1
|
Kabat AM, Hackl A, Sanin DE, Zeis P, Grzes KM, Baixauli F, Kyle R, Caputa G, Edwards-Hicks J, Villa M, Rana N, Curtis JD, Castoldi A, Cupovic J, Dreesen L, Sibilia M, Pospisilik JA, Urban JF, Grün D, Pearce EL, Pearce EJ. Resident T H2 cells orchestrate adipose tissue remodeling at a site adjacent to infection. Sci Immunol 2022; 7:eadd3263. [PMID: 36240286 DOI: 10.1126/sciimmunol.add3263] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Type 2 immunity is associated with adipose tissue (AT) homeostasis and infection with parasitic helminths, but whether AT participates in immunity to these parasites is unknown. We found that the fat content of mesenteric AT (mAT) declined in mice during infection with a gut-restricted helminth. This was associated with the accumulation of metabolically activated, interleukin-33 (IL-33), thymic stromal lymphopoietin (TSLP), and extracellular matrix (ECM)-producing stromal cells. These cells shared transcriptional features, including the expression of Dpp4 and Pi16, with multipotent progenitor cells (MPC) that have been identified in numerous tissues and are reported to be capable of differentiating into fibroblasts and adipocytes. Concomitantly, mAT became infiltrated with resident T helper 2 (TH2) cells that responded to TSLP and IL-33 by producing stromal cell-stimulating cytokines, including transforming growth factor β1 (TGFβ1) and amphiregulin. These TH2 cells expressed genes previously associated with type 2 innate lymphoid cells (ILC2), including Nmur1, Calca, Klrg1, and Arg1, and persisted in mAT for at least 11 months after anthelmintic drug-mediated clearance of infection. We found that MPC and TH2 cells localized to ECM-rich interstitial spaces that appeared shared between mesenteric lymph node, mAT, and intestine. Stromal cell expression of epidermal growth factor receptor (EGFR), the receptor for amphiregulin, was required for immunity to infection. Our findings point to the importance of MPC and TH2 cell interactions within the interstitium in orchestrating AT remodeling and immunity to an intestinal infection.
Collapse
Affiliation(s)
- Agnieszka M Kabat
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany.,Bloomberg Kimmel Institute and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alexandra Hackl
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - David E Sanin
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany.,Bloomberg Kimmel Institute and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Patrice Zeis
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany.,International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Katarzyna M Grzes
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany.,Bloomberg Kimmel Institute and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Francesc Baixauli
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Ryan Kyle
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - George Caputa
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Joy Edwards-Hicks
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Matteo Villa
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Nisha Rana
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Jonathan D Curtis
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany.,Bloomberg Kimmel Institute and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Angela Castoldi
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Jovana Cupovic
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Leentje Dreesen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Maria Sibilia
- Institute of Cancer Research, Medical University of Vienna, Comprehensive Cancer Center, Borschkegasse 8a, Vienna A-1090, Austria
| | - J Andrew Pospisilik
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Joseph F Urban
- USDA, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, and Belstville Agricultural Research Service, Animal Parasitic Disease Laboratory, Beltsville, MD 20705, USA
| | - Dominic Grün
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany.,Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany.,Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität, Würzburg 97078, Germany.,Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg 97080, Germany
| | - Erika L Pearce
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany.,Bloomberg Kimmel Institute and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Edward J Pearce
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany.,Bloomberg Kimmel Institute and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Faculty of Biology, University of Freiburg, Freiburg 79104, Germany.,Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| |
Collapse
|
2
|
Oh JH, Kang CW, Wang EK, Nam JH, Lee S, Park KH, Lee EJ, Cho A, Ku CR. Altered Glucose Metabolism and Glucose Transporters in Systemic Organs After Bariatric Surgery. Front Endocrinol (Lausanne) 2022; 13:937394. [PMID: 35909546 PMCID: PMC9329688 DOI: 10.3389/fendo.2022.937394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
The Roux-en-Y gastric bypass (RYGB) is highly effective in the remission of obesity and associated diabetes. The mechanisms underlying obesity and type 2 diabetes mellitus remission after RYGB remain unclear. This study aimed to evaluate the changes in continuous dynamic FDG uptake patterns after RYGB and examine the correlation between glucose metabolism and its transporters in variable endocrine organs using 18F-fluoro-2-deoxyglucose positron emission tomography images. Increased glucose metabolism in specific organs, such as the small intestine and various fat tissues, is closely associated with improved glycemic control after RYGB. In Otsuka Long-Evans Tokushima Fatty rats fed with high-fat diets, RYGB operation increases intestine glucose transporter expression and various fat tissues' glucose transporters, which are not affected by insulin. The fasting glucose decrement was significantly associated with RYGB, sustained weight loss, post-RYGB oral glucose tolerance test (OGTT) area under the curve (AUC), glucose transporter, or glycolytic enzymes in the small bowel and various fat tissues. High intestinal glucose metabolism and white adipose tissue-dependent glucose metabolism correlated with metabolic benefit after RYGB. These findings suggest that the newly developed glucose biodistribution accompanied by increased glucose transporters is a mechanism associated with the systemic effect of RYGB.
Collapse
Affiliation(s)
- Ju Hun Oh
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, College of Medicine, Seoul, South Korea
- Department of Internal Medicine, Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Chan Woo Kang
- Department of Internal Medicine, Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun Kyung Wang
- Department of Internal Medicine, Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Jung Ho Nam
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, College of Medicine, Seoul, South Korea
- Department of Internal Medicine, Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Soohyun Lee
- Department of Internal Medicine, Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyeong Hye Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, South Korea
| | - Eun Jig Lee
- Department of Internal Medicine, Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Arthur Cho
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Cheol Ryong Ku, ; Arthur Cho,
| | - Cheol Ryong Ku
- Department of Internal Medicine, Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Cheol Ryong Ku, ; Arthur Cho,
| |
Collapse
|
3
|
Kwon IG, Kang CW, Park JP, Oh JH, Wang EK, Kim TY, Sung JS, Park N, Lee YJ, Sung HJ, Lee EJ, Hyung WJ, Shin SJ, Noh SH, Yun M, Kang WJ, Cho A, Ku CR. Serum glucose excretion after Roux-en-Y gastric bypass: a potential target for diabetes treatment. Gut 2021; 70:1847-1856. [PMID: 33208408 DOI: 10.1136/gutjnl-2020-321402] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The mechanisms underlying type 2 diabetes resolution after Roux-en-Y gastric bypass (RYGB) are unclear. We suspected that glucose excretion may occur in the small bowel based on observations in humans. The aim of this study was to evaluate the mechanisms underlying serum glucose excretion in the small intestine and its contribution to glucose homeostasis after bariatric surgery. DESIGN 2-Deoxy-2-[18F]-fluoro-D-glucose (FDG) was measured in RYGB-operated or sham-operated obese diabetic rats. Altered glucose metabolism was targeted and RNA sequencing was performed in areas of high or low FDG uptake in the ileum or common limb. Intestinal glucose metabolism and excretion were confirmed using 14C-glucose and FDG. Increased glucose metabolism was evaluated in IEC-18 cells and mouse intestinal organoids. Obese or ob/ob mice were treated with amphiregulin (AREG) to correlate intestinal glycolysis changes with changes in serum glucose homeostasis. RESULTS The AREG/EGFR/mTOR/AKT/GLUT1 signal transduction pathway was activated in areas of increased glycolysis and intestinal glucose excretion in RYGB-operated rats. Intraluminal GLUT1 inhibitor administration offset improved glucose homeostasis in RYGB-operated rats. AREG-induced signal transduction pathway was confirmed using IEC-18 cells and mouse organoids, resulting in a greater capacity for glucose uptake via GLUT1 overexpression and sequestration in apical and basolateral membranes. Systemic and local AREG administration increased GLUT1 expression and small intestinal membrane translocation and prevented hyperglycaemic exacerbation. CONCLUSION Bariatric surgery or AREG administration induces apical and basolateral membrane GLUT1 expression in the small intestinal enterocytes, resulting in increased serum glucose excretion in the gut lumen. Our findings suggest a novel, potentially targetable glucose homeostatic mechanism in the small intestine.
Collapse
Affiliation(s)
- In Gyu Kwon
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chan Woo Kang
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Jong-Pil Park
- Department of Forensic Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ju Hun Oh
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea.,Endocrinology, Institute of Endocrine Research, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Kyung Wang
- Endocrinology, Institute of Endocrine Research, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae Young Kim
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Sol Sung
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Namhee Park
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yang Jong Lee
- Endocrinology, Institute of Endocrine Research, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hak-Joon Sung
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Jig Lee
- Endocrinology, Institute of Endocrine Research, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Woo Jin Hyung
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su-Jin Shin
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Hoon Noh
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Won Jun Kang
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Arthur Cho
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Cheol Ryong Ku
- Endocrinology, Institute of Endocrine Research, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Geesala R, Issuree PD, Maretzky T. The Role of iRhom2 in Metabolic and Cardiovascular-Related Disorders. Front Cardiovasc Med 2020; 7:612808. [PMID: 33330676 PMCID: PMC7732453 DOI: 10.3389/fcvm.2020.612808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic obesity is associated with metabolic imbalance leading to diabetes, dyslipidemia, and cardiovascular diseases (CVDs), in which inflammation is caused by exposure to inflammatory stimuli, such as accumulating sphingolipid ceramides or intracellular stress. This inflammatory response is likely to be prolonged by the effects of dietary and blood cholesterol, thereby leading to chronic low-grade inflammation and endothelial dysfunction. Elevated levels of pro-inflammatory cytokines such as tumor necrosis factor (TNF) are predictive of CVDs and have been widely studied for potential therapeutic strategies. The release of TNF is controlled by a disintegrin and metalloprotease (ADAM) 17 and both are positively associated with CVDs. ADAM17 also cleaves most of the ligands of the epidermal growth factor receptor (EGFR) which have been associated with hypertension, atherogenesis, vascular dysfunction, and cardiac remodeling. The inactive rhomboid protein 2 (iRhom2) regulates the ADAM17-dependent shedding of TNF in immune cells. In addition, iRhom2 also regulates the ADAM17-mediated cleavage of EGFR ligands such as amphiregulin and heparin-binding EGF-like growth factor. Targeting iRhom2 has recently become a possible alternative therapeutic strategy in chronic inflammatory diseases such as lupus nephritis and rheumatoid arthritis. However, what role this intriguing interacting partner of ADAM17 plays in the vasculature and how it functions in the pathologies of obesity and associated CVDs, are exciting questions that are only beginning to be elucidated. In this review, we discuss the role of iRhom2 in cardiovascular-related pathologies such as atherogenesis and obesity by providing an evaluation of known iRhom2-dependent cellular and inflammatory pathways.
Collapse
Affiliation(s)
- Ramasatyaveni Geesala
- Inflammation Program, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Priya D Issuree
- Inflammation Program, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Thorsten Maretzky
- Inflammation Program, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States.,Department of Internal Medicine, Holden Comprehensive Cancer Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
5
|
Lui PP, Cho I, Ali N. Tissue regulatory T cells. Immunology 2020; 161:4-17. [PMID: 32463116 PMCID: PMC7450170 DOI: 10.1111/imm.13208] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/01/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022] Open
Abstract
Foxp3+ CD4+ regulatory T cells (Tregs) are an immune cell lineage endowed with immunosuppressive functionality in a wide array of contexts, including both anti-pathogenic and anti-self responses. In the past decades, our understanding of the functional diversity of circulating or lymphoid Tregs has grown exponentially. Only recently, the importance of Tregs residing within non-lymphoid tissues, such as visceral adipose tissue, muscle, skin and intestine, has been recognized. Not only are Tregs critical for influencing the kinetics and strength of immune responses, but the regulation of non-immune or parenchymal cells, also fall within the purview of tissue-resident or infiltrating Tregs. This review focuses on providing a systematic and comprehensive comparison of the molecular maintenance, local adaptation and functional specializations of Treg populations operating within different tissues.
Collapse
Affiliation(s)
- Prudence PokWai Lui
- Centre for Stem Cells and Regenerative MedicineSchool of Basic and Biomedical SciencesKing's College LondonLondonUK
| | - Inchul Cho
- Centre for Stem Cells and Regenerative MedicineSchool of Basic and Biomedical SciencesKing's College LondonLondonUK
| | - Niwa Ali
- Centre for Stem Cells and Regenerative MedicineSchool of Basic and Biomedical SciencesKing's College LondonLondonUK
- The Francis Crick InstituteLondonUK
| |
Collapse
|
6
|
Skurski J, Penniman CM, Geesala R, Dixit G, Pulipati P, Bhardwaj G, Meyerholz DK, Issuree PD, O'Neill BT, Maretzky T. Loss of iRhom2 accelerates fat gain and insulin resistance in diet-induced obesity despite reduced adipose tissue inflammation. Metabolism 2020; 106:154194. [PMID: 32135161 DOI: 10.1016/j.metabol.2020.154194] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Low-grade inflammation and metabolic dysregulation are common comorbidities of obesity, both of which are associated with alterations in iRhom2-regulated pro-inflammatory cytokine and epidermal growth factor receptor (EGFR) ligand signaling. OBJECTIVE Our objective was to determine the role of iRhom2 in the regulation of low-grade inflammation and metabolic dysregulation in a murine model of diet-induced obesity. METHODS Wild type (WT) and iRhom2-deficient mice were fed normal chow (NC) or a high-fat diet (HFD) starting at 5 weeks of age for up to 33 weeks. Body composition, glucose and insulin tolerance, feeding behavior, and indirect calorimetry were measured at defined time points. Adipose tissue cytokine expression and inflammatory lesions known as crown-like structures (CLS) were analyzed at the end-point of the study. RESULTS iRhom2-deficient mice show accelerated fat gain on a HFD, accompanied by insulin resistance. Indirect calorimetry did not demonstrate changes in energy expenditure or food intake, but locomotor activity was significantly reduced in HFD iRhom2-deficient mice. Interestingly, CLS, macrophage infiltration, and tumor necrosis factor (TNF) production were decreased in adipose tissue from HFD iRhom2-deficient mice, but circulating cytokines were unchanged. In inguinal and perigonadal fat, the EGFR ligand amphiregulin was markedly induced in HFD controls but completely prevented in iRhom2-deficient mice, suggesting a potentially dominant role of EGFR-dependent mechanisms over TNF in the modulation of insulin sensitivity. CONCLUSIONS This study elucidates a novel role for iRhom2 as an immuno-metabolic regulator that affects adipose tissue inflammation independent of insulin resistance.
Collapse
Affiliation(s)
- Joseph Skurski
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA; Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA; Immunology Graduate Program, Iowa City, IA, USA
| | - Christie M Penniman
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA; Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Ramasatyaveni Geesala
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA; Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Garima Dixit
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA; Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Priyanjali Pulipati
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA; Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Gourav Bhardwaj
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA; Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - David K Meyerholz
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA
| | - Priya D Issuree
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA; Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Brian T O'Neill
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA; Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA.
| | - Thorsten Maretzky
- Inflammation Program, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA; Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA, USA; Immunology Graduate Program, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
7
|
Hoyer FF, Zhang X, Coppin E, Vasamsetti SB, Modugu G, Schloss MJ, Rohde D, McAlpine CS, Iwamoto Y, Libby P, Naxerova K, Swirski FK, Dutta P, Nahrendorf M. Bone Marrow Endothelial Cells Regulate Myelopoiesis in Diabetes Mellitus. Circulation 2020; 142:244-258. [PMID: 32316750 DOI: 10.1161/circulationaha.120.046038] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Diabetes mellitus is a prevalent public health problem that affects about one-third of the US population and leads to serious vascular complications with increased risk for coronary artery disease. How bone marrow hematopoiesis contributes to diabetes mellitus complications is incompletely understood. We investigated the role of bone marrow endothelial cells in diabetic regulation of inflammatory myeloid cell production. METHODS In 3 types of mouse diabetes mellitus, including streptozotocin, high-fat diet, and genetic induction using leptin-receptor-deficient db/db mice, we assayed leukocytes, hematopoietic stem and progenitor cells (HSPC). In addition, we investigated bone marrow endothelial cells with flow cytometry and expression profiling. RESULTS In diabetes mellitus, we observed enhanced proliferation of HSPC leading to augmented circulating myeloid cell numbers. Analysis of bone marrow niche cells revealed that endothelial cells in diabetic mice expressed less Cxcl12, a retention factor promoting HSPC quiescence. Transcriptome-wide analysis of bone marrow endothelial cells demonstrated enrichment of genes involved in epithelial growth factor receptor (Egfr) signaling in mice with diet-induced diabetes mellitus. To explore whether endothelial Egfr plays a functional role in myelopoiesis, we generated mice with endothelial-specific deletion of Egfr (Cdh5Cre Egfrfl/fl). We found enhanced HSPC proliferation and increased myeloid cell production in Cdh5Cre Egfrfl/fl mice compared with wild-type mice with diabetes mellitus. Disrupted Egfr signaling in endothelial cells decreased their expression of the HSPC retention factor angiopoietin-1. We tested the functional relevance of these findings for wound healing and atherosclerosis, both implicated in complications of diabetes mellitus. Inflammatory myeloid cells accumulated more in skin wounds of diabetic Cdh5Cre Egfrfl/fl mice, significantly delaying wound closure. Atherosclerosis was accelerated in Cdh5Cre Egfrfl/fl mice, leading to larger and more inflamed atherosclerotic lesions in the aorta. CONCLUSIONS In diabetes mellitus, bone marrow endothelial cells participate in the dysregulation of bone marrow hematopoiesis. Diabetes mellitus reduces endothelial production of Cxcl12, a quiescence-promoting niche factor that reduces stem cell proliferation. We describe a previously unknown counterregulatory pathway, in which protective endothelial Egfr signaling curbs HSPC proliferation and myeloid cell production.
Collapse
Affiliation(s)
- Friedrich Felix Hoyer
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (F.F.H., M.J.S., D.R., C.S.A., Y.I., K.N., F.K.S., M.N.)
| | - Xinyi Zhang
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (X.Z., E.C., S.B.V., G.M., P.D.).,The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (X.Z.)
| | - Emilie Coppin
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (X.Z., E.C., S.B.V., G.M., P.D.)
| | - Sathish Babu Vasamsetti
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (X.Z., E.C., S.B.V., G.M., P.D.)
| | - Ganesh Modugu
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (X.Z., E.C., S.B.V., G.M., P.D.)
| | - Maximilian J Schloss
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (F.F.H., M.J.S., D.R., C.S.A., Y.I., K.N., F.K.S., M.N.)
| | - David Rohde
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (F.F.H., M.J.S., D.R., C.S.A., Y.I., K.N., F.K.S., M.N.)
| | - Cameron S McAlpine
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (F.F.H., M.J.S., D.R., C.S.A., Y.I., K.N., F.K.S., M.N.)
| | - Yoshiko Iwamoto
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (F.F.H., M.J.S., D.R., C.S.A., Y.I., K.N., F.K.S., M.N.)
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (P.L.)
| | - Kamila Naxerova
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (F.F.H., M.J.S., D.R., C.S.A., Y.I., K.N., F.K.S., M.N.)
| | - Filip K Swirski
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (F.F.H., M.J.S., D.R., C.S.A., Y.I., K.N., F.K.S., M.N.)
| | - Partha Dutta
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (X.Z., E.C., S.B.V., G.M., P.D.)
| | - Matthias Nahrendorf
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (F.F.H., M.J.S., D.R., C.S.A., Y.I., K.N., F.K.S., M.N.).,Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston (M.N.).,Department of Internal Medicine I, University Hospital Würzburg, Germany (M.N.)
| |
Collapse
|
8
|
Caputa G, Castoldi A, Pearce EJ. Metabolic adaptations of tissue-resident immune cells. Nat Immunol 2019; 20:793-801. [DOI: 10.1038/s41590-019-0407-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/26/2019] [Indexed: 12/25/2022]
|