1
|
Liu Y, Chen L. Predicting the Impact of Climate Change on Corylus Species Distribution in China: Integrating Climatic, Topographic, and Anthropogenic Factors. Ecol Evol 2024; 14:e70528. [PMID: 39498197 PMCID: PMC11532234 DOI: 10.1002/ece3.70528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/21/2024] [Accepted: 10/18/2024] [Indexed: 11/07/2024] Open
Abstract
This study investigates the impact of climate change on the distribution of Corylus species in China using the MaxEnt model. Key environmental variables, such as Bio6 (mean temperature of the coldest month) and human footprint, emerged as significant determinants of habitat suitability. The study reveals substantial shifts in suitable habitats due to global warming and increased precipitation, with notable expansion towards higher latitudes. Species like Corylus heterophylla Fisch. ex Bess. and Corylus mandshurica Maxim. demonstrate resilience in extreme conditions, highlighting the importance of specific ecological traits for conservation. Future projections under various SSP scenarios predict continued habitat expansion, emphasizing the need for targeted conservation strategies to address the critical role of human activities. This research highlights the complex interplay between climatic, topographic, and anthropogenic factors in shaping Corylus habitats, advocating for integrated adaptive management approaches to ensure their sustainability amid ongoing climate change.
Collapse
Affiliation(s)
- Yu Liu
- College of Horticulture and Forestry Sciences/Hubei Engineering Technology Research Center for Forestry InformationHuazhong Agricultural UniversityWuhanChina
- Qinghai Academy of Agriculture and ForestryQinghai UniversityXiningChina
| | - Lin Chen
- College of Horticulture and Forestry Sciences/Hubei Engineering Technology Research Center for Forestry InformationHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
2
|
Carmona-González R, Carro F, González de la Vega JP, Martínez-Freiría F. Temporal Range Dynamics of the Lataste's Viper ( Vipera latastei Boscá, 1878) in Doñana (Spain): Insights into Anthropogenically Driven Factors. Animals (Basel) 2024; 14:3025. [PMID: 39457955 PMCID: PMC11504652 DOI: 10.3390/ani14203025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Doñana (southern Spain), a region of notable biodiversity richness, is highly threatened by ongoing landscape transformation and climate change. We investigated the local effect of these anthropogenic factors on the temporal range dynamics of Lataste's viper (Vipera latastei), an Iberian endemic Mediterranean reptile that has apparently become rare over the years in Doñana. Using ecological niche-based models, based on climatic and remote sensing variables, we analyzed historical (1959-1999) and contemporary (2000-2022) records of the species to assess range shifts and identify environmental factors that may influence them. Our results show that V. latastei is mostly restricted to the coastal region of Doñana and that one temperature variable is the most important factor explaining this distribution pattern in both periods. Additional climatic and vegetation variables play a role in its historical distribution, but they become less important in contemporary times, suggesting a niche simplification over time. We found 30.5% of reduction in the species suitable area from historical to contemporary conditions, a reduction that would be even greater (83.37%) in the absence of niche shift. These findings underscore the species' heightened vulnerability to ongoing environmental changes and highlight the urgent need for targeted conservation strategies.
Collapse
Affiliation(s)
| | - Francisco Carro
- Estación Biológica de Doñana (EBD-CSIC), Avda. Américo Vespucio, 45, 41092 Seville, Spain;
| | | | - Fernando Martínez-Freiría
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, 4485-661 Vairão, Portugal
| |
Collapse
|
3
|
Ashraf U, Morelli TL, Smith AB, Hernandez RR. Climate-Smart Siting for renewable energy expansion. iScience 2024; 27:110666. [PMID: 39351196 PMCID: PMC11439850 DOI: 10.1016/j.isci.2024.110666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
A massive expansion of renewable energy (RE) is underway to meet the world's climate goals. Although RE serves to reduce threats from climate change, it can also pose threats to species whose current and future ranges intersect with RE installations. Here, we propose a "Climate-Smart Siting" framework for addressing potential conflicts between RE expansion and biodiversity conservation. The framework engenders authentic consultation with affected and disadvantaged communities throughout and uses overlay and optimization routines to identify focal areas now and in the future where RE development poses promise and peril as species' ranges shift in response to climate change. We use this framework to demonstrate methods, identify decision outcomes, and discuss market-based levers for aligning RE expansion with the United Nations Global Biodiversity Framework now and as climate change progresses. In the face of the climate crisis, a Climate-Smart Siting strategy could help create solutions without causing further harm to biodiversity and human communities..
Collapse
Affiliation(s)
- Uzma Ashraf
- Wild Energy Center, Energy and Efficiency Institute, University of California, Davis, Davis, CA 95616, USA
- Department of Land, Air and Water Resources, University of California, Davis, Davis, CA 95616, USA
| | - Toni Lyn Morelli
- US Geological Survey, Northeast Climate Adaptation Science Center, Amherst, MA 24521, USA
| | - Adam B. Smith
- Center for Conservation & Sustainable Development, Missouri Botanical Garden, Saint Louis, MI 48880, USA
| | - Rebecca R. Hernandez
- Wild Energy Center, Energy and Efficiency Institute, University of California, Davis, Davis, CA 95616, USA
- Department of Land, Air and Water Resources, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
4
|
Wu NC, Alton L, Bovo RP, Carey N, Currie SE, Lighton JRB, McKechnie AE, Pottier P, Rossi G, White CR, Levesque DL. Reporting guidelines for terrestrial respirometry: Building openness, transparency of metabolic rate and evaporative water loss data. Comp Biochem Physiol A Mol Integr Physiol 2024; 296:111688. [PMID: 38944270 DOI: 10.1016/j.cbpa.2024.111688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Respirometry is an important tool for understanding whole-animal energy and water balance in relation to the environment. Consequently, the growing number of studies using respirometry over the last decade warrants reliable reporting and data sharing for effective dissemination and research synthesis. We provide a checklist guideline on five key sections to facilitate the transparency, reproducibility, and replicability of respirometry studies: 1) materials, set up, plumbing, 2) subject conditions/maintenance, 3) measurement conditions, 4) data processing, and 5) data reporting and statistics, each with explanations and example studies. Transparency in reporting and data availability has benefits on multiple fronts. Authors can use this checklist to design and report on their study, and reviewers and editors can use the checklist to assess the reporting quality of the manuscripts they review. Improved standards for reporting will enhance the value of primary studies and will greatly facilitate the ability to carry out higher quality research syntheses to address ecological and evolutionary theories.
Collapse
Affiliation(s)
- Nicholas C Wu
- Hawkesbury Institute for the Environment, Western Sydney University, New South Wales 2753, Australia.
| | - Lesley Alton
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia. https://twitter.com/lesley_alton
| | - Rafael P Bovo
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, United States. https://twitter.com/bovo_rp
| | - Nicholas Carey
- Marine Directorate for the Scottish Government, Aberdeen, United Kingdom
| | - Shannon E Currie
- Institute for Cell and Systems Biology, University of Hamburg, Martin-Luther-King Plz 3, 20146 Hamburg, Germany; School of Biosciences, University of Melbourne, Victoria, Australia. https://twitter.com/batsinthbelfry
| | - John R B Lighton
- Sable Systems International, North Las Vegas, NV, United States. https://twitter.com/SableSys
| | - Andrew E McKechnie
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, South Africa; DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, South Africa
| | - Patrice Pottier
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia; Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia. https://twitter.com/PatriceEcoEvo
| | - Giulia Rossi
- Department of Biology, McMaster University, Hamilton, Ontario, Canada. https://twitter.com/giuliasrossi
| | - Craig R White
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Danielle L Levesque
- School of Biology and Ecology, University of Maine, Orono, ME, United States. https://twitter.com/dl_levesque
| |
Collapse
|
5
|
Levy O, Shahar S. Artificial Intelligence for Climate Change Biology: From Data Collection to Predictions. Integr Comp Biol 2024; 64:953-974. [PMID: 39081076 DOI: 10.1093/icb/icae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/19/2024] [Accepted: 07/18/2024] [Indexed: 09/28/2024] Open
Abstract
In the era of big data, ecological research is experiencing a transformative shift, yet big-data advancements in thermal ecology and the study of animal responses to climate conditions remain limited. This review discusses how big data analytics and artificial intelligence (AI) can significantly enhance our understanding of microclimates and animal behaviors under changing climatic conditions. We explore AI's potential to refine microclimate models and analyze data from advanced sensors and camera technologies, which capture detailed, high-resolution information. This integration can allow researchers to dissect complex ecological and physiological processes with unprecedented precision. We describe how AI can enhance microclimate modeling through improved bias correction and downscaling techniques, providing more accurate estimates of the conditions that animals face under various climate scenarios. Additionally, we explore AI's capabilities in tracking animal responses to these conditions, particularly through innovative classification models that utilize sensors such as accelerometers and acoustic loggers. For example, the widespread usage of camera traps can benefit from AI-driven image classification models to accurately identify thermoregulatory responses, such as shade usage and panting. AI is therefore instrumental in monitoring how animals interact with their environments, offering vital insights into their adaptive behaviors. Finally, we discuss how these advanced data-driven approaches can inform and enhance conservation strategies. In particular, detailed mapping of microhabitats essential for species survival under adverse conditions can guide the design of climate-resilient conservation and restoration programs that prioritize habitat features crucial for biodiversity resilience. In conclusion, the convergence of AI, big data, and ecological science heralds a new era of precision conservation, essential for addressing the global environmental challenges of the 21st century.
Collapse
Affiliation(s)
- Ofir Levy
- Tel Aviv University, Faculty of Life Sciences, School of Zoology, Tel Aviv 6997801, Israel
| | - Shimon Shahar
- Tel Aviv University, The AI and Data Science Center, Tel Aviv 6997801, Israel
| |
Collapse
|
6
|
Cocciardi JM, Ohmer MEB. Drivers of Intraspecific Variation in Thermal Traits and Their Importance for Resilience to Global Change in Amphibians. Integr Comp Biol 2024; 64:882-899. [PMID: 39138058 DOI: 10.1093/icb/icae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
Intraspecific variation can be as great as variation across species, but the role of intraspecific variation in driving local and large-scale patterns is often overlooked, particularly in the field of thermal biology. In amphibians, which depend on environmental conditions and behavior to regulate body temperature, recognizing intraspecific thermal trait variation is essential to comprehensively understanding how global change impacts populations. Here, we examine the drivers of micro- and macrogeographical intraspecific thermal trait variation in amphibians. At the local scale, intraspecific variation can arise via changes in ontogeny, body size, and between the sexes, and developmental plasticity, acclimation, and maternal effects may modulate predictions of amphibian performance under future climate scenarios. At the macrogeographic scale, local adaptation in thermal traits may occur along latitudinal and elevational gradients, with seasonality and range-edge dynamics likely playing important roles in patterns that may impact future persistence. We also discuss the importance of considering disease as a factor affecting intraspecific variation in thermal traits and population resilience to climate change, given the impact of pathogens on thermal preferences and critical thermal limits of hosts. Finally, we make recommendations for future work in this area. Ultimately, our goal is to demonstrate why it is important for researchers to consider intraspecific variation to determine the resilience of amphibians to global change.
Collapse
Affiliation(s)
| | - Michel E B Ohmer
- Department of Biology, University of Mississippi, Oxford, MS 38655, USA
| |
Collapse
|
7
|
Alomar N, Bodensteiner BL, Hernández-Rodríguez I, Landestoy MA, Domínguez-Guerrero SF, Muñoz MM. Comparison of Hydric and Thermal Physiology in an Environmentally Diverse Clade of Caribbean Anoles. Integr Comp Biol 2024; 64:377-389. [PMID: 38702856 DOI: 10.1093/icb/icae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024] Open
Abstract
As the world becomes warmer and precipitation patterns less predictable, organisms will experience greater heat and water stress. It is crucial to understand the factors that predict variation in thermal and hydric physiology among species. This study focuses on investigating the relationships between thermal and hydric diversity and their environmental predictors in a clade of Hispaniolan anole lizards, which are part of a broader Caribbean adaptive radiation. This clade, the "cybotoid" anoles, occupies a wide range of thermal habitats (from sea level to several kilometers above it) and hydric habitats (such as xeric scrub, broadleaf forest, and pine forest), setting up the possibility for ecophysiological specialization among species. Among the thermal traits, only cold tolerance is correlated with environmental temperature, and none of our climate variables are correlated with hydric physiology. Nevertheless, we found a negative relationship between heat tolerance (critical thermal maximum) and evaporative water loss at higher temperatures, such that more heat-tolerant lizards are also more desiccation-tolerant at higher temperatures. This finding hints at shared thermal and hydric specialization at higher temperatures, underscoring the importance of considering the interactive effects of temperature and water balance in ecophysiological studies. While ecophysiological differentiation is a core feature of the anole adaptive radiation, our results suggest that close relatives in this lineage do not diverge in hydric physiology and only diverge partially in thermal physiology.
Collapse
Affiliation(s)
- Nathalie Alomar
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Brooke L Bodensteiner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | | | - Miguel A Landestoy
- Instituto de Investigaciones Botánicas y Zoológicas, Universidad Autónoma de Santo Domingo, Santo Domingo, 10105, Dominican Republic
| | | | - Martha M Muñoz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
8
|
Shermeister B, Mor D, Levy O. Leveraging camera traps and artificial intelligence to explore thermoregulation behaviour. J Anim Ecol 2024; 93:1246-1261. [PMID: 39039745 DOI: 10.1111/1365-2656.14139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 06/06/2024] [Indexed: 07/24/2024]
Abstract
Behavioural thermoregulation has critical ecological and physiological consequences that profoundly influence individual fitness and species distributions, particularly in the context of climate change. However, field monitoring of this behaviour remains labour-intensive and time-consuming. With the rise of camera-based surveys and artificial intelligence (AI) approaches in computer vision, we should try to build better tools for characterizing animals' behavioural thermoregulation. In this study, we developed a deep learning framework to automate the detection and classification of thermoregulation behaviour. We used lizards, the Rough-tail rock agama (Laudakia vulgaris), as a model animal for thermoregulation. We colour-marked the lizards and curated a diverse dataset of images captured by trail cameras under semi-natural conditions. Subsequently, we trained an object-detection model to identify lizards and image classification models to determine their microclimate usage (activity in sun or shade), which may indicate thermoregulation preferences. We then evaluated the performance of each model and analysed how the classification of thermoregulating lizards performed under different solar conditions (sun or shade), times of day and marking colours. Our framework's models achieved high scores in several performance metrics. The behavioural thermoregulation classification model performed significantly better on sun-basking lizards, achieving the highest classification accuracy with white-marked lizards. Moreover, the hours of activity and the microclimate choices (sun vs shade-seeking behaviour) of lizards, generated by our framework, are closely aligned with manually annotated data. Our study underscores the potential of AI in effectively tracking behavioural thermoregulation, offering a promising new direction for camera trap studies. This approach can potentially reduce the labour and time associated with ecological data collection and analysis and help gain a deeper understanding of species' thermal preferences and risks of climate change on species behaviour.
Collapse
Affiliation(s)
- Ben Shermeister
- Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Danny Mor
- Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Ofir Levy
- Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
9
|
Stanton DE. Epiphytes as leading indicators of climate and other changes. A commentary on 'Interactions of moisture and light drive lichen growth and the response to climate change scenarios - experimental evidence for Lobaria pulmonaria'. ANNALS OF BOTANY 2024; 134:i-ii. [PMID: 38683757 PMCID: PMC11161560 DOI: 10.1093/aob/mcae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
This article comments on:
Martine Borge and Christopher J. Ellis, Interactions of moisture and light drive lichen growth and the response to climate change scenarios: experimental evidence for Lobaria pulmonaria, Annals of Botany, Volume 134, Issue 1, 3 July 2024, Pages 43–57 https://doi.org/10.1093/aob/mcae029
Collapse
Affiliation(s)
- Daniel E Stanton
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
10
|
Freeman MT, Coulson B, Short JC, Ngcamphalala CA, Makola MO, McKechnie AE. Evolution of avian heat tolerance: The role of atmospheric humidity. Ecology 2024; 105:e4279. [PMID: 38501232 DOI: 10.1002/ecy.4279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/12/2023] [Accepted: 01/19/2024] [Indexed: 03/20/2024]
Abstract
The role of atmospheric humidity in the evolution of endotherms' thermoregulatory performance remains largely unexplored, despite the fact that elevated humidity is known to impede evaporative cooling capacity. Using a phylogenetically informed comparative framework, we tested the hypothesis that pronounced hyperthermia tolerance among birds occupying humid lowlands evolved to reduce the impact of humidity-impeded scope for evaporative heat dissipation by comparing heat tolerance limits (HTLs; maximum tolerable air temperature), maximum body temperatures (Tbmax), and associated thermoregulatory variables in humid (19.2 g H2O m-3) versus dry (1.1 g H2O m-3) air among 30 species from three climatically distinct sites (arid, mesic montane, and humid lowland). Humidity-associated decreases in evaporative water loss and resting metabolic rate were 27%-38% and 21%-27%, respectively, and did not differ significantly between sites. Decreases in HTLs were significantly larger among arid-zone (mean ± SD = 3.13 ± 1.12°C) and montane species (2.44 ± 1.0°C) compared to lowland species (1.23 ± 1.34°C), with more pronounced hyperthermia among lowland (Tbmax = 46.26 ± 0.48°C) and montane birds (Tbmax = 46.19 ± 0.92°C) compared to arid-zone species (45.23 ± 0.24°C). Our findings reveal a functional link between facultative hyperthermia and humidity-related constraints on evaporative cooling, providing novel insights into how hygric and thermal environments interact to constrain avian performance during hot weather. Moreover, the macrophysiological patterns we report provide further support for the concept of a continuum from thermal specialization to thermal generalization among endotherms, with adaptive variation in body temperature correlated with prevailing climatic conditions.
Collapse
Affiliation(s)
- Marc T Freeman
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, Pretoria, South Africa
- DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Bianca Coulson
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, Pretoria, South Africa
- DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - James C Short
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, Pretoria, South Africa
- DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Celiwe A Ngcamphalala
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - Mathome O Makola
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, Pretoria, South Africa
- DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Andrew E McKechnie
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, Pretoria, South Africa
- DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
11
|
Herbillon F, Piou C, Meynard CN. An increase in management actions has compensated for past climate change effects on desert locust gregarization in western Africa. Heliyon 2024; 10:e29231. [PMID: 38644897 PMCID: PMC11033115 DOI: 10.1016/j.heliyon.2024.e29231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/23/2024] Open
Abstract
In response to high population density, the desert locust, Schistocerca gregaria, becomes gregarious and forms swarms that can cause significant damage to crops and pastures, threatening food security of human populations from western Africa to India. This switch from solitary to gregarious populations is highly dependent on favorable weather conditions. Climate change, which has been hypothesized to shift conditions towards increasing risks of gregarization, is therefore likely to have significant impacts on the spatial distribution and likelihood of outbreak events. However, the desert locust is intensely managed at large scales, which possibly counteracts any increased risk of outbreaks due to a more favorable climate. Consequently, understanding the changes in risks in the future involves teasing out the effects of climate change and management actions. Here we studied the dynamics of gregarization at the very early stages of potential outbreaks, in parallel with trends in climate and management, between 1985 and 2018 in western Africa. We used three different spatial scales, with the goal to have a better understanding of the potential effects of climate change per se while controlling for management. Our first approach was to look at a regional scale, where we observed an overall decrease in gregarization events. However, this scale includes very heterogeneous environments and management efforts. To consider this heterogeneity, we divided the area into a grid of 0.5° cells. For each cell, a climate analysis was performed for rainfall and temperature, with trends obtained by a harmonic decomposition model on monthly data. Analyses of gregarization showed only a few significant trends, both positive and negative, mainly found in western Mauritania where management effort has increased. To improve the statistical power, these cells were then grouped into larger homogeneous climatic clusters, i.e. groups of cells with similar climatic conditions and similar climatic trends over the study period. At this scale, gregarization events depend on the intersection between climate conditions and management efforts. The clusters where gregarization increased were also the ones with the highest increase of management. These results highlight the important effect of preventive management, which may counteract the positive effects of climate change on locust proliferation.
Collapse
Affiliation(s)
- Fanny Herbillon
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR Centre de Biologie pour la Gestion des Populations (CBGP), F-34398, Montpellier, France
- CBGP, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Cyril Piou
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR Centre de Biologie pour la Gestion des Populations (CBGP), F-34398, Montpellier, France
- CBGP, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | | |
Collapse
|
12
|
Pfenning-Butterworth A, Buckley LB, Drake JM, Farner JE, Farrell MJ, Gehman ALM, Mordecai EA, Stephens PR, Gittleman JL, Davies TJ. Interconnecting global threats: climate change, biodiversity loss, and infectious diseases. Lancet Planet Health 2024; 8:e270-e283. [PMID: 38580428 PMCID: PMC11090248 DOI: 10.1016/s2542-5196(24)00021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/06/2023] [Accepted: 02/06/2024] [Indexed: 04/07/2024]
Abstract
The concurrent pressures of rising global temperatures, rates and incidence of species decline, and emergence of infectious diseases represent an unprecedented planetary crisis. Intergovernmental reports have drawn focus to the escalating climate and biodiversity crises and the connections between them, but interactions among all three pressures have been largely overlooked. Non-linearities and dampening and reinforcing interactions among pressures make considering interconnections essential to anticipating planetary challenges. In this Review, we define and exemplify the causal pathways that link the three global pressures of climate change, biodiversity loss, and infectious disease. A literature assessment and case studies show that the mechanisms between certain pairs of pressures are better understood than others and that the full triad of interactions is rarely considered. Although challenges to evaluating these interactions-including a mismatch in scales, data availability, and methods-are substantial, current approaches would benefit from expanding scientific cultures to embrace interdisciplinarity and from integrating animal, human, and environmental perspectives. Considering the full suite of connections would be transformative for planetary health by identifying potential for co-benefits and mutually beneficial scenarios, and highlighting where a narrow focus on solutions to one pressure might aggravate another.
Collapse
Affiliation(s)
| | - Lauren B Buckley
- Department of Biology, University of Washington, Seattle, WA, USA
| | - John M Drake
- School of Ecology, University of Georgia, Athens, GA, USA; Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | | | - Maxwell J Farrell
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, Canada; School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Alyssa-Lois M Gehman
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada; Hakai Institute, Calvert, BC, Canada
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Patrick R Stephens
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - John L Gittleman
- School of Ecology, University of Georgia, Athens, GA, USA; Nicholas School for the Environment, Duke University, Durham, NC, USA
| | - T Jonathan Davies
- Department of Botany, University of British Columbia, Vancouver, BC, Canada; Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
13
|
Kass JM, Fukaya K, Thuiller W, Mori AS. Biodiversity modeling advances will improve predictions of nature's contributions to people. Trends Ecol Evol 2024; 39:338-348. [PMID: 37968219 DOI: 10.1016/j.tree.2023.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/17/2023]
Abstract
Accurate predictions of ecosystem functions and nature's contributions to people (NCP) are needed to prioritize environmental protection and restoration in the Anthropocene. However, our ability to predict NCP is undermined by approaches that rely on biophysical variables and ignore those describing biodiversity, which have strong links to NCP. To foster predictive mapping of NCP, we should harness the latest methods in biodiversity modeling. This field advances rapidly, and new techniques with promising applications for predicting NCP are still underutilized. Here, we argue that employing recent advances in biodiversity modeling can enhance the accuracy and scope of NCP maps and predictions. This enhancement will contribute significantly to the achievement of global objectives to preserve NCP, for both the present and an unpredictable future.
Collapse
Affiliation(s)
- Jamie M Kass
- Macroecology Laboratory, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan; Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan.
| | - Keiichi Fukaya
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Wilfried Thuiller
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
| | - Akira S Mori
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Fleming JM, Marshall KE, Coverley AJ, Sheldon KS. Diurnal temperature variation impacts energetics but not reproductive effort across seasons in a temperate dung beetle. Ecology 2024; 105:e4232. [PMID: 38290131 DOI: 10.1002/ecy.4232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/11/2023] [Accepted: 10/23/2023] [Indexed: 02/01/2024]
Abstract
Temperature varies on multiple timescales and ectotherms must adjust to these changes to survive. These adjustments may lead to energetic trade-offs between self-maintenance and reproductive investment. However, we know little about how diurnal and seasonal temperature changes impact energy allocation. Here we used a combination of empirical data and modeling of both thermoregulatory behaviors and body temperature to examine potential energetic trade-offs in the dung beetle Onthophagus taurus. Beginning in March 2020, universities and laboratories were officially closed due to the COVID-19 pandemic. We thus performed experiments at a private residence near Knoxville, Tennessee, USA, leveraging the heating, ventilation and air conditioning of the home to manipulate temperature and compare beetle responses to stable indoor temperatures versus variable outdoor temperatures. We collected O. taurus beetles in the early-, mid-, and late-breeding seasons to examine energetics and reproductive output in relation to diurnal and seasonal temperature fluctuations. We recorded the mass of field fresh beetles before and after a 24-h fast and used the resulting change in mass as a proxy for energetic costs of self-maintenance across seasons. To understand the impacts of diurnal fluctuations on energy allocation, we held beetles either indoors or outdoors for 14-day acclimation trials, fed them cow dung, and recorded mass change and reproductive output. Utilizing biophysical models, we integrated individual-level biophysical characteristics, microhabitat-specific performance, respirometry data, and thermoregulatory behaviors to predict temperature-induced changes to the allocation of energy toward survival and reproduction. During 24 h of outdoor fasting, we found that beetles experiencing reduced temperature variation lost more mass than those experiencing greater temperature variation, and this was not affected by season. By contrast, during the 14-day acclimation trials, we found that beetles experiencing reduced temperature variation (i.e., indoors) gained more mass than those experiencing greater temperature variation (i.e., outdoors). This effect may have been driven by shifts in the metabolism of the beetles during acclimation to increased temperature variation. Despite the negative relationship between temperature variation and energetic reserves, the only significant predictor of reproductive output was mean temperature. Taken together, we find that diurnal temperature fluctuations are important for driving energetics, but not reproductive output.
Collapse
Affiliation(s)
- J Morgan Fleming
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexander J Coverley
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kimberly S Sheldon
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
15
|
Oskyrko O, Mi C, Meiri S, Du W. ReptTraits: a comprehensive dataset of ecological traits in reptiles. Sci Data 2024; 11:243. [PMID: 38413613 PMCID: PMC10899194 DOI: 10.1038/s41597-024-03079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/14/2024] [Indexed: 02/29/2024] Open
Abstract
Trait datasets are increasingly being used in studies investigating eco-evolutionary theory and global conservation initiatives. Reptiles are emerging as a key group for studying these questions because their traits are crucial for understanding the ability of animals to cope with environmental changes and their contributions to ecosystem processes. We collected data from earlier databases, and the primary literature to create an up-to-date dataset of reptilian traits, encompassing 40 traits from 12060 species of reptiles (Archelosauria: Crocodylia and Testudines, Rhynchocephalia, and Squamata: Amphisbaenia, Sauria, and Serpentes). The data were gathered from 1288 sources published between 1820 and 2023. The dataset includes morphological, physiological, behavioral, and life history traits, as well as information on the availability of genetic data, IUCN Red List assessments, and population trends.
Collapse
Affiliation(s)
- Oleksandra Oskyrko
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunrong Mi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shai Meiri
- School of Zoology & the Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
| | - Weiguo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
16
|
Gvoždík L. Individual variation in thermally induced plasticity of metabolic rates: ecological and evolutionary implications for a warming world. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220494. [PMID: 38186270 PMCID: PMC10772608 DOI: 10.1098/rstb.2022.0494] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/11/2023] [Indexed: 01/09/2024] Open
Abstract
Energy metabolism is a fundamental property of life providing the energy for all processes and functions within an organism. As it is temperature-dependent, it mediates the effects of changing climate on ectotherm fitness and population dynamics. Though resting metabolic rate is a highly labile trait, part of its variation is individually consistent. Recent findings show that resting metabolic rate contains consistent variation not only in the elevations (intercepts) but also in the slopes of individual thermal dependence curves, challenging the thermal dependence assumption for this trait in several ectotherm taxa. I argue that among-individual variation in thermal metabolic curves represents a previously undetected component of ectotherm response to climate change, potentially affecting their adaptive capacity and population resilience under increasing stochasticity of thermal environment. Future studies need to examine not only the amount of among-individual variation in thermal metabolic curves across phylogenetic contexts but also other aspects concerning its mechanisms and adaptive significance to improve predictions about the impact of climate change on ectotherm population dynamics. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.
Collapse
Affiliation(s)
- Lumír Gvoždík
- Czech Academy of Sciences, Institute of Vertebrate Biology, Květná 8, 60300 Brno, Czech Republic
| |
Collapse
|
17
|
Gardner AS, Maclean IMD, Rodríguez‐Muñoz R, Hopwood PE, Mills K, Wotherspoon R, Tregenza T. The relationship between the body and air temperature in a terrestrial ectotherm. Ecol Evol 2024; 14:e11019. [PMID: 38352197 PMCID: PMC10862186 DOI: 10.1002/ece3.11019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/13/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Ectotherms make up the majority of terrestrial biodiversity, so it is important to understand their potential responses to climate change. Often, models aiming to achieve this understanding correlate species distributions with ambient air temperature. However, this assumes a constant relationship between the air temperature and body temperature, which determines an ectotherm's thermal performance. To test this assumption, we develop and validate a method for retrospective estimation of ectotherm body temperature using heat exchange equations. We apply the model to predict the body temperature of wild field crickets (Gryllus campestris) in Northern Spain for 1985-2019 and compare these values to air temperature. We show that while air temperature impacts ectotherm body temperature, it captures only a fraction of its thermal experience. Solar radiation can increase the body temperature by more than 20°C above air temperature with implications for physiology and behaviour. The effect of solar radiation on body temperature is particularly important given that climate change will alter cloud cover. Our study shows that the impacts of climate change on species cannot be assumed to be proportional only to changing air temperature. More reliable models of future species distributions require mechanistic links between environmental conditions and thermal ecophysiologies of species.
Collapse
Affiliation(s)
| | - Ilya M. D. Maclean
- Environment and Sustainability InstituteUniversity of ExeterPenrynCornwallUK
| | | | - Paul E. Hopwood
- Centre for Ecology and ConservationUniversity of ExeterPenrynCornwallUK
| | - Kali Mills
- Centre for Ecology and ConservationUniversity of ExeterPenrynCornwallUK
| | - Ross Wotherspoon
- Centre for Ecology and ConservationUniversity of ExeterPenrynCornwallUK
| | - Tom Tregenza
- Centre for Ecology and ConservationUniversity of ExeterPenrynCornwallUK
| |
Collapse
|
18
|
Archibald CL, Summers DM, Graham EM, Bryan BA. Habitat suitability maps for Australian flora and fauna under CMIP6 climate scenarios. Gigascience 2024; 13:giae002. [PMID: 38442145 PMCID: PMC10939329 DOI: 10.1093/gigascience/giae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/29/2023] [Accepted: 01/05/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Spatial information about the location and suitability of areas for native plant and animal species under different climate futures is an important input to land use and conservation planning and management. Australia, renowned for its abundant species diversity and endemism, often relies on modeled data to assess species distributions due to the country's vast size and the challenges associated with conducting on-ground surveys on such a large scale. The objective of this article is to develop habitat suitability maps for Australian flora and fauna under different climate futures. RESULTS Using MaxEnt, we produced Australia-wide habitat suitability maps under RCP2.6-SSP1, RCP4.5-SSP2, RCP7.0-SSP3, and RCP8.5-SSP5 climate futures for 1,382 terrestrial vertebrates and 9,251 vascular plants vascular plants at 5 km2 for open access. This represents 60% of all Australian mammal species, 77% of amphibian species, 50% of reptile species, 71% of bird species, and 44% of vascular plant species. We also include tabular data, which include summaries of total quality-weighted habitat area of species under different climate scenarios and time periods. CONCLUSIONS The spatial data supplied can help identify important and sensitive locations for species under various climate futures. Additionally, the supplied tabular data can provide insights into the impacts of climate change on biodiversity in Australia. These habitat suitability maps can be used as input data for landscape and conservation planning or species management, particularly under different climate change scenarios in Australia.
Collapse
Affiliation(s)
- Carla L Archibald
- School of Life and Environmental Sciences, Deakin University, 221 Burwood Hwy, Burwood, Victoria, Australia
| | - David M Summers
- UniSA Business, The University of South Australia, GPO Box 2471, Adelaide, Australia
| | - Erin M Graham
- eResearch Centre, James Cook University, James Cook Drive, Townsville, Australia
| | - Brett A Bryan
- School of Life and Environmental Sciences, Deakin University, 221 Burwood Hwy, Burwood, Victoria, Australia
| |
Collapse
|
19
|
Rubalcaba JG. Metabolic responses to cold and warm extremes in the ocean. PLoS Biol 2024; 22:e3002479. [PMID: 38232118 DOI: 10.1371/journal.pbio.3002479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Temperature influences the geographical distribution of species, but its mechanisms are much debated. A new study in PLOS Biology suggests that metabolic constrains can arise in both warm and cold waters at the geographical range limits of marine species.
Collapse
Affiliation(s)
- Juan G Rubalcaba
- Department of Biodiversity, Ecology and Evolution, Faculty of Biological sciences, The Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
20
|
McKechnie AE, Freeman MT, Brigham RM. Avian Heterothermy: A Review of Patterns and Processes. Integr Comp Biol 2023; 63:1028-1038. [PMID: 37156524 DOI: 10.1093/icb/icad029] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023] Open
Abstract
Many birds reduce rest-phase energy demands through heterothermy, physiological responses involving facultative, reversible reductions in metabolic rate and body temperature (Tb). Here, we review the phylogenetic distribution and ecological contexts of avian heterothermy. Heterothermy has been reported in 140 species representing 15 orders and 39 families. Recent work supports the view that deep heterothermy is most pronounced in phylogenetically older taxa whereas heterothermy in passerines and other recently diverged taxa is shallower and confined to minimum Tb > 20°C. The reasons why deep heterothermy is absent in passerines remain unclear; we speculate an evolutionary trade-off may exist between the capacity to achieve low heterothermic Tb and the tolerance of hyperthermic Tb. Inter- and intraspecific variation in heterothermy is correlated with factors including foraging ecology (e.g., territoriality and defense of food resources among hummingbirds), food availability and foraging opportunities (e.g., lunar phase predicts torpor use in caprimulgids), and predation risk. Heterothermy also plays a major role before and during migration. Emerging questions include the magnitude of energy savings associated with heterothermy among free-ranging birds, the role phylogenetic variation in the capacity for heterothermy has played in evolutionary radiations into extreme habitats, and how the capacity for heterothermy affects avian vulnerability to rapid anthropogenic climate change.
Collapse
Affiliation(s)
- Andrew E McKechnie
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, Pretoria 0001, South Africa
- DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield 0028, South Africa
| | - Marc T Freeman
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, Pretoria 0001, South Africa
- DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield 0028, South Africa
| | - R Mark Brigham
- Department of Biology, University of Regina, Regina, SK S4S 0A2, Canada
| |
Collapse
|
21
|
Riddell EA, Burger IJ, Tyner-Swanson TL, Biggerstaff J, Muñoz MM, Levy O, Porter CK. Parameterizing mechanistic niche models in biophysical ecology: a review of empirical approaches. J Exp Biol 2023; 226:jeb245543. [PMID: 37955347 DOI: 10.1242/jeb.245543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Mechanistic niche models are computational tools developed using biophysical principles to address grand challenges in ecology and evolution, such as the mechanisms that shape the fundamental niche and the adaptive significance of traits. Here, we review the empirical basis of mechanistic niche models in biophysical ecology, which are used to answer a broad array of questions in ecology, evolution and global change biology. We describe the experiments and observations that are frequently used to parameterize these models and how these empirical data are then incorporated into mechanistic niche models to predict performance, growth, survival and reproduction. We focus on the physiological, behavioral and morphological traits that are frequently measured and then integrated into these models. We also review the empirical approaches used to incorporate evolutionary processes, phenotypic plasticity and biotic interactions. We discuss the importance of validation experiments and observations in verifying underlying assumptions and complex processes. Despite the reliance of mechanistic niche models on biophysical theory, empirical data have and will continue to play an essential role in their development and implementation.
Collapse
Affiliation(s)
- Eric A Riddell
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Isabella J Burger
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tamara L Tyner-Swanson
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Justin Biggerstaff
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Martha M Muñoz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Ofir Levy
- Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Cody K Porter
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
22
|
Krushelnycky PD, Berio Fortini L, Mallinson J, Felts JM. Empirical estimation of habitat suitability for rare plant restoration in an era of ongoing climatic shifts. Sci Rep 2023; 13:19257. [PMID: 37935959 PMCID: PMC10630363 DOI: 10.1038/s41598-023-46793-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/05/2023] [Indexed: 11/09/2023] Open
Abstract
Accurate estimates of current and future habitat suitability are needed for species that may require assistance in tracking a shifting climate. Standard species distribution models (SDMs) based on occurrence data are the most common approach for evaluating climatic suitability, but these may suffer from inaccuracies stemming from disequilibrium dynamics and/or an inability to identify suitable climate regions that have no analogues within the current range. An alternative approach is to test performance with experimental introductions, and model suitability from the empirical results. We used this method with the Haleakalā silversword (Argyroxiphium sandwicense subsp. macrocephalum), using a network of out-plant plots across the top of Haleakalā volcano, Hawai'i. Over a ~ 5-year period, survival varied strongly across this network and was effectively explained by a simple model including mean rainfall and air temperature. We then applied this model to estimate current climatic suitability for restoration or translocation activities, to define trends in suitability over the past three decades, and to project future suitability through 2051. This empirical approach indicated that much of the current range has low suitability for long-term successful restoration, but also identified areas of high climatic suitability in a region where plants do not currently occur. These patterns contrast strongly with projections obtained with a standard SDM, which predicted continued suitability throughout the current range. Under continued climatic shifts, these results caution against the common SDM presumption of equilibrium between species' distributions and their environment, even for long-established native species.
Collapse
Affiliation(s)
- Paul D Krushelnycky
- Department of Plant and Environmental Protection Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA.
| | - Lucas Berio Fortini
- U.S. Geological Survey, Pacific Island Ecosystems Research Center, Honolulu, HI, USA
| | - Jeffrey Mallinson
- Resources Management Division, Haleakalā National Park, Makawao, HI, USA
| | - Jesse M Felts
- Resources Management Division, Haleakalā National Park, Makawao, HI, USA
| |
Collapse
|
23
|
Gunderson AR. Habitat degradation exacerbates the effects of anthropogenic warming by removing thermal refuges. GLOBAL CHANGE BIOLOGY 2023; 29:6157-6158. [PMID: 37605968 DOI: 10.1111/gcb.16909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/23/2023]
Abstract
Habitat degradation removes shaded microhabitats that serve as thermal refuges, but not all microhabitats provide equally valuable shade.
Collapse
Affiliation(s)
- Alex R Gunderson
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
24
|
Stark G, Ma L, Zeng ZG, Du WG, Levy O. Cool shade and not-so-cool shade: How habitat loss may accelerate thermal stress under current and future climate. GLOBAL CHANGE BIOLOGY 2023; 29:6201-6216. [PMID: 37280748 DOI: 10.1111/gcb.16802] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/23/2023] [Accepted: 05/08/2023] [Indexed: 06/08/2023]
Abstract
Worldwide habitat loss, land-use changes, and climate change threaten biodiversity, and we urgently need models that predict the combined impacts of these threats on organisms. Current models, however, overlook microhabitat diversity within landscapes and so do not accurately inform conservation efforts, particularly for ectotherms. Here, we built and field-parameterized a model to examine the effects of habitat loss and climate change on activity and microhabitat selection by a diurnal desert lizard. Our model predicted that lizards in rock-free areas would reduce summer activity levels (e.g. foraging, basking) and that future warming will gradually decrease summer activity in rocky areas, as even large rocks become thermally stressful. Warmer winters will enable more activity but will require bushes and small rocks as shade retreats. Hence, microhabitats that may seem unimportant today will become important under climate change. Modelling frameworks should consider the microhabitat requirements of organisms to improve conservation outcomes.
Collapse
Affiliation(s)
- Gavin Stark
- Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Liang Ma
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
- Princeton School of Public and International Affairs, Princeton University, Princeton, New Jersey, USA
| | - Zhi-Gao Zeng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ofir Levy
- Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
25
|
Sentís M, Pacioni C, De Cuyper A, Janssens GP, Lens L, Strubbe D. Biophysical models accurately characterize the thermal energetics of a small invasive passerine bird. iScience 2023; 26:107743. [PMID: 37720095 PMCID: PMC10504485 DOI: 10.1016/j.isci.2023.107743] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/10/2023] [Accepted: 08/24/2023] [Indexed: 09/19/2023] Open
Abstract
Effective management of invasive species requires accurate predictions of their invasion potential in different environments. By considering species' physiological tolerances and requirements, biophysical mechanistic models can potentially deliver accurate predictions of where introduced species are likely to establish. Here, we evaluate biophysical model predictions of energy use by comparing them to experimentally obtained energy expenditure (EE) and thermoneutral zones (TNZs) for the common waxbill Estrilda astrild, a small-bodied avian invader. We show that biophysical models accurately predict TNZ and EE and that they perform better than traditional time-energy budget methods. Sensitivity analyses indicate that body temperature, metabolic rate, and feather characteristics were the most influential traits affecting model accuracy. This evaluation of common waxbill energetics represents a crucial step toward improved parameterization of biophysical models, eventually enabling accurate predictions of invasion risk for small (sub)tropical passerines.
Collapse
Affiliation(s)
- Marina Sentís
- Terrestrial Ecology Unit, Department of Biology, Faculty of Sciences, Ghent University, 9000 Ghent, Belgium
| | - Cesare Pacioni
- Terrestrial Ecology Unit, Department of Biology, Faculty of Sciences, Ghent University, 9000 Ghent, Belgium
| | - Annelies De Cuyper
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Geert P.J. Janssens
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Luc Lens
- Terrestrial Ecology Unit, Department of Biology, Faculty of Sciences, Ghent University, 9000 Ghent, Belgium
| | - Diederik Strubbe
- Terrestrial Ecology Unit, Department of Biology, Faculty of Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
26
|
Zheng Y, Yuan C, Matsushita N, Lian C, Geng Q. Analysis of the distribution pattern of the ectomycorrhizal fungus Cenococcum geophilum under climate change using the optimized MaxEnt model. Ecol Evol 2023; 13:e10565. [PMID: 37753310 PMCID: PMC10518754 DOI: 10.1002/ece3.10565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Cenococcum geophilum (C. geophilum) is a widely distributed ectomycorrhizal fungus that plays a crucial role in forest ecosystems worldwide. However, the specific ecological factors influencing its global distribution and how climate change will affect its range are still relatively unknown. In this study, we used the MaxEnt model optimized with the kuenm package to simulate changes in the distribution pattern of C. geophilum from the Last Glacial Maximum to the future based on 164 global distribution records and 17 environmental variables and investigated the key environmental factors influencing its distribution. We employed the optimal parameter combination of RM = 4 and FC = QPH, resulting in a highly accurate predictive model. Our study clearly shows that the mean temperature of the coldest quarter and annual precipitation are the key environmental factors influencing the suitable habitats of C. geophilum. Currently, appropriate habitats of C. geophilum are mainly distributed in eastern Asia, west-central Europe, the western seaboard and eastern regions of North America, and southeastern Australia, covering a total area of approximately 36,578,300 km2 globally. During the Last Glacial Maximum and the mid-Holocene, C. geophilum had a much smaller distribution area, being mainly concentrated in the Qinling-Huaihe Line region of China and eastern Peninsular Malaysia. As global warming continues, the future suitable habitat for C. geophilum is projected to shift northward, leading to an expected expansion of the suitable area from 9.21% to 21.02%. This study provides a theoretical foundation for global conservation efforts and biogeographic understanding of C. geophilum, offering new insights into its distribution patterns and evolutionary trends.
Collapse
Affiliation(s)
- Yexu Zheng
- College of ForestryShandong Agricultural UniversityTai'anChina
- College of Grassland Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Chao Yuan
- College of ForestryFujian Agriculture and Forestry UniversityFuzhouChina
| | - Norihisa Matsushita
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Chunlan Lian
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life SciencesThe University of TokyoNishitokyo‐shiTokyoJapan
| | - Qifang Geng
- College of ForestryShandong Agricultural UniversityTai'anChina
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life SciencesThe University of TokyoNishitokyo‐shiTokyoJapan
| |
Collapse
|
27
|
Mathewson PD, Darnell MZ, Lane ZM, Yeghissian TG, Levinton J, Porter WP. Incorporating species-specific morphology improves model predictions of thermal and hydric stress in the sand fiddler crab, Leptuca pugilator. J Therm Biol 2023; 115:103613. [PMID: 37437372 DOI: 10.1016/j.jtherbio.2023.103613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/03/2023] [Accepted: 06/04/2023] [Indexed: 07/14/2023]
Abstract
Understanding where and why organisms are experiencing thermal and hydric stress is critical for predicting species' responses to climate change. Biophysical models that explicitly link organismal functional traits like morphology, physiology, and behavior to environmental conditions can provide valuable insight into determinants of thermal and hydric stress. Here we use a combination of direct measurements, 3D modeling, and computational fluid dynamics to develop a detailed biophysical model of the sand fiddler crab, Leptuca pugilator. We compare the detailed model's performance to a model using a simpler ellipsoidal approximation of a crab. The detailed model predicted crab body temperatures within 1 °C of observed in both laboratory and field settings; the ellipsoidal approximation model predicted body temperatures within 2 °C of observed body temperatures. Model predictions are meaningfully improved through efforts to incorporate species-specific morphological properties rather than relying on simple geometric approximations. Experimental evaporative water loss (EWL) measurements indicate that L. pugilator can modify its permeability to EWL as a function of vapor density gradients, providing novel insight into physiological thermoregulation in the species. Body temperature and EWL predictions made over the course of a year at a single site demonstrate how such biophysical models can be used to explore mechanistic drivers and spatiotemporal patterns of thermal and hydric stress, providing insight into current and future distributions in the face of climate change.
Collapse
Affiliation(s)
- Paul D Mathewson
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.
| | - M Zachary Darnell
- Division of Coastal Sciences, School of Ocean Science and Engineering, The University of Southern Mississippi, Ocean Springs, MS, USA
| | - Zachary M Lane
- Division of Coastal Sciences, School of Ocean Science and Engineering, The University of Southern Mississippi, Ocean Springs, MS, USA
| | - Talene G Yeghissian
- Division of Coastal Sciences, School of Ocean Science and Engineering, The University of Southern Mississippi, Ocean Springs, MS, USA
| | - Jeffrey Levinton
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
| | - Warren P Porter
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
28
|
Cruz AR, Davidowitz G, Moore CM, Bronstein JL. Mutualisms in a warming world. Ecol Lett 2023. [PMID: 37303268 DOI: 10.1111/ele.14264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 06/13/2023]
Abstract
Predicting the impacts of global warming on mutualisms poses a significant challenge given the functional and life history differences that usually exist among interacting species. However, this is a critical endeavour since virtually all species on Earth depend on other species for survival and/or reproduction. The field of thermal ecology can provide physiological and mechanistic insights, as well as quantitative tools, for addressing this challenge. Here, we develop a conceptual and quantitative framework that connects thermal physiology to species' traits, species' traits to interacting mutualists' traits and interacting traits to the mutualism. We first identify the functioning of reciprocal mutualism-relevant traits in diverse systems as the key temperature-dependent mechanisms driving the interaction. We then develop metrics that measure the thermal performance of interacting mutualists' traits and that approximate the thermal performance of the mutualism itself. This integrated approach allows us to additionally examine how warming might interact with resource/nutrient availability and affect mutualistic species' associations across space and time. We offer this framework as a synthesis of convergent and critical issues in mutualism science in a changing world, and as a baseline to which other ecological complexities and scales might be added.
Collapse
Affiliation(s)
- Austin R Cruz
- Department of Ecology & Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA
| | - Goggy Davidowitz
- Department of Ecology & Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA
- Department of Entomology, The University of Arizona, Tucson, Arizona, USA
| | | | - Judith L Bronstein
- Department of Ecology & Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA
- Department of Entomology, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
29
|
Seebacher F, Narayan E, Rummer JL, Tomlinson S, Cooke SJ. How can physiology best contribute to wildlife conservation in a warming world? CONSERVATION PHYSIOLOGY 2023; 11:coad038. [PMID: 37287992 PMCID: PMC10243909 DOI: 10.1093/conphys/coad038] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/11/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
Global warming is now predicted to exceed 1.5°C by 2033 and 2°C by the end of the 21st century. This level of warming and the associated environmental variability are already increasing pressure on natural and human systems. Here we emphasize the role of physiology in the light of the latest assessment of climate warming by the Intergovernmental Panel on Climate Change. We describe how physiology can contribute to contemporary conservation programmes. We focus on thermal responses of animals, but we acknowledge that the impacts of climate change are much broader phylogenetically and environmentally. A physiological contribution would encompass environmental monitoring, coupled with measuring individual sensitivities to temperature change and upscaling these to ecosystem level. The latest version of the widely accepted Conservation Standards designed by the Conservation Measures Partnership includes several explicit climate change considerations. We argue that physiology has a unique role to play in addressing these considerations. Moreover, physiology can be incorporated by institutions and organizations that range from international bodies to national governments and to local communities, and in doing so, it brings a mechanistic approach to conservation and the management of biological resources.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, NSW 2006, Australia
| | - Edward Narayan
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia QLD4072, Australia
| | - Jodie L Rummer
- College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville QLD 4810, Australia
| | - Sean Tomlinson
- School of Biological Sciences, University of Adelaide, SA 5000, Australia
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
30
|
Strubbe D, Jiménez L, Barbosa AM, Davis AJS, Lens L, Rahbek C. Mechanistic models project bird invasions with accuracy. Nat Commun 2023; 14:2520. [PMID: 37130835 PMCID: PMC10154326 DOI: 10.1038/s41467-023-38329-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/26/2023] [Indexed: 05/04/2023] Open
Abstract
Invasive species pose a major threat to biodiversity and inflict massive economic costs. Effective management of bio-invasions depends on reliable predictions of areas at risk of invasion, as they allow early invader detection and rapid responses. Yet, considerable uncertainty remains as to how to predict best potential invasive distribution ranges. Using a set of mainly (sub)tropical birds introduced to Europe, we show that the true extent of the geographical area at risk of invasion can accurately be determined by using ecophysiological mechanistic models that quantify species' fundamental thermal niches. Potential invasive ranges are primarily constrained by functional traits related to body allometry and body temperature, metabolic rates, and feather insulation. Given their capacity to identify tolerable climates outside of contemporary realized species niches, mechanistic predictions are well suited for informing effective policy and management aimed at preventing the escalating impacts of invasive species.
Collapse
Affiliation(s)
- Diederik Strubbe
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Gent, Belgium.
- Center for Macroecology, Evolution, and Climate (CMEC), GLOBE Institute, University of Copenhagen, 2100, Copenhagen Ø, Denmark.
| | - Laura Jiménez
- School of Life Sciences, University of Hawai'i at Mānoa, 2538 McCarthy Mall, Honolulu, HI, 96822, USA
- Centro de Modelamiento Matemático (CNRS IRL2807), Universidad de Chile, Santiago, Chile
| | - A Márcia Barbosa
- CICGE-Centro de Investigação em Ciências Geo-Espaciais, Alameda do Monte da Virgem, 4430-146, Vila Nova de Gaia, Portugal
| | - Amy J S Davis
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Gent, Belgium
- Ecology, Department of Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Luc Lens
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Gent, Belgium
| | - Carsten Rahbek
- Center for Macroecology, Evolution, and Climate (CMEC), GLOBE Institute, University of Copenhagen, 2100, Copenhagen Ø, Denmark
| |
Collapse
|
31
|
Briscoe NJ, Morris SD, Mathewson PD, Buckley LB, Jusup M, Levy O, Maclean IMD, Pincebourde S, Riddell EA, Roberts JA, Schouten R, Sears MW, Kearney MR. Mechanistic forecasts of species responses to climate change: The promise of biophysical ecology. GLOBAL CHANGE BIOLOGY 2023; 29:1451-1470. [PMID: 36515542 DOI: 10.1111/gcb.16557] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 05/20/2023]
Abstract
A core challenge in global change biology is to predict how species will respond to future environmental change and to manage these responses. To make such predictions and management actions robust to novel futures, we need to accurately characterize how organisms experience their environments and the biological mechanisms by which they respond. All organisms are thermodynamically connected to their environments through the exchange of heat and water at fine spatial and temporal scales and this exchange can be captured with biophysical models. Although mechanistic models based on biophysical ecology have a long history of development and application, their use in global change biology remains limited despite their enormous promise and increasingly accessible software. We contend that greater understanding and training in the theory and methods of biophysical ecology is vital to expand their application. Our review shows how biophysical models can be implemented to understand and predict climate change impacts on species' behavior, phenology, survival, distribution, and abundance. It also illustrates the types of outputs that can be generated, and the data inputs required for different implementations. Examples range from simple calculations of body temperature at a particular site and time, to more complex analyses of species' distribution limits based on projected energy and water balances, accounting for behavior and phenology. We outline challenges that currently limit the widespread application of biophysical models relating to data availability, training, and the lack of common software ecosystems. We also discuss progress and future developments that could allow these models to be applied to many species across large spatial extents and timeframes. Finally, we highlight how biophysical models are uniquely suited to solve global change biology problems that involve predicting and interpreting responses to environmental variability and extremes, multiple or shifting constraints, and novel abiotic or biotic environments.
Collapse
Affiliation(s)
- Natalie J Briscoe
- School of Ecosystem and Forest Science, The University of Melbourne, Melbourne, Victoria, Australia
| | - Shane D Morris
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Paul D Mathewson
- Department of Zoology, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Lauren B Buckley
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - Marko Jusup
- Fisheries Resources Research Institute, Fisheries Research Agency, Yokohama, Japan
| | - Ofir Levy
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ilya M D Maclean
- School of Biosciences, Centre for Ecology and Conservation, Cornwall, UK
| | | | - Eric A Riddell
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Jessica A Roberts
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Rafael Schouten
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michael W Sears
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Michael Ray Kearney
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
32
|
Wolf BO, McKechnie AE. Biophysical approaches to predicting species vulnerability. GLOBAL CHANGE BIOLOGY 2023; 29:1421-1422. [PMID: 36534360 DOI: 10.1111/gcb.16565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 05/26/2023]
Affiliation(s)
- Blair O Wolf
- UNM Biology Department, University of New Mexico, Albuquerque, New Mexico, USA
| | - Andrew E McKechnie
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, Cape Town, South Africa
- Department of Zoology and Entomology, DSI-NRF Centre of Excellence at the FitzPatrick Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|