1
|
Shi J, Guan Y, Song H, Zhu L, Li J, Li Q, Hou N, Han F, Wang M, Zhang K, Shan M, Sun X, Qiu H. Exploring heparin's protective mechanism against AGEs induced endothelial injury. iScience 2024; 27:111084. [PMID: 39493878 PMCID: PMC11530820 DOI: 10.1016/j.isci.2024.111084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/12/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024] Open
Abstract
Advanced glycation end products (AGEs) in diabetes can cause endothelial damage. Heparin, widely known as a recognized anticoagulant, is also a multifunctional therapeutic drug. This study investigated whether heparin could ameliorate AGEs-induced endothelial injury. Remarkably, heparin effectively attenuated this cellular damage and assumed a reparative role. Furthermore, heparin inhibited the AGEs-RAGE-NFκB axis, thereby mitigating endothelial inflammatory injury. Comprehensive proteome and knockdown experiments suggested that heparin may exert a positive influence on cell growth and further alleviate pathological damage by upregulating the expression of LYAR (cell growth-regulating nucleolar protein). Diabetic mouse model was also used to further verify the changes of endothelial tissue in diabetic state and heparin intervention. In summary, these findings demonstrate that heparin has the potential to ameliorate AGEs-induced endothelial injury, opening new avenues for exploring the expanded therapeutic roles of heparin and its potential application in the management of diabetes and its associated complications.
Collapse
Affiliation(s)
- Junfeng Shi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Yudong Guan
- School of Stomatology, Henan University, Kaifeng, Henan, China
| | - Hongwei Song
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Liang Zhu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Jingjing Li
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Qinying Li
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Meng Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Ming Shan
- Medical Research Center, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, P.R. China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| |
Collapse
|
2
|
Yerlici VT, Astori A, Kejiou NS, Jordan CA, Khosraviani N, Chan JNY, Hakem R, Raught B, Palazzo AF, Mekhail K. SARS-CoV-2 targets ribosomal RNA biogenesis. Cell Rep 2024; 43:113891. [PMID: 38427561 DOI: 10.1016/j.celrep.2024.113891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 10/02/2023] [Accepted: 02/15/2024] [Indexed: 03/03/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hinders host gene expression, curbing defenses and licensing viral protein synthesis and virulence. During SARS-CoV-2 infection, the virulence factor non-structural protein 1 (Nsp1) targets the mRNA entry channel of mature cytoplasmic ribosomes, limiting translation. We show that Nsp1 also restrains translation by targeting nucleolar ribosome biogenesis. SARS-CoV-2 infection disrupts 18S and 28S ribosomal RNA (rRNA) processing. Expression of Nsp1 recapitulates the processing defects. Nsp1 abrogates rRNA production without altering the expression of critical processing factors or nucleolar organization. Instead, Nsp1 localizes to the nucleolus, interacting with precursor-rRNA and hindering its maturation separately from the viral protein's role in restricting mature ribosomes. Thus, SARS-CoV-2 Nsp1 limits translation by targeting ribosome biogenesis and mature ribosomes. These findings revise our understanding of how SARS-CoV-2 Nsp1 controls human protein synthesis, suggesting that efforts to counter Nsp1's effect on translation should consider the protein's impact from ribosome manufacturing to mature ribosomes.
Collapse
Affiliation(s)
- V Talya Yerlici
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Audrey Astori
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Nevraj S Kejiou
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Chris A Jordan
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Negin Khosraviani
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Janet N Y Chan
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Razqallah Hakem
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1M1, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Alexander F Palazzo
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
3
|
Urwanisch L, Unger MS, Sieberer H, Dang HH, Neuper T, Regl C, Vetter J, Schaller S, Winkler SM, Kerschbamer E, Weichenberger CX, Krenn PW, Luciano M, Pleyer L, Greil R, Huber CG, Aberger F, Horejs-Hoeck J. The Class IIA Histone Deacetylase (HDAC) Inhibitor TMP269 Downregulates Ribosomal Proteins and Has Anti-Proliferative and Pro-Apoptotic Effects on AML Cells. Cancers (Basel) 2023; 15:cancers15041039. [PMID: 36831382 PMCID: PMC9953883 DOI: 10.3390/cancers15041039] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematopoietic malignancy characterized by altered myeloid progenitor cell proliferation and differentiation. As in many other cancers, epigenetic transcriptional repressors such as histone deacetylases (HDACs) are dysregulated in AML. Here, we investigated (1) HDAC gene expression in AML patients and in different AML cell lines and (2) the effect of treating AML cells with the specific class IIA HDAC inhibitor TMP269, by applying proteomic and comparative bioinformatic analyses. We also analyzed cell proliferation, apoptosis, and the cell-killing capacities of TMP269 in combination with venetoclax compared to azacitidine plus venetoclax, by flow cytometry. Our results demonstrate significantly overexpressed class I and class II HDAC genes in AML patients, a phenotype which is conserved in AML cell lines. In AML MOLM-13 cells, TMP269 treatment downregulated a set of ribosomal proteins which are overexpressed in AML patients at the transcriptional level. TMP269 showed anti-proliferative effects and induced additive apoptotic effects in combination with venetoclax. We conclude that TMP269 exerts anti-leukemic activity when combined with venetoclax and has potential as a therapeutic drug in AML.
Collapse
Affiliation(s)
- Laura Urwanisch
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
| | - Michael Stefan Unger
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
| | - Helene Sieberer
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
| | - Hieu-Hoa Dang
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
| | - Theresa Neuper
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
| | - Christof Regl
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
| | - Julia Vetter
- Bioinformatics Research Group, University of Applied Sciences Upper Austria, Softwarepark 11, 4232 Hagenberg im Muehlkreis, Austria
| | - Susanne Schaller
- Bioinformatics Research Group, University of Applied Sciences Upper Austria, Softwarepark 11, 4232 Hagenberg im Muehlkreis, Austria
| | - Stephan M. Winkler
- Bioinformatics Research Group, University of Applied Sciences Upper Austria, Softwarepark 11, 4232 Hagenberg im Muehlkreis, Austria
| | - Emanuela Kerschbamer
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via A. Volta 21, 39100 Bolzano, Italy
| | - Christian X. Weichenberger
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via A. Volta 21, 39100 Bolzano, Italy
| | - Peter W. Krenn
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
| | - Michela Luciano
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
| | - Lisa Pleyer
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
- IIIrd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological and Molecular Cancer Research and Center for Clinical Cancer and Immunology Trials, 5020 Salzburg, Austria
| | - Richard Greil
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
- IIIrd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological and Molecular Cancer Research and Center for Clinical Cancer and Immunology Trials, 5020 Salzburg, Austria
| | - Christian G. Huber
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
| | - Fritz Aberger
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
- Correspondence: ; Tel.: +43-(0)662-8044-5709
| |
Collapse
|
4
|
Sun Y, Hu X, Qiu D, Zhang Z, Lei L. rDNA Transcription in Developmental Diseases and Stem Cells. Stem Cell Rev Rep 2023; 19:839-852. [PMID: 36633782 DOI: 10.1007/s12015-023-10504-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2023] [Indexed: 01/13/2023]
Abstract
As the first and rate-limiting step in ribosome biogenesis, rDNA transcription undergoes significant dynamic changes during cell pluripotency alteration. Over the past decades, rDNA activity has demonstrated dynamic changes, but most people view it as passive compliance with cellular needs. The evidence for rDNA transcriptional activity determining stem cell pluripotency is growing as research advances, resulting in the arrest of embryonic development and impairment of stem cell lines stemness by rDNA transcription inhibition. The exact mechanism by which rDNA activation influences pluripotency remains unknown. The first objective of this opinion article is to describe rDNA changes in the pathological and physiological course of life, including developmental diseases, tumor genesis, and stem cell differentiation. After that, we propose three hypotheses regarding rDNA regulation of pluripotency: 1) Specialized ribosomes synthesized from rDNA variant, 2) Nucleolar stress induced by the drop of rDNA transcription, 3) Interchromosomal interactions between rDNA and other genes. The pluripotency regulatory center is expected to focus strongly on rDNA. A small molecule inhibitor of rDNA is used to treat tumors caused by abnormal pluripotency activation. By understanding how rDNA regulates pluripotency, we hope to treat developmental diseases and safely apply somatic cell reprogramming in clinical settings.
Collapse
Affiliation(s)
- Yuchen Sun
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, People's Republic of China, 150081
| | - Xinglin Hu
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, People's Republic of China, 150081
| | - Dan Qiu
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, People's Republic of China, 150081
| | - Zhijing Zhang
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, People's Republic of China, 150081
| | - Lei Lei
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, People's Republic of China, 150081.
| |
Collapse
|
5
|
Chen H, Murray E, Sinha A, Laumas A, Li J, Lesman D, Nie X, Hotaling J, Guo J, Cairns BR, Macosko EZ, Cheng CY, Chen F. Dissecting mammalian spermatogenesis using spatial transcriptomics. Cell Rep 2021; 37:109915. [PMID: 34731600 PMCID: PMC8606188 DOI: 10.1016/j.celrep.2021.109915] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 07/20/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Single-cell RNA sequencing has revealed extensive molecular diversity in gene programs governing mammalian spermatogenesis but fails to delineate their dynamics in the native context of seminiferous tubules, the spatially confined functional units of spermatogenesis. Here, we use Slide-seq, a spatial transcriptomics technology, to generate an atlas that captures the spatial gene expression patterns at near-single-cell resolution in the mouse and human testis. Using Slide-seq data, we devise a computational framework that accurately localizes testicular cell types in individual seminiferous tubules. Unbiased analysis systematically identifies spatially patterned genes and gene programs. Combining Slide-seq with targeted in situ RNA sequencing, we demonstrate significant differences in the cellular compositions of spermatogonial microenvironment between mouse and human testes. Finally, a comparison of the spatial atlas generated from the wild-type and diabetic mouse testis reveals a disruption in the spatial cellular organization of seminiferous tubules as a potential mechanism of diabetes-induced male infertility. Chen et al. generate a spatial transcriptome atlas of the mammalian testis at near-single-cell resolution that recapitulates spermatogenesis by accurately localizing testicular cell types and reconstructing tissue structures. The atlas is used to reveal the spatial organization of testicular microenvironment and profile its changes under diabetic conditions.
Collapse
Affiliation(s)
- Haiqi Chen
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Evan Murray
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Anubhav Sinha
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute, MIT, Cambridge, MA 02139, USA; Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02142, USA
| | | | - Jilong Li
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daniel Lesman
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xichen Nie
- Department of Oncological Sciences and Huntsman Cancer Institute, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jim Hotaling
- Department of Oncological Sciences and Huntsman Cancer Institute, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jingtao Guo
- Department of Oncological Sciences and Huntsman Cancer Institute, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Bradley R Cairns
- Department of Oncological Sciences and Huntsman Cancer Institute, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Evan Z Macosko
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, 10065, USA
| | - Fei Chen
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
6
|
Chen L, Jin C, Liu H, Feng R, Li Z, Zhang J. Analysis of the role of Ly-1 antibody reactive in different cancer types. Bioengineered 2021; 12:9452-9462. [PMID: 34696677 PMCID: PMC8809990 DOI: 10.1080/21655979.2021.1995100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
LYAR (Ly-1 antibody reactive) is a transcription factor with a specific DNA-binding domain, which plays a key role in the regulation of embryonic stem cell self-renewal and differentiation. However, the role of LYAR in human cancers remains unclear. This study aimed to analyze the prognostic value of LYAR in cancer. In this study, we evaluated the prognostic value of LYAR in various tumors. We research found that, compared with normal tissues, LYAR levels werehigher in a variety of tumors. LYAR expression level was associated with poor overall survival, progression-free interval, and disease-specific survival. LYAR expression was also related to tumor grade, stage, age, and tumor status. Cell counting kit-8, Transwell, and wound healing assay showed that knocking out LYAR significantly inhibited the proliferation, migration, and invasion of hepatocellular carcinoma cells. In addition, this study found that LYARexpression was significantly positively correlated with MKI67IP, BZW2, and CCT2. Gene set enrichment analysis results showed that samples with high LYAR expression levels were rich in spliceosomes, RNA degradation, pyrimidine metabolism, cell cycle, nucleotide excision repair, and base excision repair.
Collapse
Affiliation(s)
- Linlin Chen
- General Surgery, Affiliated Hospital of West Anhui Health Vocational College, Luan,237000, China.,West Anhui Health Vocational College, Luan, 237000, China
| | - Congwen Jin
- General Surgery, Affiliated Hospital of West Anhui Health Vocational College, Luan,237000, China.,West Anhui Health Vocational College, Luan, 237000, China
| | - Hao Liu
- General Surgery, Affiliated Hospital of West Anhui Health Vocational College, Luan,237000, China.,West Anhui Health Vocational College, Luan, 237000, China
| | - Rongmei Feng
- Critical Care Medicine, The Lu'an Hospital Affiliated to Anhui Medical University, Luan,237000, China.,Critical Care Medicine, The Lu'an People's Hospital, Luan,237000, China
| | - Zhengdong Li
- General Surgery, Affiliated Hospital of West Anhui Health Vocational College, Luan,237000, China.,West Anhui Health Vocational College, Luan, 237000, China
| | - Jiasheng Zhang
- Emergency surgery, The Lu'an Hospital Affiliated to Anhui Medical University, Luan,237000, China.,Emergency surgery, The Lu'an People's Hospital, Luan,237000, China
| |
Collapse
|
7
|
Bhushan A, Kumari R, Srivastava T. Scouting for common genes in the heterogenous hypoxic tumor microenvironment and their validation in glioblastoma. 3 Biotech 2021; 11:451. [PMID: 34631352 DOI: 10.1007/s13205-021-02987-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/04/2021] [Indexed: 12/17/2022] Open
Abstract
Investigating the therapeutic and prognostic potential of genes in the heterogeneous hypoxic niche of glioblastoma. We have analyzed RNA expression of U87MG cells cultured in hypoxia compared to normoxia. Common differentially expressed genes (DEGs) from GSE45301 and GSE18494 and their functional enrichment was performed using MetaScape and PANTHER. Hub genes and their ontology were identified using MCode cytoHubba and ClueGO and validated with GlioVis, Oncomine, HPA and PrognoScan. Using the GEO2R analysis of GSE45301 and GSE18494 datasets, we have found a total of 246 common DEGs (180 upregulated and 66 downregulated) and identified 2 significant modules involved in ribosome biogenesis and TNF signaling. Meta-analysis of key genes of each module in cytoHubba identified 17 hub genes (ATF3, BYSL, DUSP1, EGFR, JUN, ETS1, LYAR, NIP7, NOLC1, NOP2, NOP56, PNO1, RRS1, TNFAIP3, TNFRSF1B, UTP15, VEGFA). Of the 17 hub genes, ATF3, BYSL, EGFR, JUN, NIP7, NOLC1, PNO1, RRS1, TNFAIP3 and VEGFA were identified as hypoxia signatures associated with poor prognosis in Glioma. Ribosome biogenesis emerged as a vital contender of possible therapeutic potential with BYSL, NIP7, NOLC1, PNO1 and RRS1 showing prognostic value. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02987-2.
Collapse
Affiliation(s)
- Ashish Bhushan
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Ranbala Kumari
- National Institute of Pathology (ICMR), Safdarjung Hospital Campus, New Delhi, India
| | - Tapasya Srivastava
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| |
Collapse
|
8
|
Barreiro-Alonso A, Lamas-Maceiras M, Lorenzo-Catoira L, Pardo M, Yu L, Choudhary JS, Cerdán ME. HMGB1 Protein Interactions in Prostate and Ovary Cancer Models Reveal Links to RNA Processing and Ribosome Biogenesis through NuRD, THOC and Septin Complexes. Cancers (Basel) 2021; 13:cancers13184686. [PMID: 34572914 PMCID: PMC8466577 DOI: 10.3390/cancers13184686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary HMGB1 over-expression is associated to prostate and ovary cancers: in this work, using a proteomic approach, we aimed to discover new protein interactions that might contribute to understand the oncogenic function of HMGB1 in cancers models. Our findings show that HMGB1 interacts with components of the NuRD, THOC and septin complexes, revealing new connections of HMGB1 functions to RNA processing and ribosome biogenesis. Results might contribute to consider the components of these interactomes as targets for diagnosis and therapy in future studies. Abstract This study reports the HMGB1 interactomes in prostate and ovary cancer cells lines. Affinity purification coupled to mass spectrometry confirmed that the HMGB1 nuclear interactome is involved in HMGB1 known functions such as maintenance of chromatin stability and regulation of transcription, and also in not as yet reported processes such as mRNA and rRNA processing. We have identified an interaction between HMGB1 and the NuRD complex and validated this by yeast-two-hybrid, confirming that the RBBP7 subunit directly interacts with HMGB1. In addition, we describe for the first time an interaction between two HMGB1 interacting complexes, the septin and THOC complexes, as well as an interaction of these two complexes with Rab11. Analysis of Pan-Cancer Atlas public data indicated that several genes encoding HMGB1-interacting proteins identified in this study are dysregulated in tumours from patients diagnosed with ovary and prostate carcinomas. In PC-3 cells, silencing of HMGB1 leads to downregulation of the expression of key regulators of ribosome biogenesis and RNA processing, namely BOP1, RSS1, UBF1, KRR1 and LYAR. Upregulation of these genes in prostate adenocarcinomas is correlated with worse prognosis, reinforcing their functional significance in cancer progression.
Collapse
Affiliation(s)
- Aida Barreiro-Alonso
- EXPRELA Group, Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña (UDC), 15008 A Coruña, Spain; (M.L.-M.); (L.L.-C.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), 15006 A Coruña, Spain
- Department of Biology, Faculty of Sciences, Campus de A Zapateira, University of A Coruña (UDC), 15008 A Coruña, Spain
- Functional Proteomics, The Institute of Cancer Research, London SW7 3RP, UK; (M.P.); (L.Y.); (J.S.C.)
- Correspondence: (A.B.-A.); (M.E.C.)
| | - Mónica Lamas-Maceiras
- EXPRELA Group, Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña (UDC), 15008 A Coruña, Spain; (M.L.-M.); (L.L.-C.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), 15006 A Coruña, Spain
- Department of Biology, Faculty of Sciences, Campus de A Zapateira, University of A Coruña (UDC), 15008 A Coruña, Spain
| | - Lidia Lorenzo-Catoira
- EXPRELA Group, Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña (UDC), 15008 A Coruña, Spain; (M.L.-M.); (L.L.-C.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), 15006 A Coruña, Spain
- Department of Biology, Faculty of Sciences, Campus de A Zapateira, University of A Coruña (UDC), 15008 A Coruña, Spain
| | - Mercedes Pardo
- Functional Proteomics, The Institute of Cancer Research, London SW7 3RP, UK; (M.P.); (L.Y.); (J.S.C.)
| | - Lu Yu
- Functional Proteomics, The Institute of Cancer Research, London SW7 3RP, UK; (M.P.); (L.Y.); (J.S.C.)
| | - Jyoti S. Choudhary
- Functional Proteomics, The Institute of Cancer Research, London SW7 3RP, UK; (M.P.); (L.Y.); (J.S.C.)
| | - M. Esperanza Cerdán
- EXPRELA Group, Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña (UDC), 15008 A Coruña, Spain; (M.L.-M.); (L.L.-C.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), 15006 A Coruña, Spain
- Department of Biology, Faculty of Sciences, Campus de A Zapateira, University of A Coruña (UDC), 15008 A Coruña, Spain
- Correspondence: (A.B.-A.); (M.E.C.)
| |
Collapse
|
9
|
Characterization of Odontogenic Differentiation from Human Dental Pulp Stem Cells Using TMT-Based Proteomic Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3871496. [PMID: 33490242 PMCID: PMC7789479 DOI: 10.1155/2020/3871496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/10/2020] [Accepted: 11/20/2020] [Indexed: 01/09/2023]
Abstract
Background The repair of dental pulp injury relies on the odontogenic differentiation of dental pulp stem cells (DPSCs). To better understand the odontogenic differentiation of DPSCs and identify proteins involved in this process, tandem mass tags (TMTs) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) were applied to compare the proteomic profiles of induced and control DPSCs. Methods The proteins expressed during osteogenic differentiation of human DPSCs were profiled using the TMT method combined with LC-MS/MS analysis. The identified proteins were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Then, a protein-protein interaction (PPI) network was constructed. Two selected proteins were confirmed by western blotting (WB) analysis. Results A total of 223 proteins that were differentially expressed were identified. Among them, 152 proteins were significantly upregulated and 71 were downregulated in the odontogenic differentiation group compared with the control group. On the basis of biological processes in GO, the identified proteins were mainly involved in cellular processes, metabolic processes, and biological regulation, which are connected with the signaling pathways highlighted by KEGG pathway analysis. PPI networks showed that most of the differentially expressed proteins were implicated in physical or functional interaction. The protein expression levels of FBN1 and TGF-β2 validated by WB were consistent with the proteomic analysis. Conclusions This is the first proteomic analysis of human DPSC odontogenesis using a TMT method. We identified many new differentially expressed proteins that are potential targets for pulp-dentin complex regeneration and repair.
Collapse
|
10
|
Hu K. Quick, Coordinated and Authentic Reprogramming of Ribosome Biogenesis during iPSC Reprogramming. Cells 2020; 9:cells9112484. [PMID: 33203179 PMCID: PMC7697288 DOI: 10.3390/cells9112484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/04/2022] Open
Abstract
Induction of pluripotent stem cells (iPSC) by OCT4 (octamer-binding transcription factor 4), SOX2 (SR box 2), KLF4 (Krüppel-Like Factor 4), and MYC (cellular Myelocytomatosis, c-MYC or MYC) (collectively OSKM) is revolutionary, but very inefficient, slow, and stochastic. It is unknown as to what underlies the potency aspect of the multi-step, multi-pathway, and inefficient iPSC reprogramming. Mesenchymal-to-epithelial (MET) transition is known as the earliest pathway reprogrammed. Using the recently established concepts of reprogramome and reprogramming legitimacy, the author first demonstrated that ribosome biogenesis (RB) is globally enriched in terms of human embryonic stem cells in comparison with fibroblasts, the popular starting cells of pluripotency reprogramming. It is then shown that the RB network was reprogrammed quickly in a coordinated fashion. Human iPSCs also demonstrated a more robust ribosome biogenesis. The quick and global reprogramming of ribosome biogenesis was also observed in an independent fibroblast line from a different donor. This study additionally demonstrated that MET did not initiate substantially at the time of proper RB reprogramming. This quick, coordinated and authentic RB reprogramming to the more robust pluripotent state by the OSKM reprogramming factors dramatically contrasts the overall low efficiency and long latency of iPSC reprogramming, and aligns well with the potency aspect of the inefficient OSKM reprogramming.
Collapse
Affiliation(s)
- Kejin Hu
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
11
|
Okuwaki M, Saito S, Hirawake-Mogi H, Nagata K. The interaction between nucleophosmin/NPM1 and the large ribosomal subunit precursors contribute to maintaining the nucleolar structure. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118879. [PMID: 33039556 DOI: 10.1016/j.bbamcr.2020.118879] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/29/2022]
Abstract
Nucleoli are sites where both the large and small ribosomal subunits mature. Biochemical assays have suggested that a multivalent nucleolar protein, NPM1/nucleophosmin contributes to the formation of the outer layer of the nucleolus. Prior works show that NPM1 depletion disorganizes the nucleolar structure. However, the mechanism of how NPM1 regulates the nucleolar structure has been unknown. We demonstrated that NPM1 directly interacts with the large ribosomal subunits and maintains them in the nucleolus. Ectopically localized NPM1 efficiently recruits only the large ribosomal subunit precursors, while ectopically localized large ribosomal subunit by the ribosomal protein RPL4 efficiently recruits NPM1. These results suggest that the nucleolar localization of NPM1 and the large ribosomal subunit precursors are mutually dependent. Furthermore, proteomic and localization analyses suggest that NPM1 plays a crucial role in the accumulation of the late processing machinery of the large ribosomal subunits in the nucleolus. Our results suggest that NPM1 maintains the pre-ribosomes and assembly machinery in the nucleolus, which in turn determines the nucleolar volume.
Collapse
Affiliation(s)
- Mitsuru Okuwaki
- Department of Biochemistry, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; Department of Infection Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan.
| | - Shoko Saito
- Department of Biochemistry, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; Department of Infection Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Hiroko Hirawake-Mogi
- Department of Biochemistry, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kyosuke Nagata
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| |
Collapse
|
12
|
Thoms M, Buschauer R, Ameismeier M, Koepke L, Denk T, Hirschenberger M, Kratzat H, Hayn M, Mackens-Kiani T, Cheng J, Straub JH, Stürzel CM, Fröhlich T, Berninghausen O, Becker T, Kirchhoff F, Sparrer KMJ, Beckmann R. Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. Science 2020; 369:1249-1255. [PMID: 32680882 PMCID: PMC7402621 DOI: 10.1126/science.abc8665] [Citation(s) in RCA: 556] [Impact Index Per Article: 139.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the current coronavirus disease 2019 (COVID-19) pandemic. A major virulence factor of SARS-CoVs is the nonstructural protein 1 (Nsp1), which suppresses host gene expression by ribosome association. Here, we show that Nsp1 from SARS-CoV-2 binds to the 40S ribosomal subunit, resulting in shutdown of messenger RNA (mRNA) translation both in vitro and in cells. Structural analysis by cryo-electron microscopy of in vitro-reconstituted Nsp1-40S and various native Nsp1-40S and -80S complexes revealed that the Nsp1 C terminus binds to and obstructs the mRNA entry tunnel. Thereby, Nsp1 effectively blocks retinoic acid-inducible gene I-dependent innate immune responses that would otherwise facilitate clearance of the infection. Thus, the structural characterization of the inhibitory mechanism of Nsp1 may aid structure-based drug design against SARS-CoV-2.
Collapse
MESH Headings
- Betacoronavirus/chemistry
- Betacoronavirus/immunology
- Betacoronavirus/metabolism
- Betacoronavirus/physiology
- Binding Sites
- COVID-19
- Coronavirus Infections/immunology
- Coronavirus Infections/virology
- Cryoelectron Microscopy
- DEAD Box Protein 58/genetics
- DEAD Box Protein 58/metabolism
- Humans
- Immune Evasion
- Immunity, Innate
- Interferon-beta/genetics
- Interferon-beta/metabolism
- Models, Molecular
- Pandemics
- Pneumonia, Viral/immunology
- Pneumonia, Viral/virology
- Protein Binding
- Protein Biosynthesis
- Protein Domains
- Protein Interaction Domains and Motifs
- Protein Structure, Secondary
- RNA, Messenger/metabolism
- Receptors, Immunologic
- Ribosome Subunits, Small, Eukaryotic/chemistry
- Ribosome Subunits, Small, Eukaryotic/metabolism
- SARS-CoV-2
- Viral Nonstructural Proteins/chemistry
- Viral Nonstructural Proteins/metabolism
Collapse
Affiliation(s)
- Matthias Thoms
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Robert Buschauer
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Michael Ameismeier
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Lennart Koepke
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Timo Denk
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | | | - Hanna Kratzat
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Manuel Hayn
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Timur Mackens-Kiani
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Jingdong Cheng
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Jan H Straub
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Christina M Stürzel
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Thomas Fröhlich
- Laboratory of Functional Genome Analysis, University of Munich, Munich, Germany
| | - Otto Berninghausen
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Thomas Becker
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Roland Beckmann
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich, Germany.
| |
Collapse
|
13
|
The Mechanism of Zinc Sulfate in Improving Fertility in Obese Rats Analyzed by Sperm Proteomic Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9876363. [PMID: 32462040 PMCID: PMC7222545 DOI: 10.1155/2020/9876363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/06/2020] [Indexed: 01/14/2023]
Abstract
This study investigates the mechanism underlying the improving effect of zinc on fertility in obese rats using proteomics. The effects of three different doses of ZnSO4 on spermatogenesis and hormone levels were studied. Testicular spermatogenesis was observed by HE staining. Serum estrogen and testosterone levels were measured by chemiluminescent microparticle immunoassay. Sperm proteomic analysis was performed by liquid chromatography-mass spectrometry. The DAVID database was used to perform the GO enrichment analysis and KEGG pathway analysis of the differentially expressed genes, and the STRING online database was used to construct a PPI network. The sperm count, sperm motility, and testosterone hormones of the ZnSO4-treated rats group were increased. ZnSO4 improved testicular structure and spermatogenesis abnormalities caused by obesity. Proteomic analysis showed that there were 401 differentially expressed proteins in a total of 6 sperm samples from the ZnSO4-treated group and the obesity groups. Differential proteins were input into the DAVID website. The 341 identified proteins were then classified according to their biological functions. The KEGG analysis showed that the enriched signal pathways included glycolysis/gluconeogenesis, carbon metabolism, citrate cycle, fatty acid metabolism, and pyruvate metabolism. Some proteins were shown to be associated with valine, leucine, and isoleucine degradation pathways. STRING analysis obtained 36 node proteins. Cytoscape analysis showed that these proteins mainly participated in nine networks including metabolic process, oxidation-reduction, aerobic respiration, RNA splicing, and glutathione conjugation. ZnSO4 may improve the fertility of obese male rats by regulating protein expression related to metabolism, inflammation, and sperm maturation.
Collapse
|
14
|
Izumikawa K, Ishikawa H, Yoshikawa H, Fujiyama S, Watanabe A, Aburatani H, Tachikawa H, Hayano T, Miura Y, Isobe T, Simpson RJ, Li L, Min J, Takahashi N. LYAR potentiates rRNA synthesis by recruiting BRD2/4 and the MYST-type acetyltransferase KAT7 to rDNA. Nucleic Acids Res 2019; 47:10357-10372. [PMID: 31504794 PMCID: PMC6821171 DOI: 10.1093/nar/gkz747] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/22/2019] [Accepted: 08/20/2018] [Indexed: 02/06/2023] Open
Abstract
Activation of ribosomal RNA (rRNA) synthesis is pivotal during cell growth and proliferation, but its aberrant upregulation may promote tumorigenesis. Here, we demonstrate that the candidate oncoprotein, LYAR, enhances ribosomal DNA (rDNA) transcription. Our data reveal that LYAR binds the histone-associated protein BRD2 without involvement of acetyl-lysine-binding bromodomains and recruits BRD2 to the rDNA promoter and transcribed regions via association with upstream binding factor. We show that BRD2 is required for the recruitment of the MYST-type acetyltransferase KAT7 to rDNA loci, resulting in enhanced local acetylation of histone H4. In addition, LYAR binds a complex of BRD4 and KAT7, which is then recruited to rDNA independently of the BRD2-KAT7 complex to accelerate the local acetylation of both H4 and H3. BRD2 also helps recruit BRD4 to rDNA. By contrast, LYAR has no effect on rDNA methylation or the binding of RNA polymerase I subunits to rDNA. These data suggest that LYAR promotes the association of the BRD2-KAT7 and BRD4-KAT7 complexes with transcription-competent rDNA loci but not to transcriptionally silent rDNA loci, thereby increasing rRNA synthesis by altering the local acetylation status of histone H3 and H4.
Collapse
Affiliation(s)
- Keiichi Izumikawa
- Department of Applied Life Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Hideaki Ishikawa
- Department of Applied Life Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Harunori Yoshikawa
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Sally Fujiyama
- Department of Applied Life Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Akira Watanabe
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University 53, Shogoin-kawahara-cho, Sakyo-ku, Kyoto-shi, Kyoto 606-8507, Japan
| | - Hiroyuki Aburatani
- Laboratory for System Biology and Medicine, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroyuki Tachikawa
- Department of Applied Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Toshiya Hayano
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Japan
| | - Yutaka Miura
- Department of Applied Life Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachiouji-shi, Tokyo 192-0397, Japan
| | - Richard J Simpson
- Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.,La Trobe Institute for Molecular Science (LIMS) LIMS Building 1, Room 412 La Trobe University, Bundoora Victoria 3086, Australia
| | - Li Li
- Structural Genomics Consortium, University of Toronto, 101 College St., Toronto, Ontario M5G 1L7, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jinrong Min
- Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.,Structural Genomics Consortium, University of Toronto, 101 College St., Toronto, Ontario M5G 1L7, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Nobuhiro Takahashi
- Department of Applied Life Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
15
|
Jacinto E. The young and the restless: Isolating the dynamic mammalian preribosomes. J Biol Chem 2019; 294:10758-10759. [PMID: 31300590 DOI: 10.1074/jbc.h119.009702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite the advances in understanding the assembly of yeast preribosomes using affinity purification and structural analysis, studies on mammalian ribosome biogenesis have lagged behind. Using an unbiased method to purify native mammalian preribosomal complexes from the nucleus, Abetov et al. now uncover two types of premature ribonucleoprotein complexes that are nutrient- and mTOR-dependent. This purification scheme, combined with genome-editing techniques, could be exploited to untangle the complexities underlying human ribosome biogenesis and ribosomopathies.
Collapse
Affiliation(s)
- Estela Jacinto
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854.
| |
Collapse
|
16
|
Abetov DA, Kiyan VS, Zhylkibayev AA, Sarbassova DA, Alybayev SD, Spooner E, Song MS, Bersimbaev RI, Sarbassov DD. Formation of mammalian preribosomes proceeds from intermediate to composed state during ribosome maturation. J Biol Chem 2019; 294:10746-10757. [PMID: 31076509 DOI: 10.1074/jbc.ac119.008378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/07/2019] [Indexed: 12/28/2022] Open
Abstract
In eukaryotes, ribosome assembly is a rate-limiting step in ribosomal biogenesis that takes place in a distinctive subnuclear organelle, the nucleolus. How ribosomes get assembled at the nucleolar site by forming initial preribosomal complexes remains poorly characterized. In this study, using several human and murine cell lines, we developed a method for isolation of native mammalian preribosomal complexes by lysing cell nuclei through mild sonication. A sucrose gradient fractionation of the nuclear lysate resolved several ribonucleoprotein (RNP) complexes containing rRNAs and ribosomal proteins. Characterization of the RNP complexes with MS-based protein identification and Northern blotting-based rRNA detection approaches identified two types of preribosomes we named here as intermediate preribosomes (IPRibs) and composed preribosome (CPRib). IPRib complexes comprised large preribosomes (105S to 125S in size) containing the rRNA modification factors and premature rRNAs. We further observed that a distinctive CPRib complex consists of an 85S preribosome assembled with mature rRNAs and a ribosomal biogenesis factor, Ly1 antibody-reactive (LYAR), that does not associate with premature rRNAs and rRNA modification factors. rRNA-labeling experiments uncovered that IPRib assembly precedes CPRib complex formation. We also found that formation of the preribosomal complexes is nutrient-dependent because the abundances of IPRib and CPRib decreased substantially when cells were either deprived of amino acids or exposed to an mTOR kinase inhibitor. These findings indicate that preribosomes form via dynamic and nutrient-dependent processing events and progress from an intermediate to a composed state during ribosome maturation.
Collapse
Affiliation(s)
- Danysh A Abetov
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Vladimir S Kiyan
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Assylbek A Zhylkibayev
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Dilara A Sarbassova
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Sanzhar D Alybayev
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Eric Spooner
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| | - Min Sup Song
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030
| | - Rakhmetkazhy I Bersimbaev
- Department of Natural Sciences, L. N. Gumilyov Eurasian National University, Nur-Sultan 010000, Kazakhstan, and
| | - Dos D Sarbassov
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030,; Department of Biology, Nazarbayev University, Nur-Sultan 010000, Kazakhstan.
| |
Collapse
|
17
|
Izumikawa K, Nobe Y, Ishikawa H, Yamauchi Y, Taoka M, Sato K, Nakayama H, Simpson RJ, Isobe T, Takahashi N. TDP-43 regulates site-specific 2'-O-methylation of U1 and U2 snRNAs via controlling the Cajal body localization of a subset of C/D scaRNAs. Nucleic Acids Res 2019; 47:2487-2505. [PMID: 30759234 PMCID: PMC6412121 DOI: 10.1093/nar/gkz086] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022] Open
Abstract
TDP-43 regulates cellular levels of Cajal bodies (CBs) that provide platforms for the assembly and RNA modifications of small nuclear ribonucleoproteins (snRNPs) involved in pre-mRNA splicing. Alterations in these snRNPs may be linked to pathogenesis of amyotrophic lateral sclerosis. However, specific roles for TDP-43 in CBs remain unknown. Here, we demonstrate that TDP-43 regulates the CB localization of four UG-rich motif-bearing C/D-box-containing small Cajal body-specific RNAs (C/D scaRNAs; i.e. scaRNA2, 7, 9 and 28) through the direct binding to these scaRNAs. TDP-43 enhances binding of a CB-localizing protein, WD40-repeat protein 79 (WDR79), to a subpopulation of scaRNA2 and scaRNA28; the remaining population of the four C/D scaRNAs was localized to CB-like structures even with WDR79 depletion. Depletion of TDP-43, in contrast, shifted the localization of these C/D scaRNAs, mainly into the nucleolus, as well as destabilizing scaRNA2, and reduced the site-specific 2'-O-methylation of U1 and U2 snRNAs, including at 70A in U1 snRNA and, 19G, 25G, 47U and 61C in U2 snRNA. Collectively, we suggest that TDP-43 and WDR79 have separate roles in determining CB localization of subsets of C/D and H/ACA scaRNAs.
Collapse
Affiliation(s)
- Keiichi Izumikawa
- Department of Applied Biological Science and Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183–8509, Japan
| | - Yuko Nobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192–0397, Japan
| | - Hideaki Ishikawa
- Department of Applied Biological Science and Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183–8509, Japan
| | - Yoshio Yamauchi
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192–0397, Japan
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192–0397, Japan
| | - Ko Sato
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192–0397, Japan
| | - Hiroshi Nakayama
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Richard J Simpson
- Department of Applied Biological Science and Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183–8509, Japan
- La Trobe Institute for Molecular Science (LIMS), LIMS Building 1, Room 412 La Trobe University, Melbourne Victoria 3086, Australia
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192–0397, Japan
| | - Nobuhiro Takahashi
- Department of Applied Biological Science and Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183–8509, Japan
| |
Collapse
|
18
|
The Nucleolar Protein LYAR Facilitates Ribonucleoprotein Assembly of Influenza A Virus. J Virol 2018; 92:JVI.01042-18. [PMID: 30209172 PMCID: PMC6232469 DOI: 10.1128/jvi.01042-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/01/2018] [Indexed: 12/13/2022] Open
Abstract
Influenza A viral ribonucleoprotein (vRNP) is responsible for transcription and replication of the viral genome in infected cells and depends on host factors for its functions. Identification of the host factors interacting with vRNP not only improves understanding of virus-host interactions but also provides insights into novel mechanisms of viral pathogenicity and the development of new antiviral strategies. Here, we have identified 80 host factors that copurified with vRNP using affinity purification followed by mass spectrometry. LYAR, a cell growth-regulating nucleolar protein, has been shown to be important for influenza A virus replication. During influenza A virus infection, LYAR expression is increased and partly translocates from the nucleolus to the nucleoplasm and cytoplasm. Furthermore, LYAR interacts with RNP subunits, resulting in enhancing viral RNP assembly, thereby facilitating viral RNA synthesis. Taken together, our studies identify a novel vRNP binding host partner important for influenza A virus replication and further reveal the mechanism of LYAR regulating influenza A viral RNA synthesis by facilitating viral RNP assembly.IMPORTANCE Influenza A virus (IAV) must utilize the host cell machinery to replicate, but many of the mechanisms of IAV-host interaction remain poorly understood. Improved understanding of interactions between host factors and vRNP not only increases our basic knowledge of the molecular mechanisms of virus replication and pathogenicity but also provides insights into possible novel antiviral targets that are necessary due to the widespread emergence of drug-resistant IAV strains. Here, we have identified LYAR, a cell growth-regulating nucleolar protein, which interacts with viral RNP components and is important for efficient replication of IAVs and whose role in the IAV life cycle has never been reported. In addition, we further reveal the role of LYAR in viral RNA synthesis. Our results extend and improve current knowledge on the mechanisms of IAV transcription and replication.
Collapse
|
19
|
Luna-Peláez N, García-Domínguez M. Lyar-Mediated Recruitment of Brd2 to the Chromatin Attenuates Nanog Downregulation Following Induction of Differentiation. J Mol Biol 2018; 430:1084-1097. [PMID: 29505757 DOI: 10.1016/j.jmb.2018.02.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/08/2018] [Accepted: 02/26/2018] [Indexed: 01/24/2023]
Abstract
During development, cellular differentiation programs need tight regulation for proper display of the activity of multiple factors in time and space. Chromatin adaptors of the BET family (Brd2, Brd3, Brd4 and Brdt in vertebrates) are transcription co-regulators tightly associated with the progression of the cell cycle. A key question regarding their function is whether they work as part of the general transcription machinery or, on the contrary, they are precisely recruited to the chromatin through specific transcription factors. Here, we report the selective recruitment of Brd2 to the chromatin by the transcription factor Lyar. We show that Lyar downregulation results in Brd2 dissociation from a number of promoters studied. On the contrary, dissociation of BET proteins from the chromatin has no effect on Lyar occupancy. Under differentiation conditions, the absence of Lyar leads to impaired downregulation of the pluripotency gene Nanog, with concomitant reduction in the upregulation of differentiation markers. Interestingly, following the induction of differentiation, Brd2 depletion exhibits the same effects as expressing a truncated Lyar molecule lacking the Brd2 interacting domain. Both approaches result in stronger Nanog repression, indicating that Lyar-mediated recruitment of Brd2 moderates Nanog downregulation when differentiation is triggered. Moreover, expression of truncated Lyar leads to impaired differentiation and increased apoptosis. Thus, Lyar-mediated recruitment of Brd2 would participate in preserving a proper timing for Nanog silencing ensuring the appropriate establishment of the differentiation program.
Collapse
Affiliation(s)
- Noelia Luna-Peláez
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain
| | - Mario García-Domínguez
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain.
| |
Collapse
|
20
|
SAGA complex mediates the transcriptional up-regulation of antiviral RNA silencing. Proc Natl Acad Sci U S A 2017; 114:E3499-E3506. [PMID: 28400515 DOI: 10.1073/pnas.1701196114] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pathogen recognition and transcriptional activation of defense-related genes are crucial steps in cellular defense responses. RNA silencing (RNAi) functions as an antiviral defense in eukaryotic organisms. Several RNAi-related genes are known to be transcriptionally up-regulated upon virus infection in some host organisms, but little is known about their induction mechanism. A phytopathogenic ascomycete, Cryphonectria parasitica (chestnut blight fungus), provides a particularly advantageous system to study RNAi activation, because its infection by certain RNA viruses induces the transcription of dicer-like 2 (dcl2) and argonaute-like 2 (agl2), two major RNAi players. To identify cellular factors governing activation of antiviral RNAi in C. parasitica, we developed a screening protocol entailing multiple transformations of the fungus with cDNA of a hypovirus mutant lacking the RNAi suppressor (CHV1-Δp69), a reporter construct with a GFP gene driven by the dcl2 promoter, and a random mutagenic construct. Screening for GFP-negative colonies allowed the identification of sgf73, a component of the SAGA (Spt-Ada-Gcn5 acetyltransferase) complex, a well-known transcriptional coactivator. Knockout of other SAGA components showed that the histone acetyltransferase module regulates transcriptional induction of dcl2 and agl2, whereas histone deubiquitinase mediates regulation of agl2 but not dcl2 Interestingly, full-scale induction of agl2 and dcl2 by CHV1-Δp69 required both DCL2 and AGL2, whereas that by another RNA virus, mycoreovirus 1, required only DCL2, uncovering additional roles for DCL2 and AGL2 in viral recognition and/or RNAi activation. Overall, these results provide insight into the mechanism of RNAi activation.
Collapse
|
21
|
Alternative exon skipping biases substrate preference of the deubiquitylase USP15 for mysterin/RNF213, the moyamoya disease susceptibility factor. Sci Rep 2017; 7:44293. [PMID: 28276505 PMCID: PMC5343593 DOI: 10.1038/srep44293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/06/2017] [Indexed: 01/17/2023] Open
Abstract
The deubiquitylating enzyme USP15 plays significant roles in multiple cellular pathways including TGF-β signaling, RNA splicing, and innate immunity. Evolutionarily conserved skipping of exon 7 occurs during transcription of the mRNAs encoding USP15 and its paralogue USP4, yielding two major isoforms for each gene. Exon 7 of USP15 encodes a serine-rich stretch of 29 amino acid residues located in the inter-region linker that connects the N-terminal putative regulatory region and the C-terminal enzymatic region. Previous findings suggested that the variation in the linker region leads to functional differences between the isoforms of the two deubiquitylating enzymes, but to date no direct evidence regarding such functional divergence has been published. We found that the long isoform of USP15 predominantly recognizes and deubiquitylates mysterin, a large ubiquitin ligase associated with the onset of moyamoya disease. This observation represents the first experimental evidence that the conserved exon skipping alters the substrate specificity of this class of deubiquitylating enzymes. In addition, we found that the interactomes of the short and long isoforms of USP15 only partially overlapped. Thus, USP15, a key gene in multiple cellular processes, generates two functionally different isoforms via evolutionarily conserved exon skipping.
Collapse
|
22
|
Human NF-κB repressing factor acts as a stress-regulated switch for ribosomal RNA processing and nucleolar homeostasis surveillance. Proc Natl Acad Sci U S A 2017; 114:1045-1050. [PMID: 28096332 DOI: 10.1073/pnas.1616112114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The nucleolus, a dynamic nuclear compartment long regarded as the cell ribosome factory, is emerging as an important player in the regulation of cell survival and recovery from stress. In larger eukaryotes, the stress-induced transcriptional response is mediated by a family of heat-shock transcription factors. Among these, HSF1, considered the master regulator of stress-induced transcriptional responses, controls the expression of cytoprotective heat shock proteins (HSPs), molecular chaperones/cochaperones constituting a major component of the cell protein quality control machinery essential to circumvent stress-induced degradation and aggregation of misfolded proteins. Herein we identify human NF-κB repressing factor (NKRF) as a nucleolar HSP essential for nucleolus homeostasis and cell survival under proteotoxic stress. NKRF acts as a thermosensor translocating from the nucleolus to the nucleoplasm during heat stress; nucleolar pools are replenished during recovery upon HSF1-mediated NKRF resynthesis. Silencing experiments demonstrate that NKRF is an unconventional HSP crucial for correct ribosomal RNA (rRNA) processing and preventing aberrant rRNA precursors and discarded fragment accumulation. These effects are mediated by NKRF interaction with the 5'-to-3' exoribonuclease XRN2, a key coordinator of multiple pre-rRNA cleavages, driving mature rRNA formation and discarded rRNA decay. Under stress conditions, NKRF directs XRN2 nucleolus/nucleoplasm trafficking, controlling 5'-to-3' exoribonuclease nucleolar levels and regulating rRNA processing. Our study reveals a different aspect of rRNA biogenesis control in human cells and sheds light on a sophisticated mechanism of nucleolar homeostasis surveillance during stress.
Collapse
|
23
|
Izumikawa K, Yoshikawa H, Ishikawa H, Nobe Y, Yamauchi Y, Philipsen S, Simpson RJ, Isobe T, Takahashi N. Chtop (Chromatin target of Prmt1) auto-regulates its expression level via intron retention and nonsense-mediated decay of its own mRNA. Nucleic Acids Res 2016; 44:9847-9859. [PMID: 27683223 PMCID: PMC5175361 DOI: 10.1093/nar/gkw831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 12/25/2022] Open
Abstract
Chtop (chromatin target of Prmt1) regulates various aspects of gene expression including transcription and mRNA export. Despite these important functions, the regulatory mechanism underlying Chtop expression remains undetermined. Using Chtop-expressing human cell lines, we demonstrate that Chtop expression is controlled via an autoregulatory negative feedback loop whereby Chtop binds its own mRNA to retain intron 2 during splicing; a premature termination codon present at the 5′ end of intron 2 leads to nonsense-mediated decay of the mRNA. We also show that Chtop interacts with exon 2 of Chtop mRNA via its arginine-glycine-rich (RG) domain, and with intron 2 via its N-terminal (N1) domain; both are required for retention of intron 2. In addition, we show that hnRNP H accelerates intron 2 splicing of Chtop mRNA in a manner dependent on Chtop expression level, suggesting that Chtop and hnRNP H regulate intron 2 retention of Chtop mRNA antagonistically. Thus, the present study provides a novel molecular mechanism by which mRNA and protein levels are constitutively regulated by intron retention.
Collapse
Affiliation(s)
- Keiichi Izumikawa
- Department of Applied Biological Science, United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan.,Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Harunori Yoshikawa
- Centre for Gene Regulation & Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Hideaki Ishikawa
- Department of Applied Biological Science, United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Yuko Nobe
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan.,Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Yoshio Yamauchi
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan.,Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus MC, 3015 GE Rotterdam, The Netherlands
| | - Richard J Simpson
- Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.,La Trobe Institute for Molecular Science (LIMS) LIMS Building 1, Room 412 La Trobe University, Bundoora, Victoria 3086, Australia
| | - Toshiaki Isobe
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan.,Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Nobuhiro Takahashi
- Department of Applied Biological Science, United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan .,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan.,Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
24
|
Wu Y, Liu M, Li Z, Wu XB, Wang Y, Wang Y, Nie M, Huang F, Ju J, Ma C, Tan R, Zen K, Zhang CY, Fu K, Chen YG, Wang MR, Zhao Q. LYAR promotes colorectal cancer cell mobility by activating galectin-1 expression. Oncotarget 2016; 6:32890-901. [PMID: 26413750 PMCID: PMC4741737 DOI: 10.18632/oncotarget.5335] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/14/2015] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide. However, the molecular mechanisms of CRC pathogenesis are not fully understood. In this study, we report the characterization of LYAR (Ly-1 antibody reactive clone) as a key regulator of the migration and invasion of human CRC cells. Immunohistochemistry analysis demonstrated that LYAR is expressed at a higher level in metastatic CRC tissues. We found that LYAR promoted the migratory and invasive capabilities of CRC cells. Gene expression profile analysis of CRC cells showed that LGALS1, which encodes the galectin-1 protein, was a potential target of LYAR. The ChIP assay and gene reporter assays indicated that LYAR directly bound to the LGALS1 promoter. The ectopic expression of galectin-1 partially restored the mobile potential of LYAR knocked-down cells, which suggests that galectin-1 contributed to the LYAR-promoted cell migration and invasion of CRC cells. Thus, this study revealed a novel mechanism by which the transcription factor LYAR may promote tumor cell migration and invasion by upregulating galectin-1 gene expression in CRC.
Collapse
Affiliation(s)
- Yupeng Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210046, China.,Anhui Research Institute for Family Planning, Anhui Research Center for Population and Birth Control, Hefei, 230031, China
| | - Ming Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Zhuchen Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Xiao-Bin Wu
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Ying Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Yadong Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Min Nie
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Feifei Huang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Junyi Ju
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Chi Ma
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Renxiang Tan
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Ke Zen
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Chen-Yu Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Keqin Fu
- Anhui Research Institute for Family Planning, Anhui Research Center for Population and Birth Control, Hefei, 230031, China
| | - Yu-Gen Chen
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Ming-Rong Wang
- The State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Quan Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210046, China
| |
Collapse
|
25
|
Yoshikawa H, Ishikawa H, Izumikawa K, Miura Y, Hayano T, Isobe T, Simpson RJ, Takahashi N. Human nucleolar protein Nop52 (RRP1/NNP-1) is involved in site 2 cleavage in internal transcribed spacer 1 of pre-rRNAs at early stages of ribosome biogenesis. Nucleic Acids Res 2015; 43:5524-36. [PMID: 25969445 PMCID: PMC4477673 DOI: 10.1093/nar/gkv470] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/29/2015] [Indexed: 01/02/2023] Open
Abstract
During the early steps of ribosome biogenesis in mammals, the two ribosomal subunits 40S and 60S are produced via splitting of the large 90S pre-ribosomal particle (90S) into pre-40S and pre-60S pre-ribosomal particles (pre-40S and pre-60S). We previously proposed that replacement of fibrillarin by Nop52 (RRP1/NNP-1) for the binding to p32 (C1QBP) is a key event that drives this splitting process. However, how the replacement by RRP1 is coupled with the endo- and/or exo-ribonucleolytic cleavage of pre-rRNA remains unknown. In this study, we demonstrate that RRP1 deficiency suppressed site 2 cleavage on ITS1 of 47S/45S, 41S and 36S pre-rRNAs in human cells. RRP1 was also present in 90S and was localized in the dense fibrillar component of the nucleolus dependently on active RNA polymerase I transcription. In addition, double knockdown of XRN2 and RRP1 revealed that RRP1 accelerated the site 2 cleavage of 47S, 45S and 41S pre-rRNAs. These data suggest that RRP1 is involved not only in competitive binding with fibrillarin to C1QBP on 90S but also in site 2 cleavage in ITS1 of pre-rRNAs at early stages of human ribosome biogenesis; thus, it is likely that RRP1 integrates the cleavage of site 2 with the physical split of 90S into pre-40S and pre-60S.
Collapse
Affiliation(s)
- Harunori Yoshikawa
- Department of Applied Life Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan Centre for Gene Regulation & Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Hideaki Ishikawa
- Department of Applied Life Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo, 102-0075, Japan
| | - Keiichi Izumikawa
- Department of Applied Life Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo, 102-0075, Japan
| | - Yutaka Miura
- Department of Applied Life Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Toshiya Hayano
- Department of Applied Life Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Toshiaki Isobe
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo, 102-0075, Japan Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachiouji-shi, Tokyo 192-0397, Japan
| | - Richard J Simpson
- La Trobe Institute for Molecular Science (LIMS), LIMS Building 1, Room 412 La Trobe University, Bundoora Victoria 3086, Australia
| | - Nobuhiro Takahashi
- Department of Applied Life Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo, 102-0075, Japan
| |
Collapse
|
26
|
Guo F, Ding Y, Caberoy NB, Alvarado G, Liu R, Shen C, Yu J, Zhou Y, Salero E, LeBlanc ME, Wang W, Li W. Lyar Is a New Ligand for Retinal Pigment Epithelial Phagocytosis. J Cell Biochem 2015; 116:2177-87. [PMID: 25735755 DOI: 10.1002/jcb.25089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/18/2014] [Accepted: 01/16/2015] [Indexed: 01/12/2023]
Abstract
Phagocytosis is critical to tissue homeostasis, as highlighted by phagocytosis defect of retinal pigment epithelial (RPE) cells with debris accumulation, photoreceptor degeneration and blindness. Phagocytosis ligands are the key to delineating molecular mechanisms and functional roles of phagocytes, but are traditionally identified in individual cases with technical challenges. We recently developed open reading frame phage display (OPD) for phagocytosis-based functional cloning (PFC) to identify unknown ligands. One of the identified ligands was Ly-1 antibody reactive clone (Lyar) with functions poorly defined. Herein, we characterized Lyar as a new ligand to stimulate RPE phagocytosis. In contrast to its reported nucleolar expression, immunohistochemistry showed that Lyar was highly expressed in photoreceptor outer segments (POSs) of the retina. Cytoplasmic Lyar was released from apoptotic cells, and selectively bound to shed POSs and apoptotic cells, but not healthy cells. POS vesicles engulfed through Lyar-dependent pathway were targeted to phagosomes and colocalized with phagosome marker Rab7. These results suggest that Lyar is a genuine RPE phagocytosis ligand, which in turn supports the validity of OPD/PFC as the only available approach for unbiased identification of phagocytosis ligands with broad applicability to various phagocytes.
Collapse
Affiliation(s)
- Feiye Guo
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, Florida, 33136
| | - Ying Ding
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, Florida, 33136
| | - Nora B Caberoy
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, 89154
| | - Gabriela Alvarado
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, Florida, 33136
| | - Robert Liu
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, Florida, 33136
| | - Chen Shen
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, Florida, 33136
| | - Jisu Yu
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, Florida, 33136
| | - Yixiong Zhou
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 200011, Shanghai, China
| | - Enrique Salero
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, Florida, 33136
| | - Michelle E LeBlanc
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, Florida, 33136
| | - Weiwen Wang
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, Florida, 33136
| | - Wei Li
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, Florida, 33136
| |
Collapse
|
27
|
Lyar, a cell growth-regulating zinc finger protein, was identified to be associated with cytoplasmic ribosomes in male germ and cancer cells. Mol Cell Biochem 2014; 395:221-9. [PMID: 24990247 DOI: 10.1007/s11010-014-2128-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 06/17/2014] [Indexed: 12/31/2022]
Abstract
Translational control is a basic mechanism for gene regulation in cells and important for tissue growth and development in mammals. Deregulation of the mechanism thus causes diseases such as cancer. Considering the importance of the ribosome as a factory of polypeptide synthesis, some new factors have been expected to be associated with the ribosome and involved in translational control. Our proteomic survey for these factors identified a zinc finger protein, Lyar, in cytoplasmic ribosomes of the rodent testis. Subcellular fractionation of the testis provided data supporting association of Lyar with ribosomes. Lyar was then suggested to be included in the 60S large subunit, but not in polysomes, by ultracentrifugation of testicular ribosomes. While analysis of tissue distribution of Lyar has indicated its testis-predominant expression, Lyar mRNA was expressed in the cancer cells originated from tissues other than testis, and Lyar promoted proliferation of NIH-3T3 cells. Furthermore, translation was increased by Lyar in vitro, pointing out the first experimental link between this protein and translation. Taken together, Lyar seems to be a new player in translational control and a potential target for cancer therapy.
Collapse
|