1
|
Karim HT, Lee S, Gerlach A, Stinley M, Berta R, Mahbubani R, Tudorascu DL, Butters MA, Gross JJ, Andreescu C. Hippocampal subfield volume in older adults with and without mild cognitive impairment: Effects of worry and cognitive reappraisal. Neurobiol Aging 2024; 141:55-65. [PMID: 38823204 PMCID: PMC11246796 DOI: 10.1016/j.neurobiolaging.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 06/03/2024]
Abstract
Studies have confirmed that anxiety, especially worry and rumination, are associated with increased risk for cognitive decline, including Alzheimer's disease and related dementias (ADRD). Hippocampal atrophy is a hallmark of ADRD. We investigated the association between hippocampus and its subfield volumes and late-life global anxiety, worry, and rumination, and emotion regulation strategies. We recruited 110 participants with varying worry severity who underwent magnetic resonance imaging and clinical interviews. We conducted cross-sectional regression analysis between each subfield and anxiety, worry, rumination, reappraisal, and suppression while adjusting for age, sex, race, education, cumulative illness burden, stress, neuroticism, and intracranial volume. We imputed missing data and corrected for multiple comparisons across regions. Greater worry was associated with smaller subiculum volume, whereas greater use of reappraisal was associated with larger subiculum and CA1 volume. Greater worry may be detrimental to the hippocampus and to subfields involved in early ADRD pathology. Use of reappraisal appears protective of hippocampal structure. Worry and reappraisal may be modifiable targets for ADRD prevention.
Collapse
Affiliation(s)
- Helmet T Karim
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Soyoung Lee
- Department of Psychiatry, University of Maryland, Baltimore, MD, United States
| | - Andrew Gerlach
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mark Stinley
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rachel Berta
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rebecca Mahbubani
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Dana L Tudorascu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Meryl A Butters
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - James J Gross
- Department of Psychology, Stanford University, Stanford, CA, United States
| | - Carmen Andreescu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
2
|
Dintica CS, Habes M, Schreiner PJ, Launer LJ, Yaffe K. Trajectories in depressive symptoms and midlife brain health. Transl Psychiatry 2024; 14:169. [PMID: 38553474 PMCID: PMC10980805 DOI: 10.1038/s41398-024-02883-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
Depressive symptoms may either be a risk factor or prodromal to dementia. Investigating this association in midlife may help clarify the role of depression in cognitive aging. We aimed to identify trajectories in depressive symptoms in early to mid-life and related cognitive and brain outcomes in midlife. This study includes 3944 Black and White participants (ages 26-45 years at baseline) from the Coronary Artery Risk Development in Young Adults (CARDIA) study with 20 years of follow-up. Depressive symptoms were assessed using the Center for Epidemiological Studies Depression scale at five time points over 20 years. Growth mixture modeling (GMM) was used to identify depressive symptom trajectories. Participants completed a neuropsychological battery 20 years after baseline, including the Digit Symbol Substitution Test (DSST), Rey-Auditory Verbal Learning Test (RAVLT), Stroop Test, Montreal Cognitive Assessment (MoCA), and category and letter fluency tests. A sub-sample of participants (n = 662) underwent brain magnetic resonance imaging (MRI) to characterize gray matter volumes and white matter hyperintensities (WMHs). We identified four classes of depressive symptom trajectories: a "declining" class (n = 286, 7.3%) with initially high symptoms and subsequent decline, a class with consistently high symptoms ("steady high"; n = 264, 6.7%), a class with late increases in symptoms ("increasing"; n = 277, 7%), and a class with consistently low symptoms ("steady low"; n = 3117, 79.0%). The steady high and the increasing classes had poorer performance on all cognitive tests, while the declining class had poorer performance on the DSST, verbal fluency, and MoCA. Compared to the steady low symptom class, the steady high class had lower volumes in the entorhinal cortex (β: -180.80, 95% CI: -336.69 to -24.91) and the amygdala (β: -40.97, 95% CI: -74.09 to -7.85), the increasing class had more WMHs (β: 0.55, 95% CI: 0.22 to 0.89), and the declining class was not significantly different in any brain measures. Trajectories in depressive symptoms in young to mid-adulthood show distinct cognitive and brain phenotypes in midlife. Steady high depressive symptoms may represent a group that is at risk for dementia, whereas increasing symptoms in midlife may be associated with white matter damage.
Collapse
Affiliation(s)
- Christina S Dintica
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, California, CA, USA.
| | - Mohamad Habes
- Neuroimage Analytics Laboratory (NAL) and the Biggs Institute Neuroimaging Core (BINC), Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center San Antonio (UTHSCSA), San Antonio, TX, USA
| | - Pamela J Schreiner
- Division of Epidemiology & Community Health, University of Minnesota, Minneapolis, MN, USA
| | | | - Kristine Yaffe
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, California, CA, USA
| |
Collapse
|
3
|
Jellinger KA. The heterogeneity of late-life depression and its pathobiology: a brain network dysfunction disorder. J Neural Transm (Vienna) 2023:10.1007/s00702-023-02648-z. [PMID: 37145167 PMCID: PMC10162005 DOI: 10.1007/s00702-023-02648-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/28/2023] [Indexed: 05/06/2023]
Abstract
Depression is frequent in older individuals and is often associated with cognitive impairment and increasing risk of subsequent dementia. Late-life depression (LLD) has a negative impact on quality of life, yet the underlying pathobiology is still poorly understood. It is characterized by considerable heterogeneity in clinical manifestation, genetics, brain morphology, and function. Although its diagnosis is based on standard criteria, due to overlap with other age-related pathologies, the relationship between depression and dementia and the relevant structural and functional cerebral lesions are still controversial. LLD has been related to a variety of pathogenic mechanisms associated with the underlying age-related neurodegenerative and cerebrovascular processes. In addition to biochemical abnormalities, involving serotonergic and GABAergic systems, widespread disturbances of cortico-limbic, cortico-subcortical, and other essential brain networks, with disruption in the topological organization of mood- and cognition-related or other global connections are involved. Most recent lesion mapping has identified an altered network architecture with "depressive circuits" and "resilience tracts", thus confirming that depression is a brain network dysfunction disorder. Further pathogenic mechanisms including neuroinflammation, neuroimmune dysregulation, oxidative stress, neurotrophic and other pathogenic factors, such as β-amyloid (and tau) deposition are in discussion. Antidepressant therapies induce various changes in brain structure and function. Better insights into the complex pathobiology of LLD and new biomarkers will allow earlier and better diagnosis of this frequent and disabling psychopathological disorder, and further elucidation of its complex pathobiological basis is warranted in order to provide better prevention and treatment of depression in older individuals.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
4
|
Twait EL, Blom K, Koek HL, Zwartbol MHT, Ghaznawi R, Hendrikse J, Gerritsen L, Geerlings MI. Psychosocial factors and hippocampal subfields: The Medea-7T study. Hum Brain Mapp 2022; 44:1964-1984. [PMID: 36583397 PMCID: PMC9980899 DOI: 10.1002/hbm.26185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/21/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022] Open
Abstract
Specific subfields within the hippocampus have shown vulnerability to chronic stress, highlighting the importance of looking regionally within the hippocampus to understand the role of psychosocial factors in the development of neurodegenerative diseases. A systematic review on psychosocial factors and hippocampal subfield volumes was performed and showed inconsistent results, highlighting the need for future studies to explore this relationship. The current study aimed to explore the association of psychosocial factors with hippocampal (subfield) volumes, using high-field 7T MRI. Data were from the Memory Depression and Aging (Medea)-7T study, which included 333 participants without dementia. Hippocampal subfields were automatically segmented from T2-weighted images using ASHS software. Generalized linear models accounting for correlated outcomes were used to assess the association between subfields (i.e., entorhinal cortex, subiculum, Cornu Ammonis [CA]1, CA2, CA3, dentate gyrus, and tail) and each psychosocial factor (i.e., depressive symptoms, anxiety symptoms, childhood maltreatment, recent stressful life events, and social support), adjusted for age, sex, and intracranial volume. Neither depression nor anxiety was associated with specific hippocampal (subfield) volumes. A trend for lower total hippocampal volume was found in those reporting childhood maltreatment, and a trend for higher total hippocampal volume was found in those who experienced a recent stressful life event. Among subfields, low social support was associated with lower volume in the CA3 (B = -0.43, 95% CI: -0.72; -0.15). This study suggests possible differential effects among hippocampal (subfield) volumes and psychosocial factors.
Collapse
Affiliation(s)
- Emma L. Twait
- Department of Epidemiology, Julius Center for Health Sciences and Primary CareUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Kim Blom
- Department of Epidemiology, Julius Center for Health Sciences and Primary CareUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Huiberdina L. Koek
- Department of GeriatricsUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Maarten H. T. Zwartbol
- Department of RadiologyUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Rashid Ghaznawi
- Department of RadiologyUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Jeroen Hendrikse
- Department of RadiologyUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Lotte Gerritsen
- Department of PsychologyUtrecht UniversityUtrechtThe Netherlands
| | - Mirjam I. Geerlings
- Department of Epidemiology, Julius Center for Health Sciences and Primary CareUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands,Department of General PracticeAmsterdam UMC, Location University of AmsterdamAmsterdamThe Netherlands,Amsterdam Public Health, Aging & Later life, and Personalized MedicineAmsterdamThe Netherlands,Amsterdam Neuroscience, Neurodegeneration, and Mood, Anxiety, Psychosis, Stress, and SleepAmsterdamThe Netherlands
| | | |
Collapse
|
5
|
Liu Y, Zhang Y, Thyreau B, Tatewaki Y, Matsudaira I, Takano Y, Hirabayashi N, Furuta Y, Jun H, Ninomiya T, Taki Y. Altruistic Social Activity, Depressive Symptoms, and Brain Regional Gray Matter Volume: Voxel-Based Morphometry Analysis from 8695 Old Adults. J Gerontol A Biol Sci Med Sci 2022; 77:1789-1797. [PMID: 35443061 DOI: 10.1093/gerona/glac093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Indexed: 11/14/2022] Open
Abstract
Altruistic social activity, such as giving support to others, has shown protective benefits on dementia risk and cognitive decline. However, the pathological mechanism is unclear. In the present study, we investigated the association between altruistic social activity and brain regional gray matter. Furthermore, to explore the psychological interplay in altruistic social activity, we tested mediating effect of depressive symptoms on brain regional gray matter. We performed a cross-sectional Voxel-Based Morphology (VBM) analysis including 8695 old adults (72.9±6.1 years) from Japan Prospective Studies Collaboration for Aging and Dementia (JPSC-AD) Cohort. We measured altruistic social activities by self-report questionnaire, depressive symptoms by Geriatric Depression Scale (GDS)-short version. We employed the whole-brain VBM method to detect relevant structural properties related to altruistic social activity. We then performed multiple regression models to detect the mediating effect of depressive symptoms on particular brain regional gray matter volume while adjusting possible physical and social lifestyle covariables. We found that altruistic social activity is associated with larger gray matter volume in posterior insula, middle cingulate gyrus, hippocampus, thalamus, superior temporal gyrus, anterior orbital gyrus, and middle occipital gyrus. Depressive symptoms mediated over 10% on altruistic social activity and hippocampus volume, over 20% on altruistic social activity and cingulate gyrus volume. Our results indicated that altruistic social activity might preserve brain regional gray matter where are sensitive to aging and cognitive decline. Meanwhile, this association may be explained by indirect effect on depressive symptoms, suggesting that altruistic social activity may mitigate the neuropathology of dementia.
Collapse
Affiliation(s)
- Yingxu Liu
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ye Zhang
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Benjamin Thyreau
- Smart-Aging Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuko Tatewaki
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Geriatric Medicine and Neuroimaging, Tohoku University Hospital, Sendai, Japan
| | - Izumi Matsudaira
- Smart-Aging Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yuji Takano
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Naoki Hirabayashi
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - YoshihikTo Furuta
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hata Jun
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiharu Ninomiya
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuyuki Taki
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Smart-Aging Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Geriatric Medicine and Neuroimaging, Tohoku University Hospital, Sendai, Japan
| | | |
Collapse
|
6
|
Lee J, Ju G, Park H, Chung S, Son JW, Shin CJ, Lee SI, Kim S. Hippocampal Subfields and White Matter Connectivity in Patients with Subclinical Geriatric Depression. Brain Sci 2022; 12:brainsci12030329. [PMID: 35326285 PMCID: PMC8946804 DOI: 10.3390/brainsci12030329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
Despite an abundance of research related to the functional and structural changes of the brain in patients with geriatric depression, knowledge related to early alterations such as decreased white matter connectivity and their association with cognitive decline remains lacking. We aimed to investigate early alterations in hippocampal microstructure and identify their associations with memory function in geriatric patients with subclinical depression. Nineteen participants with subclinical geriatric depression and 19 healthy controls aged ≥65 years exhibiting general cognitive function within the normal range were included in the study and underwent assessments of verbal memory. Hippocampal subfield volumes were determined based on T1-weighted magnetization-prepared rapid gradient echo (T1-MPRAGE) images, while group tractography and connectometry analyses were conducted using diffusion tensor images. Our findings indicated that the volumes of whole bilateral hippocampus, cornus ammonis (CA) 1, molecular layer, left subiculum, CA3, hippocampal tail, right CA4, and granule cell/molecular layers of the dentate gyrus (GC-ML-DG) were significantly smaller in the subclinical depression group than in the control group. In the subclinical depression group, verbal learning was positively correlated with the volumes of the CA1, GC-ML-DG, molecular layer, and whole hippocampus in the right hemisphere. The fractional anisotropy of the bilateral fornix was also significantly lower in the subclinical depression group and exhibited a positive correlation with verbal learning and recall in both groups. Our results suggest that hippocampal microstructure is disrupted and associated with memory in patients with subclinical depression.
Collapse
Affiliation(s)
- Jeonghwan Lee
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju 28644, Korea; (J.L.); (G.J.); (H.P.); (S.C.); (J.-W.S.); (C.-J.S.); (S.I.L.)
- Department of Psychiatry, College of Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Gawon Ju
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju 28644, Korea; (J.L.); (G.J.); (H.P.); (S.C.); (J.-W.S.); (C.-J.S.); (S.I.L.)
- Department of Psychiatry, College of Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Hyemi Park
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju 28644, Korea; (J.L.); (G.J.); (H.P.); (S.C.); (J.-W.S.); (C.-J.S.); (S.I.L.)
- Department of Psychiatry, College of Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Seungwon Chung
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju 28644, Korea; (J.L.); (G.J.); (H.P.); (S.C.); (J.-W.S.); (C.-J.S.); (S.I.L.)
- Department of Psychiatry, College of Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Jung-Woo Son
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju 28644, Korea; (J.L.); (G.J.); (H.P.); (S.C.); (J.-W.S.); (C.-J.S.); (S.I.L.)
- Department of Psychiatry, College of Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Chul-Jin Shin
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju 28644, Korea; (J.L.); (G.J.); (H.P.); (S.C.); (J.-W.S.); (C.-J.S.); (S.I.L.)
- Department of Psychiatry, College of Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Sang Ick Lee
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju 28644, Korea; (J.L.); (G.J.); (H.P.); (S.C.); (J.-W.S.); (C.-J.S.); (S.I.L.)
- Department of Psychiatry, College of Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Siekyeong Kim
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju 28644, Korea; (J.L.); (G.J.); (H.P.); (S.C.); (J.-W.S.); (C.-J.S.); (S.I.L.)
- Department of Psychiatry, College of Medicine, Chungbuk National University, Cheongju 28644, Korea
- Correspondence: ; Tel.: +82-43-269-6364; Fax: +82-43-267-7951
| |
Collapse
|
7
|
Taylor BK, Eastman JA, Frenzel MR, Embury CM, Wang YP, Stephen JM, Calhoun VD, Badura-Brack AS, Wilson TW. Subclinical Anxiety and Posttraumatic Stress Influence Cortical Thinning During Adolescence. J Am Acad Child Adolesc Psychiatry 2021; 60:1288-1299. [PMID: 33383162 PMCID: PMC8236497 DOI: 10.1016/j.jaac.2020.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/17/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Adolescence is a sensitive period for the development and emergence of anxiety and mood disorders. Research suggests that symptoms ranging from subclinical to clinical levels are associated with pathological developmental changes in the neocortex. However, much of this research has been cross-sectional, limiting the field's ability to identify the neurodevelopmental impacts of these symptoms. The present study examined how early reported symptoms predict baseline cortical thickness and surface area, and trajectories of change in these measures during adolescence. METHOD A total of 205 typically developing individuals 9 to 15 years of age (103 male and 102 female participants) completed 3T structural magnetic resonance imaging annually for 3 years. From these, we extracted mean cortical thickness and total surface area for each year. Youth self-reported their anxiety, depressive, and posttraumatic stress symptoms during their first visit. We used latent growth curve modeling to determine how these symptoms along with sex interactions predicted baseline thickness and surface area, and rates of change in these measures over the 3-year period. RESULTS Higher anxiety was associated with lower baseline thickness and slowed cortical thinning over time. Conversely, greater posttraumatic stress predicted higher baseline thickness and accelerated thinning over time. Sex interactions suggested that the effects were dampened among female compared to male participants. Depressive symptoms were not related to cortical thickness or surface area. CONCLUSION Female adolescents may express more regionally specific effects of symptoms sets on cortical thickness, although this requires further investigation. Cortical thickness in male adolescents appears to be preferentially susceptible to anxiety and posttraumatic stress symptoms, exhibiting global changes across multiple years.
Collapse
|
8
|
Leung IHK, Broadhouse KM, Mowszowski L, LaMonica HM, Palmer JR, Hickie IB, Naismith SL, Duffy SL. Association between lifetime depression history, hippocampal volume and memory in non-amnestic mild cognitive impairment. Eur J Neurosci 2021; 54:4953-4970. [PMID: 33765347 DOI: 10.1111/ejn.15207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/01/2021] [Accepted: 03/14/2021] [Indexed: 11/28/2022]
Abstract
Hippocampal subfield volume loss in older adults with amnestic mild cognitive impairment (aMCI) and depression history are associated with amyloid beta and tau pathology, thereby increasing the risk for Alzheimer's disease (AD). However, no studies have exclusively examined distinct alterations in hippocampal subfields in non-amnestic MCI (naMCI) in relation to depression history. Here, we used both longitudinal and transverse hippocampal segmentation methods using the automated FreeSurfer software to examine whether a lifetime depression history is associated with differences in hippocampal head/body/tail (H/B/T) and key subfield volumes (CA1, subiculum, dentate gyrus) in older adults with naMCI. Further, we explored whether differences in hippocampal H/B/T and subfield volumes were associated with structured and unstructured verbal encoding and retention, comparing those with and without a depression history. The naMCI with a depression history group demonstrated larger or relatively preserved right CA1 volumes, which were associated with better unstructured verbal encoding and as well as structured verbal memory retention. This association between memory encoding and hippocampal CA1 and total head volume was significantly different to those with no depression history. The relationship between right CA1 volume and memory retention was also moderated by depression history status F (5,143) = 7.84, p < 0.001, R2 = 0.22. Those participants taking antidepressants had significantly larger hippocampal subiculum (p = 0.008), and right hippocampal body (p = 0.004) and better performance on structured encoding (p = 0.011) and unstructured memory retention (p = 0.009). These findings highlight the importance of lifetime depression history and antidepressant use on the hippocampus and encoding and memory retention in naMCI.
Collapse
Affiliation(s)
- Isabella Hoi Kei Leung
- Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, Central Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Kathryn Mary Broadhouse
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Science and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Loren Mowszowski
- Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Faculty of Science, School of Psychology, University of Sydney, Sydney, NSW, Australia
| | - Haley M LaMonica
- Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, Central Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Jake Robert Palmer
- Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Department of Psychology, Macquarie University, Sydney, NSW, Australia
| | - Ian B Hickie
- Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Sharon L Naismith
- Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,Faculty of Science, School of Psychology, University of Sydney, Sydney, NSW, Australia
| | - Shantel Leigh Duffy
- Healthy Brain Ageing Program, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, Discipline of Exercise and Sport Science, Faculty of Health Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Hansen N, Singh A, Bartels C, Brosseron F, Buerger K, Cetindag AC, Dobisch L, Dechent P, Ertl-Wagner BB, Fliessbach K, Haynes JD, Heneka MT, Janowitz D, Kilimann I, Laske C, Metzger CD, Munk MH, Peters O, Priller J, Roy N, Scheffler K, Schneider A, Spottke A, Spruth EJ, Teipel S, Tscheuschler M, Vukovich R, Wiltfang J, Duezel E, Jessen F, Goya-Maldonado R. Hippocampal and Hippocampal-Subfield Volumes From Early-Onset Major Depression and Bipolar Disorder to Cognitive Decline. Front Aging Neurosci 2021; 13:626974. [PMID: 33967736 PMCID: PMC8097178 DOI: 10.3389/fnagi.2021.626974] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/10/2021] [Indexed: 12/04/2022] Open
Abstract
Background: The hippocampus and its subfields (HippSub) are reported to be diminished in patients with Alzheimer's disease (AD), bipolar disorder (BD), and major depressive disorder (MDD). We examined these groups vs healthy controls (HC) to reveal HippSub alterations between diseases. Methods: We segmented 3T-MRI T2-weighted hippocampal images of 67 HC, 58 BD, and MDD patients from the AFFDIS study and 137 patients from the DELCODE study assessing cognitive decline, including subjective cognitive decline (SCD), amnestic mild cognitive impairment (aMCI), and AD, via Free Surfer 6.0 to compare volumes across groups. Results: Groups differed significantly in several HippSub volumes, particularly between patients with AD and mood disorders. In comparison to HC, significant lower volumes appear in aMCI and AD groups in specific subfields. Smaller volumes in the left presubiculum are detected in aMCI and AD patients, differing from the BD group. A significant linear regression is seen between left hippocampus volume and duration since the first depressive episode. Conclusions: HippSub volume alterations were observed in AD, but not in early-onset MDD and BD, reinforcing the notion of different neural mechanisms in hippocampal degeneration. Moreover, duration since the first depressive episode was a relevant factor explaining the lower left hippocampal volumes present in groups.
Collapse
Affiliation(s)
- Niels Hansen
- Department of Psychiatry and Psychotherapy, Göttingen, Germany.,Laboratory of Systems Neuroscience and Imaging in Psychiatry, University Medical Center Göttingen, Göttingen, Germany
| | - Aditya Singh
- Department of Psychiatry and Psychotherapy, Göttingen, Germany.,Laboratory of Systems Neuroscience and Imaging in Psychiatry, University Medical Center Göttingen, Göttingen, Germany
| | - Claudia Bartels
- Department of Psychiatry and Psychotherapy, Göttingen, Germany
| | - Frederic Brosseron
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany.,Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Arda C Cetindag
- Berlin Institute of Health, Institute of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Peter Dechent
- MR-Research in Neurology and Psychiatry, University Medical Center Göttingen, Göttingen, Germany
| | - Birgit B Ertl-Wagner
- Institute for Clinical Radiology, Ludwig-Maximilians-University, Munich, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - John D Haynes
- Bernstein Center for Computational Neuroscience, Charité-Universitätsmedizin, Berlin, Germany
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany.,Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.,Section for Dementia Research, Hertie Institute for Clinical Brain Research, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Coraline D Metzger
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany
| | - Matthias H Munk
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.,Section for Dementia Research, Hertie Institute for Clinical Brain Research, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Oliver Peters
- Berlin Institute of Health, Institute of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Nina Roy
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurology, University of Bonn, Bonn, Germany
| | - Eike J Spruth
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany.,Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Maike Tscheuschler
- Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, Cologne, Germany
| | - Ruth Vukovich
- Department of Psychiatry and Psychotherapy, Göttingen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.,Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Emrah Duezel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Roberto Goya-Maldonado
- Department of Psychiatry and Psychotherapy, Göttingen, Germany.,Laboratory of Systems Neuroscience and Imaging in Psychiatry, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
10
|
Sämann PG, Iglesias JE, Gutman B, Grotegerd D, Leenings R, Flint C, Dannlowski U, Clarke‐Rubright EK, Morey RA, Erp TG, Whelan CD, Han LKM, Velzen LS, Cao B, Augustinack JC, Thompson PM, Jahanshad N, Schmaal L. FreeSurfer
‐based segmentation of hippocampal subfields: A review of methods and applications, with a novel quality control procedure for
ENIGMA
studies and other collaborative efforts. Hum Brain Mapp 2020; 43:207-233. [PMID: 33368865 PMCID: PMC8805696 DOI: 10.1002/hbm.25326] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/26/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022] Open
Abstract
Structural hippocampal abnormalities are common in many neurological and psychiatric disorders, and variation in hippocampal measures is related to cognitive performance and other complex phenotypes such as stress sensitivity. Hippocampal subregions are increasingly studied, as automated algorithms have become available for mapping and volume quantification. In the context of the Enhancing Neuro Imaging Genetics through Meta Analysis Consortium, several Disease Working Groups are using the FreeSurfer software to analyze hippocampal subregion (subfield) volumes in patients with neurological and psychiatric conditions along with data from matched controls. In this overview, we explain the algorithm's principles, summarize measurement reliability studies, and demonstrate two additional aspects (subfield autocorrelation and volume/reliability correlation) with illustrative data. We then explain the rationale for a standardized hippocampal subfield segmentation quality control (QC) procedure for improved pipeline harmonization. To guide researchers to make optimal use of the algorithm, we discuss how global size and age effects can be modeled, how QC steps can be incorporated and how subfields may be aggregated into composite volumes. This discussion is based on a synopsis of 162 published neuroimaging studies (01/2013–12/2019) that applied the FreeSurfer hippocampal subfield segmentation in a broad range of domains including cognition and healthy aging, brain development and neurodegeneration, affective disorders, psychosis, stress regulation, neurotoxicity, epilepsy, inflammatory disease, childhood adversity and posttraumatic stress disorder, and candidate and whole genome (epi‐)genetics. Finally, we highlight points where FreeSurfer‐based hippocampal subfield studies may be optimized.
Collapse
Affiliation(s)
| | - Juan Eugenio Iglesias
- Centre for Medical Image Computing University College London London UK
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital/Harvard Medical School Boston Massachusetts US
- Computer Science and AI Laboratory (CSAIL), Massachusetts Institute of Technology (MIT) Cambridge Massachusetts US
| | - Boris Gutman
- Department of Biomedical Engineering Illinois Institute of Technology Chicago USA
| | | | - Ramona Leenings
- Department of Psychiatry University of Münster Münster Germany
| | - Claas Flint
- Department of Psychiatry University of Münster Münster Germany
- Department of Mathematics and Computer Science University of Münster Germany
| | - Udo Dannlowski
- Department of Psychiatry University of Münster Münster Germany
| | - Emily K. Clarke‐Rubright
- Brain Imaging and Analysis Center, Duke University Durham North Carolina USA
- VISN 6 MIRECC, Durham VA Durham North Carolina USA
| | - Rajendra A. Morey
- Brain Imaging and Analysis Center, Duke University Durham North Carolina USA
- VISN 6 MIRECC, Durham VA Durham North Carolina USA
| | - Theo G.M. Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior University of California Irvine California USA
- Center for the Neurobiology of Learning and Memory University of California Irvine Irvine California USA
| | - Christopher D. Whelan
- Imaging Genetics Center Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California Los Angeles California USA
| | - Laura K. M. Han
- Department of Psychiatry Amsterdam University Medical Centers, Vrije Universiteit and GGZ inGeest, Amsterdam Neuroscience Amsterdam The Netherlands
| | - Laura S. Velzen
- Orygen Parkville Australia
- Centre for Youth Mental Health The University of Melbourne Melbourne Australia
| | - Bo Cao
- Department of Psychiatry, Faculty of Medicine & Dentistry University of Alberta Edmonton Canada
| | - Jean C. Augustinack
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital/Harvard Medical School Boston Massachusetts US
| | - Paul M. Thompson
- Imaging Genetics Center Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California Los Angeles California USA
| | - Neda Jahanshad
- Imaging Genetics Center Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California Los Angeles California USA
| | - Lianne Schmaal
- Orygen Parkville Australia
- Centre for Youth Mental Health The University of Melbourne Melbourne Australia
| |
Collapse
|
11
|
Moskowitz S, Russ DW, Clark LA, Wages NP, Grooms DR, Woods AJ, Suhr J, Simon JE, O'Shea A, Criss CR, Fadda P, Clark BC. Is impaired dopaminergic function associated with mobility capacity in older adults? GeroScience 2020; 43:1383-1404. [PMID: 33236263 DOI: 10.1007/s11357-020-00303-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/18/2020] [Indexed: 01/14/2023] Open
Abstract
The capacity to move is essential for independence and declines with age. Slow movement speed, in particular, is strongly associated with negative health outcomes. Prior research on mobility (herein defined as movement slowness) and aging has largely focused on musculoskeletal mechanisms and processes. More recent work has provided growing evidence for a significant role of the nervous system in contributing to reduced mobility in older adults. In this article, we report four pieces of complementary evidence from behavioral, genetic, and neuroimaging experiments that, we believe, provide theoretical support for the assertion that the basal ganglia and its dopaminergic function are responsible, in part, for age-related reductions in mobility. We report four a posteriori findings from an existing dataset: (1) slower central activation of ballistic force development is associated with worse mobility among older adults; (2) older adults with the Val/Met intermediate catecholamine-O-methyl-transferase (COMT) genotype involved in dopamine degradation exhibit greater mobility than their homozygous counterparts; (3) there are moderate relationships between performance times from a series of lower and upper extremity tasks supporting the notion that movement speed in older adults is a trait-like attribute; and (4) there is a relationship of functional connectivity within the medial orbofrontal (mOFC) cortico-striatal network and measures of mobility, suggesting that a potential neural mechanism for impaired mobility with aging is the deterioration of the integrity of key regions within the mOFC cortico-striatal network. These findings align with recent basic and clinical science work suggesting that the basal ganglia and its dopaminergic function are mechanistically linked to age-related reductions in mobility capacity.
Collapse
Affiliation(s)
- Simon Moskowitz
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, 250 Irvine Hall, Athens, OH, 45701, USA
| | - David W Russ
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, 250 Irvine Hall, Athens, OH, 45701, USA.,School of Rehabilitation and Communication Sciences, Ohio University, Athens, OH, USA.,School of Physical Therapy & Rehabilitation Sciences, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Leatha A Clark
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, 250 Irvine Hall, Athens, OH, 45701, USA.,Department of Biomedical Sciences at Ohio University, Athens, OH, USA.,Department of Family Medicine at Ohio University, Athens, OH, USA
| | - Nathan P Wages
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, 250 Irvine Hall, Athens, OH, 45701, USA.,Department of Biomedical Sciences at Ohio University, Athens, OH, USA
| | - Dustin R Grooms
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, 250 Irvine Hall, Athens, OH, 45701, USA.,School of Applied Health and Wellness, Ohio University, Athens, OH, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Julie Suhr
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, 250 Irvine Hall, Athens, OH, 45701, USA.,Department of Psychology, Ohio University, Athens, OH, USA
| | - Janet E Simon
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, 250 Irvine Hall, Athens, OH, 45701, USA.,School of Applied Health and Wellness, Ohio University, Athens, OH, USA
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Cody R Criss
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, 250 Irvine Hall, Athens, OH, 45701, USA
| | - Paolo Fadda
- Genomics Shared Resource-Comprehensive Cancer Center, The Ohio State University, Athens, OH, USA
| | - Brian C Clark
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, 250 Irvine Hall, Athens, OH, 45701, USA. .,Department of Biomedical Sciences at Ohio University, Athens, OH, USA. .,Division of Geriatric Medicine at Ohio University, Athens, OH, USA.
| |
Collapse
|
12
|
Szymkowicz SM, Woods AJ, Dotson VM, Porges EC, Nissim NR, O’Shea A, Cohen RA, Ebner NC. Associations between subclinical depressive symptoms and reduced brain volume in middle-aged to older adults. Aging Ment Health 2019; 23:819-830. [PMID: 29381390 PMCID: PMC6066456 DOI: 10.1080/13607863.2018.1432030] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES The associations between subclinical depressive symptoms, as well specific symptom subscales, on brain structure in aging are not completely elucidated. This study investigated the extent to which depressive symptoms were related to brain volumes in fronto-limbic structures in a sample of middle-aged to older adults. METHOD Eighty participants underwent structural neuroimaging and completed the Beck Depression Inventory, 2nd Edition (BDI-II), which comprises separate affective, cognitive, and somatic subscales. Gray matter volumes were extracted from the caudal and rostral anterior cingulate, posterior cingulate, hippocampus, and amygdala. Hierarchical regression models examined the relationship between brain volumes and (i) total depressive symptoms and (ii) BDI-II subscales were conducted. RESULTS After adjusting for total intracranial volume, race, and age, higher total depressive symptoms were associated with smaller hippocampal volume (p = 0.005). For the symptom subscales, after controlling for the abovementioned covariates and the influence of the other symptom subscales, more somatic symptoms were related to smaller posterior cingulate (p = 0.025) and hippocampal (p < 0.001) volumes. In contrast, the affective and cognitive subscales were not associated with brain volumes in any regions of interest. CONCLUSION Our data showed that greater symptomatology was associated with smaller volume in limbic brain regions. These findings provide evidence for preclinical biological markers of major depression and specifically advance knowledge of the relationship between subclinical depressive symptoms and brain volume. Importantly, we observed variations by specific depressive symptom subscales, suggesting a symptom-differential relationship between subclinical depression and brain volume alterations in middle-aged and older individuals.
Collapse
Affiliation(s)
- Sarah M. Szymkowicz
- Sarah M. Szymkowicz, M.S., 1Department of Clinical & Health Psychology, University of Florida, P.O. Box 100165, Gainesville, FL, 32610-0165. Phone: +1 (352) 273-6058.
| | - Adam J. Woods
- Adam J. Woods, Ph.D., 1Department of Clinical & Health Psychology, University of Florida, 2Center for Cognitive Aging & Memory, McKnight Brain Institute, University of Florida, P.O. Box 100015, Gainesville, FL, 32610-0015, 3Department of Neuroscience, University of Florida, P.O. Box 100244, Gainesville, FL, 32610-0244. Phone: +1 (352) 294-5842.
| | - Vonetta M. Dotson
- Vonetta M. Dotson, Ph.D., 4Department of Psychology, Georgia State University, P.O. Box 5010, Atlanta, GA, 30302-5010. Phone: +1 (404) 413-6207.
| | - Eric C. Porges
- Eric C. Porges, Ph.D., 1Department of Clinical & Health Psychology, University of Florida, 2Center for Cognitive Aging & Memory, McKnight Brain Institute, University of Florida. Phone: +1 (352) 294-5838.
| | - Nicole R. Nissim
- Nicole R. Nissim, M.S., 2Center for Cognitive Aging & Memory, McKnight Brain Institute, University of Florida, 3Department of Neuroscience, University of Florida. Phone: +1 (352) 294-5742.
| | - Andrew O’Shea
- Andrew O’Shea, M.S., 1Department of Clinical & Health Psychology, University of Florida, 2Center for Cognitive Aging & Memory, McKnight Brain Institute, University of Florida. Phone: +1 (352) 294-5827.
| | - Ronald A. Cohen
- Ronald A. Cohen, Ph.D., 1Department of Clinical & Health Psychology, University of Florida, 2Center for Cognitive Aging & Memory, McKnight Brain Institute, University of Florida. Phone: +1 (352) 294-5840.
| | - Natalie C. Ebner
- Natalie C. Ebner, Ph.D., 2Center for Cognitive Aging & Memory, McKnight Brain Institute, University of Florida, 5Department of Psychology, University of Florida, P.O. Box 112250, Gainesville, FL, 32611, 6Department of Aging & Geriatric Research, University of Florida, 2004 Mowry Road, Gainesville, FL, 32611. Phone: +1 (203) 691-0371.
| |
Collapse
|