d'Ivoire were tested by generic RT-PCR assays established for all major arbovirus and insect-specific virus taxa including novel viruses previously discovered in these samples based on cell culture isolates enabling an unbiased and comprehensive approach. The taxonomic composition of detected viruses was characterized and viral infection rates according to habitat and host were analyzed. We detected 331 viral sequences pertaining to 34 novel and 15 previously identified viruses of the families Flavi-, Rhabdo-, Reo-, Toga-, Mesoni- and Iflaviridae and the order Bunyavirales. Highest host and virus diversity was observed in pristine and intermediately disturbed habitats. The majority of the 49 viruses was detected with low prevalence. However, nine viruses were found frequently across different habitats of which five viruses increased in prevalence towards disturbed habitats, in congruence with the dilution effect hypothesis. These viruses were mainly associated with one specific mosquito species (Culex nebulosus), which increased in relative abundance from pristine (3%) to disturbed habitats (38%). Interestingly, the observed increased prevalence of these five viruses in disturbed habitats was not caused by higher host infection rates but by increased host abundance, an effect tentatively named abundance effect. Our data show that host species composition is critical for virus abundance. Environmental changes that lead to an uneven host community composition and to more individuals of a single species are a key driver of virus emergence.
Collapse
Affiliation(s)
- Kyra Hermanns
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universtiy Berlin, and Berlin Institute of HealthBerlinGermany
| | - Marco Marklewitz
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universtiy Berlin, and Berlin Institute of HealthBerlinGermany
| | - Florian Zirkel
- Institute of Virology, University of Bonn Medical CentreBerlinGermany
| | - Anne Kopp
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universtiy Berlin, and Berlin Institute of HealthBerlinGermany
| | - Stephanie Kramer-Schadt
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife ResearchBerlinGermany
- Institute of Ecology, Technische Universität BerlinBerlinGermany
| | - Sandra Junglen
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universtiy Berlin, and Berlin Institute of HealthBerlinGermany
| |
Collapse
|
16
|
Garamszegi LZ, Soltész Z, Kurucz K, Szentiványi T. Using community science data to assess the association between urbanization and the presence of invasive Aedes species in Hungary. Parasit Vectors 2023; 16:158. [PMID: 37147691 PMCID: PMC10161419 DOI: 10.1186/s13071-023-05780-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/18/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Urbanization can be a significant contributor to the spread of invasive mosquito vector species, and the diseases they carry, as urbanized habitats provide access to a great density of food resources (humans and domestic animals) and offer abundant breeding sites for these vectors. Although anthropogenic landscapes are often associated with the presence of invasive mosquito species, we still have little understanding about the relationships between some of these and the built environment. METHODS This study explores the association between urbanization level and the occurrence of invasive Aedes species, specifically Aedes albopictus, Aedes japonicus, and Aedes koreicus, in Hungary, using data from a community (or citizen) science program undertaken between 2019 and 2022. RESULTS The association between each of these species and urbanized landscapes within an extensive geographic area was found to differ. Using the same standardized approach, Ae. albopictus showed a statistically significant and positive relationship with urbanization, whereas Ae. japonicus and Ae. koreicus did not. CONCLUSIONS The findings highlight the importance of community science to mosquito research, as the data gathered using this approach can be used to make qualitative comparisons between species to explore their ecological requirements.
Collapse
Affiliation(s)
- László Zsolt Garamszegi
- Institute of Ecology and Botany, Centre for Ecological Research, Alkotmány u. 2-4, Vácrátót, 2163, Hungary.
- National Laboratory for Health Security, Centre for Ecological Research, Budapest, Hungary.
| | - Zoltán Soltész
- Institute of Ecology and Botany, Centre for Ecological Research, Alkotmány u. 2-4, Vácrátót, 2163, Hungary
| | - Kornélia Kurucz
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Tamara Szentiványi
- Institute of Ecology and Botany, Centre for Ecological Research, Alkotmány u. 2-4, Vácrátót, 2163, Hungary
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
17
|
Rakotonirina A, Maquart PO, Flamand C, Sokha C, Boyer S. Mosquito diversity (Diptera: Culicidae) and medical importance in four Cambodian forests. Parasit Vectors 2023; 16:110. [PMID: 36945055 PMCID: PMC10029166 DOI: 10.1186/s13071-023-05729-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND A total of 290 mosquito species are recorded in Cambodia among which 43 are known vectors of pathogens. As Cambodia is heavily affected by deforestation, a potential change in the dynamic of vector-borne diseases (VDBs) could occur through alteration of the diversity and density of sylvatic vector mosquitoes and induce an increase in their interactions with humans. Understanding mosquito diversity is therefore critical, providing valuable data for risk assessments concerning the (re)emergence of local VBDs. Consequently, this study mainly aimed to understand the spatial and temporal distribution of sylvatic mosquito populations of Cambodia by determining which factors impact on their relative abundance and presence. METHODS A study was conducted in 12 sites from four forests in Cambodia. All mosquitoes, collected during the dry and rainy seasons, were morphologically identified. The diversity and relative density of mosquito species in each site were calculated along with the influence of meteorological and geographical factors using a quasi-Poisson generalized linear model. RESULTS A total of 9392 mosquitoes were collected belonging to 13 genera and 85 species. The most represented genera were Culex, accounting for 46% of collected mosquitoes, and Aedes (42%). Besides being the most abundant species, Culex pseudovishnui and Aedes albopictus, which are known vectors of numerous arboviruses, were present in all sites during both dry and rainy seasons. The presence of mosquito species reported to be zoo-anthropophilic feeders was also observed in both forested and urban areas. Finally, this study demonstrated that altitude, temperature and precipitation impacted the abundance of mosquitoes but also influenced species community composition. CONCLUSION The results indicate an important diversity of mosquitoes in the four forests and an influence of meteorological and geographical factors on their community. Additionally, this work highlights in parallel the abundance of species considered to be of medical importance and therefore underlines the high risk of pathogen emergence/re-emergence in the region.
Collapse
Affiliation(s)
- Antsa Rakotonirina
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, 983, Phnom Penh, Cambodia.
| | - Pierre-Olivier Maquart
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, 983, Phnom Penh, Cambodia
| | - Claude Flamand
- Epidemiology Unit, Institut Pasteur du Cambodge, 983, Phnom Penh, Cambodia
- Mathematical Modeling of Infectious Diseases Unit, Institut Pasteur, Université Paris Cité, UMR2000, CNRS, Paris, France
| | - Chea Sokha
- Wildlife Health Program, Wildlife Conservation Society, Phnom Penh, Cambodia
| | - Sébastien Boyer
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, 983, Phnom Penh, Cambodia
- Ecology & Emergence of Arthropod-Borne Pathogens Unit, Department of Global Health, Institut Pasteur, CNRS UMR2000, Paris, France
| |
Collapse
|
18
|
Perrin A, Schaffner F, Christe P, Glaizot O. Relative effects of urbanisation, deforestation, and agricultural development on mosquito communities. LANDSCAPE ECOLOGY 2023; 38:1527-1536. [PMID: 37229481 PMCID: PMC10203030 DOI: 10.1007/s10980-023-01634-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/05/2023] [Indexed: 05/27/2023]
Abstract
Context Despite numerous studies that showed negative effects of landscape anthropisation on species abundance and diversity, the relative effects of urbanisation, deforestation, and agricultural development as well as the spatial extent at which they act are much less studied. This is particularly the case for mosquitoes, which are the most important arthropods affecting human health. Objectives We determined the scale of effect of these three landscape anthropisation components on mosquito abundance and diversity. We then assessed which landscape variables had the most effect as well as their independent positive or negative effects. Methods We used mosquito data collected by Schaffner and Mathis (2013) in 16 sampling sites in Switzerland. We measured forest, urban and agricultural amounts in 485 concentric landscapes (from 150 to 5000 m radius) around each sampling site. We then identified the spatial extent at which each landscape metric best predicted abundance and diversity of mosquito species and compared the effect size of each landscape component on each response variable. Results In Switzerland, urbanisation and deforestation have a greater influence on mosquito diversity than agricultural development, and do not act at the same scale. Conversely, the scale of effect on mosquito abundance is relatively similar across the different landscape anthropisation components or across mosquito species, except for Culex pipiens. However, the effect size of each landscape component varies according to mosquito species. Conclusion The scale of management must be selected according to the conservation concern. In addition, a multi-scale approach is recommended for effective mosquito community management. Supplementary Information The online version contains supplementary material available at 10.1007/s10980-023-01634-w.
Collapse
Affiliation(s)
- Antoine Perrin
- Department of Ecology and Evolution, University of Lausanne, UNIL-Sorge, Biophore, 1015 Lausanne, Switzerland
| | - Francis Schaffner
- National Centre for Vector Entomology, Institute of Parasitology, University of Zürich, 8057 Zurich, Switzerland
- Francis Schaffner Consultancy, 4125 Riehen, Switzerland
| | - Philippe Christe
- Department of Ecology and Evolution, University of Lausanne, UNIL-Sorge, Biophore, 1015 Lausanne, Switzerland
| | - Olivier Glaizot
- Department of Ecology and Evolution, University of Lausanne, UNIL-Sorge, Biophore, 1015 Lausanne, Switzerland
- Museum of Zoology, 1014 Lausanne, Switzerland
| |
Collapse
|
19
|
Perrin A, Pellet J, Bergonzoli L, Christe P, Glaizot O. Amphibian abundance is associated with reduced mosquito presence in human‐modified landscapes. Ecosphere 2023. [DOI: 10.1002/ecs2.4484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023] Open
|
20
|
Perrin A, Khimoun A, Ollivier A, Richard Y, Pérez-Rodríguez A, Faivre B, Garnier S. Habitat fragmentation matters more than habitat loss: The case of host-parasite interactions. Mol Ecol 2023; 32:951-969. [PMID: 36461661 DOI: 10.1111/mec.16807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022]
Abstract
While ecologists agree that habitat loss has a substantial negative effect on biodiversity it is still very much a matter of debate whether habitat fragmentation has a lesser effect and whether this effect is positive or negative for biodiversity. Here, we assess the relative influence of tropical forest loss and fragmentation on the prevalence of vector-borne blood parasites of the genera Plasmodium and Haemoproteus in six forest bird species. We also determine whether habitat loss and fragmentation are associated with a rise or fall in prevalence. We sample more than 4000 individual birds from 58 forest sites in Guadeloupe and Martinique. Considering 34 host-parasite combinations independently and a fine characterization of the amount and spatial configuration of habitat, we use partial least square regressions to disentangle the relative effects of forest loss, forest fragmentation, landscape heterogeneity, and local weather conditions on spatial variability of parasite prevalence. Then we test for the magnitude and the sign of the effect of each environmental descriptor. Strikingly, we show that forest fragmentation explains twice as much of the variance in prevalence as habitat loss or landscape heterogeneity. In addition, habitat fragmentation leads to an overall rise in prevalence in Guadeloupe, but its effect is variable in Martinique. Both habitat loss and landscape heterogeneity exhibit taxon-specific effects. Our results suggest that habitat loss and fragmentation may have contrasting effects between tropical and temperate regions and that inter-specific interactions may not respond in the same way as more commonly used biodiversity metrics such as abundance and diversity.
Collapse
Affiliation(s)
- Antoine Perrin
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, Dijon, France.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Aurélie Khimoun
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, Dijon, France
| | - Anthony Ollivier
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, Dijon, France
| | - Yves Richard
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, Dijon, France
| | | | - Bruno Faivre
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, Dijon, France
| | - Stéphane Garnier
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|