1
|
Ma W, Lu Y, Jin X, Lin N, Zhang L, Song Y. Targeting selective autophagy and beyond: From underlying mechanisms to potential therapies. J Adv Res 2024; 65:297-327. [PMID: 38750694 PMCID: PMC11518956 DOI: 10.1016/j.jare.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Autophagy is an evolutionarily conserved turnover process for intracellular substances in eukaryotes, relying on lysosomal (in animals) or vacuolar (in yeast and plants) mechanisms. In the past two decades, emerging evidence suggests that, under specific conditions, autophagy can target particular macromolecules or organelles for degradation, a process termed selective autophagy. Recently, accumulating studies have demonstrated that the abnormality of selective autophagy is closely associated with the occurrence and progression of many human diseases, including neurodegenerative diseases, cancers, metabolic diseases, and cardiovascular diseases. AIM OF REVIEW This review aims at systematically and comprehensively introducing selective autophagy and its role in various diseases, while unravelling the molecular mechanisms of selective autophagy. By providing a theoretical basis for the development of related small-molecule drugs as well as treating related human diseases, this review seeks to contribute to the understanding of selective autophagy and its therapeutic potential. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, we systematically introduce and dissect the major categories of selective autophagy that have been discovered. We also focus on recent advances in understanding the molecular mechanisms underlying both classical and non-classical selective autophagy. Moreover, the current situation of small-molecule drugs targeting different types of selective autophagy is further summarized, providing valuable insights into the discovery of more candidate small-molecule drugs targeting selective autophagy in the future. On the other hand, we also reveal clinically relevant implementations that are potentially related to selective autophagy, such as predictive approaches and treatments tailored to individual patients.
Collapse
Affiliation(s)
- Wei Ma
- Department of Breast Surgery, Department of Ultrasound, Department of Hematology and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yingying Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xin Jin
- Department of Breast Surgery, Department of Ultrasound, Department of Hematology and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Na Lin
- Department of Breast Surgery, Department of Ultrasound, Department of Hematology and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yaowen Song
- Department of Breast Surgery, Department of Ultrasound, Department of Hematology and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
2
|
Du L, Cen M, Cheng F, Dai N. Abnormal expression of autophagy proteins in the duodenum of patients with functional dyspepsia: A preliminary study. Arab J Gastroenterol 2024; 25:410-413. [PMID: 39278781 DOI: 10.1016/j.ajg.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND AND STUDY AIMS Functional dyspepsia (FD) is a common disease with an unclear pathology. Autophagy is associated with inflammation and has been proposed to play a role in the development of FD. This study aimed to evaluate expression of the autophagy proteins beclin1 and p62/SQSTM1 in patients with FD. PATIENTS AND METHODS Duodenal mucosal tissues were collected from 10 patients with FD and 10 asymptomatic controls. The extent of autophagy was determined by examining expression levels of beclin1 and p62/SQSTM1 using quantitative polymerase chain reaction and immunohistochemistry techniques. RESULTS Lower expression levels of beclin1 protein were detected in the duodenal bulb (D1) and the second portion of the duodenum (D2) in patients with FD compared with asymptomatic controls. Higher levels of p62 protein were expressed in D1 in patients with FD than in controls. No differences in mRNA expression of beclin1 and p62 were observed between patients with FD and controls. CONCLUSION Abnormal autophagy was involved in FD, which may be associated with the pathogenesis of FD.
Collapse
Affiliation(s)
- Lijun Du
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mengsha Cen
- Department of Gastroenterology, Cixi People's Hospital of Zhejiang Province, Cixi, China
| | - Fangli Cheng
- Department of Diagnostic Ultrasound and Echocardiography, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ning Dai
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Wang J, Sun H, Li R, Xu S, Guo J, Xing G, Jia B, Qiao S, Chen XX, Zhang G. PRRSV non-structural protein 5 inhibits antiviral innate immunity by degrading multiple proteins of RLR signaling pathway through FAM134B-mediated ER-phagy. J Virol 2024; 98:e0081624. [PMID: 39264156 PMCID: PMC11495150 DOI: 10.1128/jvi.00816-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
Viruses employ various evasion strategies to establish prolonged infection, with evasion of innate immunity being particularly crucial. Porcine reproductive and respiratory syndrome virus (PRRSV) is a significant pathogen in swine industry, characterized by reproductive failures in sows and respiratory distress in pigs of all ages, leading to substantial economic losses globally. In this study, we found that the non-structural protein 5 (Nsp5) of PRRSV antagonizes innate immune responses via inhibiting the expression of type I interferon (IFN-I) and IFN-stimulated genes (ISGs), which is achieved by degrading multiple proteins of RIG-I-like receptor (RLR) signaling pathway (RIG-I, MDA5, MAVS, TBK1, IRF3, and IRF7). Furthermore, we showed that PRRSV Nsp5 is located in endoplasmic reticulum (ER), where it promotes accumulation of RLR signaling pathway proteins. Further data demonstrated that Nsp5 activates reticulophagy (ER-phagy), which is responsible for the degradation of RLR signaling pathway proteins and IFN-I production. Mechanistically, Nsp5 interacts with one of the ER-phagy receptor family with sequence similarity 134 member B (FAM134B), promoting the oligomerization of FAM134B. These findings elucidate a novel mechanism by which PRRSV utilizes FAM134B-mediated ER-phagy to elude host antiviral immunity.IMPORTANCEInnate immunity is the first line of host defense against viral infections. Therefore, viruses developed numerous mechanisms to evade the host innate immune responses for their own benefit. PRRSV, one of the most important endemic swine viruses, poses a significant threat to the swine industry worldwide. Here, we demonstrate for the first time that PRRSV utilizes its non-structural protein Nsp5 to degrade multiple proteins of RLR signaling pathways, which play important roles in IFN-I production. Moreover, FAM134B-mediated ER-phagy was further proved to be responsible for the protein's degradation. Our study highlights the critical role of ER-phagy in immune evasion of PRRSV to favor replication and provides new insights into the prevention and control of PRRSV.
Collapse
Affiliation(s)
- Jing Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Huiqin Sun
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Rui Li
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Shixuan Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Junqing Guo
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Guangxu Xing
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Bin Jia
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Songlin Qiao
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Xin-xin Chen
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
- Longhu Laboratory, Zhengzhou, China
| |
Collapse
|
4
|
Xia R, Jiang Z, Zhou Y, Pan L, Wang Y, Ma Y, Fan L, Yuan L, Cheng X. Oral microbiota and gastric cancer: recent highlights and knowledge gaps. J Oral Microbiol 2024; 16:2391640. [PMID: 39161727 PMCID: PMC11332296 DOI: 10.1080/20002297.2024.2391640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/19/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024] Open
Abstract
Gastric cancer is one of the most common malignant tumors worldwide and has a high mortality rate. However, tests for the early screening and diagnosis of gastric cancer are limited and invasive. Certain oral microorganisms are over-expressed in gastric cancer, but there is heterogeneity among different studies. Notably, each oral ecological niche harbors specific microorganisms. Among them, tongue coating, saliva, and dental plaque are important and unique ecological niches in the oral cavity. The colonization environment in different oral niches may be a source of heterogeneity. In this paper, we systematically discuss the latest developments in the field of the oral microbiota and gastric cancer and elucidate the enrichment of microorganisms in the oral ecological niches of the tongue coatings, saliva, and dental plaque in gastric cancer patients. The various potential mechanisms by which the oral microbiota induces gastric cancer (activation of an excessive inflammatory response; promotion of proliferation, migration, invasion, and metastasis; and secretion of carcinogens, leading to imbalance in gastric microbial communities) are explored. In this paper, we also highlight the applications of the rapeutics targeting the oral microbiota in gastric cancer and suggests future research directions related to the relationship between the oral microbiota and gastric cancer.
Collapse
Affiliation(s)
- Ruihong Xia
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhengchen Jiang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ying Zhou
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Libin Pan
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yanan Wang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yubo Ma
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lili Fan
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Li Yuan
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Department of Integrated Chinese and Western Medicine, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xiangdong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
5
|
Myrou A. Molecular Mechanisms and Treatment Strategies for Helicobacter pylori-Induced Gastric Carcinogenesis and Mucosa-Associated Lymphoid Tissue (MALT) Lymphoma. Cureus 2024; 16:e60326. [PMID: 38883131 PMCID: PMC11177234 DOI: 10.7759/cureus.60326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Helicobacter pylori has been classified as a class I carcinogen by WHO because of its primary involvement in the development of gastric cancer and mucosa-associated lymphoid tissue (MALT) lymphoma. This review focuses on understanding the molecular pathophysiological mechanisms that operate within intracellular transduction pathways and their relevance in the treatment strategies for the two main diseases caused by H. pylori. H. pylori virulence factors such as cytotoxin-associated gene A and vacuolating cytotoxin A genotypes, inflammatory mediators, H. pylori-induced microRNA deregulation, alterations in autophagy proteins and regulators, and changes in DNA methylation are some of the molecular mechanisms that play essential roles in H. pylori infection and gastric carcinogenesis. The discovery of novel treatment strategies that target the deregulated intracellular transduction pathways in gastric carcinogenesis and MALT lymphoma is critical. H. pylori eradication (HPE) is not limited to H. pylori-dependent low-grade MALT lymphoma and may be used in patients with high-grade diffuse large B-cell lymphoma (DLBCL) (de novo or DLBCL-MALT lymphoma). The loss of H. pylori dependency and high-grade transformation appear to be distinct events in the progression of gastric lymphoma. Interestingly, patients with H. pylori-positive gastric DLBCL without histological evidence of MALT lymphoma (pure gastric DLBCL) may respond to HPE therapy.
Collapse
Affiliation(s)
- Athena Myrou
- Department of Internal Medicine, American Hellenic Educational Progressive Association (AHEPA) University Hospital, Thessaloniki, GRC
| |
Collapse
|
6
|
Liu J, Wu Y, Meng S, Xu P, Li S, Li Y, Hu X, Ouyang L, Wang G. Selective autophagy in cancer: mechanisms, therapeutic implications, and future perspectives. Mol Cancer 2024; 23:22. [PMID: 38262996 PMCID: PMC10807193 DOI: 10.1186/s12943-024-01934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024] Open
Abstract
Eukaryotic cells engage in autophagy, an internal process of self-degradation through lysosomes. Autophagy can be classified as selective or non-selective depending on the way it chooses to degrade substrates. During the process of selective autophagy, damaged and/or redundant organelles like mitochondria, peroxisomes, ribosomes, endoplasmic reticulum (ER), lysosomes, nuclei, proteasomes, and lipid droplets are selectively recycled. Specific cargo is delivered to autophagosomes by specific receptors, isolated and engulfed. Selective autophagy dysfunction is closely linked with cancers, neurodegenerative diseases, metabolic disorders, heart failure, etc. Through reviewing latest research, this review summarized molecular markers and important signaling pathways for selective autophagy, and its significant role in cancers. Moreover, we conducted a comprehensive analysis of small-molecule compounds targeting selective autophagy for their potential application in anti-tumor therapy, elucidating the underlying mechanisms involved. This review aims to supply important scientific references and development directions for the biological mechanisms and drug discovery of anti-tumor targeting selective autophagy in the future.
Collapse
Affiliation(s)
- Jiaxi Liu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yongya Wu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Sha Meng
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Ping Xu
- Emergency Department, Zigong Fourth People's Hospital, Zigong, 643000, China
| | - Shutong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Xiuying Hu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Liang Ouyang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Abstract
Macroautophagy/autophagy, a fundamental cell process for nutrient recycling and defense against pathogens (termed xenophagy), is crucial to human health. ATG16L2 (autophagy related 16 like 2) is an autophagic protein and a paralog of ATG16L1. Both proteins are implicated in similar diseases such as cancer and other chronic diseases; however, most autophagy studies to date have primarily focused on the function of ATG16L1, with ATG16L2 remaining uncharacterized and understudied. Overexpression of ATG16L2 has been reported in various cancers including colorectal, gastric, and prostate carcinomas, whereas altered methylation of ATG16L2 has been associated with lung cancer formation and poorer response to therapy in leukemia. In addition, ATG16L2 polymorphisms have been implicated in a range of other diseases including inflammatory bowel diseases and neurodegenerative disorders. Despite this likely role in human health, the function of this enigmatic protein in autophagy remains unknown. Here, we review current studies on ATG16L2 and collate evidence that suggests that this protein is a potential modulator of autophagy as well as the implications this has on pathogenesis.Abbreviations: ATG5: autophagy related 5; ATG12: autophagy related 12; ATG16L1: autophagy related 16 like 1; ATG16L2: autophagy related 16 like 2; CD: Crohn disease; IBD: inflammatory bowel diseases; IRGM: immunity related GTPase M; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PE: phosphatidylethanolamine; RB1CC1: RB1 inducible coiled-coil 1; SLE: systemic lupus erythematosus; WIPI2B: WD repeat domain, phosphoinositide interacting 2B.
Collapse
Affiliation(s)
- Laurence Don Wai Luu
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia,CONTACT Laurence Don Wai Luu School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Nadeem O. Kaakoush
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Natalia Castaño-Rodríguez
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia,Natalia Castaño-Rodríguez School of Biotechnology and Biomolecular Sciences, Faculty of Science, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
8
|
Grosjean I, Roméo B, Domdom MA, Belaid A, D’Andréa G, Guillot N, Gherardi RK, Gal J, Milano G, Marquette CH, Hung RJ, Landi MT, Han Y, Brest P, Von Bergen M, Klionsky DJ, Amos CI, Hofman P, Mograbi B. Autophagopathies: from autophagy gene polymorphisms to precision medicine for human diseases. Autophagy 2022; 18:2519-2536. [PMID: 35383530 PMCID: PMC9629091 DOI: 10.1080/15548627.2022.2039994] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/20/2022] [Accepted: 02/06/2022] [Indexed: 12/15/2022] Open
Abstract
At a time when complex diseases affect globally 280 million people and claim 14 million lives every year, there is an urgent need to rapidly increase our knowledge into their underlying etiologies. Though critical in identifying the people at risk, the causal environmental factors (microbiome and/or pollutants) and the affected pathophysiological mechanisms are not well understood. Herein, we consider the variations of autophagy-related (ATG) genes at the heart of mechanisms of increased susceptibility to environmental stress. A comprehensive autophagy genomic resource is presented with 263 single nucleotide polymorphisms (SNPs) for 69 autophagy-related genes associated with 117 autoimmune, inflammatory, infectious, cardiovascular, neurological, respiratory, and endocrine diseases. We thus propose the term 'autophagopathies' to group together a class of complex human diseases the etiology of which lies in a genetic defect of the autophagy machinery, whether directly related or not to an abnormal flux in autophagy, LC3-associated phagocytosis, or any associated trafficking. The future of precision medicine for common diseases will lie in our ability to exploit these ATG SNP x environment relationships to develop new polygenetic risk scores, new management guidelines, and optimal therapies for afflicted patients.Abbreviations: ATG, autophagy-related; ALS-FTD, amyotrophic lateral sclerosis-frontotemporal dementia; ccRCC, clear cell renal cell carcinoma; CD, Crohn disease; COPD, chronic obstructive pulmonary disease; eQTL, expression quantitative trait loci; HCC, hepatocellular carcinoma; HNSCC, head and neck squamous cell carcinoma; GTEx, genotype-tissue expression; GWAS, genome-wide association studies; LAP, LC3-associated phagocytosis; LC3-II, phosphatidylethanolamine conjugated form of LC3; LD, linkage disequilibrium; LUAD, lung adenocarcinoma; MAF, minor allele frequency; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NSCLC, non-small cell lung cancer; OS, overall survival; PtdIns3K CIII, class III phosphatidylinositol 3 kinase; PtdIns3P, phosphatidylinositol-3-phosphate; SLE, systemic lupus erythematosus; SNPs, single-nucleotide polymorphisms; mQTL, methylation quantitative trait loci; ULK, unc-51 like autophagy activating kinase; UTRs, untranslated regions; WHO, World Health Organization.
Collapse
Affiliation(s)
- Iris Grosjean
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
| | - Barnabé Roméo
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
| | - Marie-Angela Domdom
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
| | - Amine Belaid
- Université Côte d’Azur (UCA), INSERM U1065, C3M, Team 5, F-06204, France
| | - Grégoire D’Andréa
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
- ENT and Head and Neck surgery department, Institut Universitaire de la Face et du Cou, CHU de Nice, University Hospital, Côte d’Azur University, Nice, France
| | - Nicolas Guillot
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
| | - Romain K Gherardi
- INSERM U955 Team Relais, Faculty of Health, Paris Est University, France
| | - Jocelyn Gal
- University Côte d’Azur, Centre Antoine Lacassagne, Epidemiology and Biostatistics Department, Nice, France
| | - Gérard Milano
- Université Côte d’Azur, Centre Antoine Lacassagne, UPR7497, Nice, France
| | - Charles Hugo Marquette
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
- University Côte d’Azur, FHU-OncoAge, Department of Pulmonary Medicine and Oncology, CHU de Nice, Nice, France
| | - Rayjean J. Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada; Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Younghun Han
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Patrick Brest
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
| | - Martin Von Bergen
- Helmholtz Centre for Environmental Research GmbH - UFZ, Dep. of Molecular Systems Biology; University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Leipzig, Germany
| | - Daniel J. Klionsky
- University of Michigan, Life Sciences Institute, Ann Arbor, MI, 48109, USA
| | - Christopher I. Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Paul Hofman
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
- University Côte d’Azur, FHU-OncoAge, CHU de Nice, Laboratory of Clinical and Experimental Pathology (LPCE) Biobank(BB-0033-00025), Nice, France
| | - Baharia Mograbi
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
| |
Collapse
|
9
|
Pant A, Yao X, Lavedrine A, Viret C, Dockterman J, Chauhan S, Chong-Shan Shi, Manjithaya R, Cadwell K, Kufer TA, Kehrl JH, Coers J, Sibley LD, Faure M, Taylor GA, Chauhan S. Interactions of Autophagy and the Immune System in Health and Diseases. AUTOPHAGY REPORTS 2022; 1:438-515. [PMID: 37425656 PMCID: PMC10327624 DOI: 10.1080/27694127.2022.2119743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Autophagy is a highly conserved process that utilizes lysosomes to selectively degrade a variety of intracellular cargo, thus providing quality control over cellular components and maintaining cellular regulatory functions. Autophagy is triggered by multiple stimuli ranging from nutrient starvation to microbial infection. Autophagy extensively shapes and modulates the inflammatory response, the concerted action of immune cells, and secreted mediators aimed to eradicate a microbial infection or to heal sterile tissue damage. Here, we first review how autophagy affects innate immune signaling, cell-autonomous immune defense, and adaptive immunity. Then, we discuss the role of non-canonical autophagy in microbial infections and inflammation. Finally, we review how crosstalk between autophagy and inflammation influences infectious, metabolic, and autoimmune disorders.
Collapse
Affiliation(s)
- Aarti Pant
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Xiaomin Yao
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Aude Lavedrine
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Jake Dockterman
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
| | - Swati Chauhan
- Cell biology and Infectious diseases, Institute of Life Sciences, Bhubaneswar, India
| | - Chong-Shan Shi
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Thomas A. Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - John H. Kehrl
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jörn Coers
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Medical Center, Durham, North Carolina, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University Sch. Med., St Louis, MO, 63110, USA
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Gregory A Taylor
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Microbiology, Washington University Sch. Med., St Louis, MO, 63110, USA
- Geriatric Research, Education, and Clinical Center, VA Health Care Center, Durham, North Carolina, USA
- Departments of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University, Medical Center, Durham, North Carolina, USA
| | - Santosh Chauhan
- Cell biology and Infectious diseases, Institute of Life Sciences, Bhubaneswar, India
- CSIR–Centre For Cellular And Molecular Biology (CCMB), Hyderabad, Telangana
| |
Collapse
|
10
|
Immunity-related GTPase IRGM at the intersection of autophagy, inflammation, and tumorigenesis. Inflamm Res 2022; 71:785-795. [PMID: 35699756 PMCID: PMC9192921 DOI: 10.1007/s00011-022-01595-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/25/2022] [Indexed: 12/26/2022] Open
Abstract
The human immunity-related GTPase M (IRGM) is a GTP-binding protein that regulates selective autophagy including xenophagy and mitophagy. IRGM impacts autophagy by (1) affecting mitochondrial fusion and fission, (2) promoting the co-assembly of ULK1 and Beclin 1, (3) enhancing Beclin 1 interacting partners (AMBRA1, ATG14L1, and UVRAG), (4) interacting with other key proteins (ATG16L1, p62, NOD2, cGAS, TLR3, and RIG-I), and (5) regulating lysosomal biogenesis. IRGM also negatively regulates NLRP3 inflammasome formation and therefore, maturation of the important pro-inflammatory cytokine IL-1β, impacting inflammation and pyroptosis. Ultimately, this affords protection against chronic inflammatory diseases. Importantly, ten IRGM polymorphisms (rs4859843, rs4859846, rs4958842, rs4958847, rs1000113, rs10051924, rs10065172, rs11747270, rs13361189, and rs72553867) have been associated with human inflammatory disorders including cancer, which suggests that these genetic variants are functionally relevant to the autophagic and inflammatory responses. The current review contextualizes IRGM, its modulation of autophagy, and inflammation, and emphasizes the role of IRGM as a cross point of immunity and tumorigenesis.
Collapse
|
11
|
Yang Y, Shu X, Xie C. An Overview of Autophagy in Helicobacter pylori Infection and Related Gastric Cancer. Front Cell Infect Microbiol 2022; 12:847716. [PMID: 35463631 PMCID: PMC9033262 DOI: 10.3389/fcimb.2022.847716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/16/2022] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori (H. pylori) infection is considered a class I carcinogen in the pathogenesis of gastric cancer. In recent years, the interaction relationship between H. pylori infection and autophagy has attracted increasing attention. Most investigators believe that the pathogenesis of gastric cancer is closely related to the formation of an autophagosome-mediated downstream signaling pathway by H. pylori infection-induced cells. Autophagy is involved in H. pylori infection and affects the occurrence and development of gastric cancer. In this paper, the possible mechanism by which H. pylori infection affects autophagy and the progression of related gastric cancer signaling pathways are reviewed.
Collapse
Affiliation(s)
| | - Xu Shu
- *Correspondence: Xu Shu, ; Chuan Xie,
| | - Chuan Xie
- *Correspondence: Xu Shu, ; Chuan Xie,
| |
Collapse
|
12
|
Mommersteeg M, Simovic I, Yu B, van Nieuwenburg S, Bruno IM, Doukas M, Kuipers E, Spaander M, Peppelenbosch M, Castaño-Rodríguez N, Fuhler G. Autophagy mediates ER stress and inflammation in Helicobacter pylori-related gastric cancer. Gut Microbes 2022; 14:2015238. [PMID: 34965181 PMCID: PMC8726742 DOI: 10.1080/19490976.2021.2015238] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Autophagy is a cellular degradation mechanism, which is triggered by the bacterium Helicobacter pylori. A single nucleotide polymorphism (SNP) in the autophagy gene ATG16L1 (rs2241880, G-allele) has been shown to dysregulate autophagy and increase intestinal endoplasmic reticulum (ER) stress. Here, we investigate the role of this SNP in H.pylori-mediated gastric carcinogenesis and its molecular pathways. ATG16L1 rs2241880 was genotyped in subjects from different ethnic cohorts (Dutch and Australian) presenting with gastric (pre)malignant lesions of various severity. Expression of GRP78 (a marker for ER stress) was assessed in gastric tissues. The effect of ATG16L1 rs2241880 on H.pylori-mediated ER stress and pro-inflammatory cytokine induction was investigated in organoids and CRISPR/Cas9 modified cell lines. Development of gastric cancer was associated with the ATG16L1 rs2241880 G-allele. Intestinal metaplastic cells in gastric tissue of patients showed increased levels of ER-stress. In vitro models showed that H.pylori increases autophagy while reducing ER stress, which appeared partly mediated by the ATG16L1 rs2241880 genotype. H.pylori-induced IL-8 production was increased while TNF-α production was decreased, in cells homozygous for the G-allele. The ATG16L1 rs2241880 G-allele is associated with progression of gastric premalignant lesions and cancer. Modulation of H.pylori-induced ER stress pathways and pro-inflammatory mediators by ATG16L1 rs2441880 may underlie this increased risk.
Collapse
Affiliation(s)
- M.C. Mommersteeg
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - I. Simovic
- School of Biotechnology and Biomolecular Sciences, Unsw, Sydney, Australia
| | - B. Yu
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - S.A.V. van Nieuwenburg
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - I, M.J. Bruno
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M. Doukas
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - E.J. Kuipers
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M.C.W. Spaander
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M.P. Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - N. Castaño-Rodríguez
- School of Biotechnology and Biomolecular Sciences, Unsw, Sydney, Australia,CONTACT N. Castaño-Rodríguez School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW 2052, Australia
| | - G.M. Fuhler
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands,G.M. Fuhler PhD Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Unsw, Rotterdam, The Netherlands
| |
Collapse
|
13
|
Thein W, Po WW, Choi WS, Sohn UD. Autophagy and Digestive Disorders: Advances in Understanding and Therapeutic Approaches. Biomol Ther (Seoul) 2021; 29:353-364. [PMID: 34127572 PMCID: PMC8255139 DOI: 10.4062/biomolther.2021.086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
The gastrointestinal (GI) tract is a series of hollow organs that is responsible for the digestion and absorption of ingested foods and the excretion of waste. Any changes in the GI tract can lead to GI disorders. GI disorders are highly prevalent in the population and account for substantial morbidity, mortality, and healthcare utilization. GI disorders can be functional, or organic with structural changes. Functional GI disorders include functional dyspepsia and irritable bowel syndrome. Organic GI disorders include inflammation of the GI tract due to chronic infection, drugs, trauma, and other causes. Recent studies have highlighted a new explanatory mechanism for GI disorders. It has been suggested that autophagy, an intracellular homeostatic mechanism, also plays an important role in the pathogenesis of GI disorders. Autophagy has three primary forms: macroautophagy, microautophagy, and chaperone-mediated autophagy. It may affect intestinal homeostasis, host defense against intestinal pathogens, regulation of the gut microbiota, and innate and adaptive immunity. Drugs targeting autophagy could, therefore, have therapeutic potential for treating GI disorders. In this review, we provide an overview of current understanding regarding the evidence for autophagy in GI diseases and updates on potential treatments, including drugs and complementary and alternative medicines.
Collapse
Affiliation(s)
- Wynn Thein
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Wah Wah Po
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Won Seok Choi
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Uy Dong Sohn
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
14
|
Ma C, Storer CE, Chandran U, LaFramboise WA, Petrosko P, Frank M, Hartman DJ, Pantanowitz L, Haritunians T, Head RD, Liu TC. Crohn's disease-associated ATG16L1 T300A genotype is associated with improved survival in gastric cancer. EBioMedicine 2021; 67:103347. [PMID: 33906066 PMCID: PMC8099593 DOI: 10.1016/j.ebiom.2021.103347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND A non-synonymous single nucleotide polymorphism of the ATG16L1 gene, T300A, is a major Crohn's disease (CD) susceptibility allele, and is known to be associated with increased apoptosis induction in the small intestinal crypt base in CD subjects and mouse models. We hypothesized that ATG16L1 T300A genotype also correlates with increased tumor apoptosis and therefore could lead to superior clinical outcome in cancer subjects. METHODS T300A genotyping by Taqman assay was performed for gastric carcinoma subjects who underwent resection from two academic medical centers. Transcriptomic analysis was performed by RNA-seq on formalin-fixed paraffin-embedded cancerous tissue. Tumor apoptosis and autophagy were determined by cleaved caspase-3 and p62 immunohistochemistry, respectively. The subjects' genotypes were correlated with demographics, various histopathologic features, transcriptome, and clinical outcome. FINDINGS Of the 220 genotyped subjects, 163 (74%) subjects carried the T300A allele(s), including 55 (25%) homozygous and 108 (49%) heterozygous subjects. The T300A/T300A subjects had superior overall survival than the other groups. Their tumors were associated with increased CD-like lymphoid aggregates and increased tumor apoptosis without concurrent increase in tumor mitosis or defective autophagy. Transcriptomic analysis showed upregulation of WNT/β-catenin signaling and downregulation of PPAR, EGFR, and inflammatory chemokine pathways in tumors of T300A/T300A subjects. INTERPRETATION Gastric carcinoma of subjects with the T300A/T300A genotype is associated with repressed EGFR and PPAR pathways, increased tumor apoptosis, and improved overall survival. Genotyping gastric cancer subjects may provide additional insight for clinical stratification.
Collapse
Affiliation(s)
- Changqing Ma
- Department of Pathology, University of Pittsburgh School of Medicine, 200 Lothrop Street, A-610, Pittsburgh, PA 15213, United States.
| | - Chad E Storer
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Uma Chandran
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States
| | - William A LaFramboise
- UPMC Hillman Cancer Center, Cancer Genomics Facility, Pittsburgh, PA 15232, United States
| | - Patricia Petrosko
- UPMC Hillman Cancer Center, Cancer Genomics Facility, Pittsburgh, PA 15232, United States
| | - Madison Frank
- Department of Pathology, University of Pittsburgh School of Medicine, 200 Lothrop Street, A-610, Pittsburgh, PA 15213, United States
| | - Douglas J Hartman
- Department of Pathology, University of Pittsburgh School of Medicine, 200 Lothrop Street, A-610, Pittsburgh, PA 15213, United States
| | - Liron Pantanowitz
- Department of Pathology, University of Pittsburgh School of Medicine, 200 Lothrop Street, A-610, Pittsburgh, PA 15213, United States
| | - Talin Haritunians
- F. Widjaja Family Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Richard D Head
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Ta-Chiang Liu
- Departments of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8118, Saint Louis, MO 63110, United States.
| |
Collapse
|
15
|
Nieuwenburg SAV, Mommersteeg MC, Eikenboom EL, Yu B, den Hollander WJ, Holster IL, den Hoed CM, Capelle LG, Tang TJ, Anten MP, Prytz-Berset I, Witteman EM, ter Borg F, Burger JPW, Bruno MJ, Fuhler GM, Peppelenbosch MP, Doukas M, Kuipers EJ, Spaander MC. Factors associated with the progression of gastric intestinal metaplasia: a multicenter, prospective cohort study. Endosc Int Open 2021; 9:E297-E305. [PMID: 33655025 PMCID: PMC7892268 DOI: 10.1055/a-1314-6626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Background and study aims Gastric cancer (GC) is usually preceded by premalignant gastric lesions (GPLs) such as gastric intestinal metaplasia (GIM). Information on risk factors associated with neoplastic progression of GIM are scarce. This study aimed to identify predictors for progression of GIM in areas with low GC incidence. Patients and methods The Progression and Regression of Precancerous Gastric Lesions (PROREGAL) study includes patients with GPL. Patients underwent at least two upper endoscopies with random biopsy sampling. Progression of GIM means an increase in severity according to OLGIM (operative link on gastric intestinal metaplasia) during follow-up (FU). Family history and lifestyle factors were determined through questionnaires. Serum Helicobacter pylori infection, pepsinogens (PG), gastrin-17 and GC-associated single nucleotide polymorphisms (SNPs) were determined. Cox regression was performed for risk analysis and a chi-squared test for analysis of single nucleotide polymorphisms. Results Three hundred and eight patients (median age at inclusion 61 years, interquartile range (IQR: 17; male 48.4 %; median FU 48 months, IQR: 24) were included. During FU, 116 patients (37.7 %) showed progression of IM and six patients (1.9 %) developed high-grade dysplasia or GC. The minor allele (C) on TLR4 (rs11536889) was inversely associated with progression of GIM (OR 0.6; 95 %CI 0.4-1.0). Family history (HR 1.5; 95 %CI 0.9-2.4) and smoking (HR 1.6; 95 %CI 0.9-2.7) showed trends towards progression of GIM. Alcohol use, body mass index, history of H. pylori infection, and serological markers were not associated with progression. Conclusions Family history and smoking appear to be related to an increased risk of GIM progression in low GC incidence countries. TLR4 (rs11536889) showed a significant inverse association, suggesting that genetic information may play a role in GIM progression.
Collapse
Affiliation(s)
- S. A. V. Nieuwenburg
- Departments of Gastroenterology and Hepatology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - M. C. Mommersteeg
- Departments of Gastroenterology and Hepatology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - E. L. Eikenboom
- Departments of Gastroenterology and Hepatology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - B. Yu
- Departments of Gastroenterology and Hepatology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | | | - I. Lisanne Holster
- Departments of Gastroenterology and Hepatology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Caroline M. den Hoed
- Departments of Gastroenterology and Hepatology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - L. G Capelle
- Meander Medical Centre, Amersfoort, the Netherlands
| | - Thjon J. Tang
- IJsselland Hospital, Capelle aan den IJssel, The Netherlands
| | | | | | | | - F. ter Borg
- Deventer Hospital, Deventer, The Netherlands
| | - Jordy P. W. Burger
- Department of Gastroenterology and Hepatology, Rijnstate, Arnhem, The Netherlands
| | - Marco J. Bruno
- Departments of Gastroenterology and Hepatology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - G. M. Fuhler
- Departments of Gastroenterology and Hepatology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Maikel P. Peppelenbosch
- Departments of Gastroenterology and Hepatology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Michael Doukas
- Department of Pathology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Ernst J. Kuipers
- Departments of Gastroenterology and Hepatology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Manon C.W. Spaander
- Departments of Gastroenterology and Hepatology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
16
|
Tamargo-Gómez I, Fernández ÁF, Mariño G. Pathogenic Single Nucleotide Polymorphisms on Autophagy-Related Genes. Int J Mol Sci 2020; 21:ijms21218196. [PMID: 33147747 PMCID: PMC7672651 DOI: 10.3390/ijms21218196] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, the study of single nucleotide polymorphisms (SNPs) has gained increasing importance in biomedical research, as they can either be at the molecular origin of a determined disorder or directly affect the efficiency of a given treatment. In this regard, sequence variations in genes involved in pro-survival cellular pathways are commonly associated with pathologies, as the alteration of these routes compromises cellular homeostasis. This is the case of autophagy, an evolutionarily conserved pathway that counteracts extracellular and intracellular stressors by mediating the turnover of cytosolic components through lysosomal degradation. Accordingly, autophagy dysregulation has been extensively described in a wide range of human pathologies, including cancer, neurodegeneration, or inflammatory alterations. Thus, it is not surprising that pathogenic gene variants in genes encoding crucial effectors of the autophagosome/lysosome axis are increasingly being identified. In this review, we present a comprehensive list of clinically relevant SNPs in autophagy-related genes, highlighting the scope and relevance of autophagy alterations in human disease.
Collapse
Affiliation(s)
- Isaac Tamargo-Gómez
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain;
- Departamento de Biología Funcional, Universidad de Oviedo, 33011 Oviedo, Spain
| | - Álvaro F. Fernández
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain;
- Departamento de Biología Funcional, Universidad de Oviedo, 33011 Oviedo, Spain
- Correspondence: (Á.F.F.); (G.M.); Tel.: +34-985652416 (G.M.)
| | - Guillermo Mariño
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain;
- Departamento de Biología Funcional, Universidad de Oviedo, 33011 Oviedo, Spain
- Correspondence: (Á.F.F.); (G.M.); Tel.: +34-985652416 (G.M.)
| |
Collapse
|
17
|
Shen XB, Wang Y, Han XZ, Sheng LQ, Wu FF, Liu X. Design, synthesis and anticancer activity of naphthoquinone derivatives. J Enzyme Inhib Med Chem 2020; 35:773-785. [PMID: 32200656 PMCID: PMC7144209 DOI: 10.1080/14756366.2020.1740693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Basis on molecular docking and pharmacophore analysis of naphthoquinone moiety, a total of 23 compounds were designed and synthesised. With the help of reverse targets searching, anti-cancer activity was preliminarily evaluated, most of them are effective against some tumour cells, especially compound 12: 1-(5,8-dihydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-4-methylpent-3-en-1-yl-4-oxo-4-((4-phenoxyphenyl)amino) butanoate whose IC50 against SGC-7901 was 4.1 ± 2.6 μM. Meanwhile the anticancer mechanism of compound 12 had been investigated by AnnexinV/PI staining, immunofluorescence, Western blot assay and molecular docking. The results indicated that this compound might induce cell apoptosis and cell autophagy through regulating the PI3K signal pathway.
Collapse
Affiliation(s)
- Xiao-Bao Shen
- School of Pharmacy, Anhui Medical University, Hefei, PR China.,Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, PR China
| | - Yang Wang
- School of Pharmacy, Anhui Medical University, Hefei, PR China
| | - Xuan-Zhen Han
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, PR China
| | - Liang-Quan Sheng
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, PR China
| | - Fu-Fang Wu
- School of Pharmacy, Anhui Medical University, Hefei, PR China.,Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, PR China
| | - Xinhua Liu
- School of Pharmacy, Anhui Medical University, Hefei, PR China
| |
Collapse
|
18
|
Ghartey-Kwansah G, Adu-Nti F, Aboagye B, Ankobil A, Essuman EE, Opoku YK, Abokyi S, Abu EK, Boampong JN. Autophagy in the control and pathogenesis of parasitic infections. Cell Biosci 2020; 10:101. [PMID: 32944216 PMCID: PMC7487832 DOI: 10.1186/s13578-020-00464-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Background Autophagy has a crucial role in the defense against parasites. The interplay existing between host autophagy and parasites has varied outcomes due to the kind of host cell and microorganism. The presence of autophagic compartments disrupt a significant number of pathogens and are further cleared by xenophagy in an autolysosome. Another section of pathogens have the capacity to outwit the autophagic pathway to their own advantage. Result To comprehend the interaction between pathogens and the host cells, it is significant to distinguish between starvation-induced autophagy and other autophagic pathways. Subversion of host autophagy by parasites is likely due to differences in cellular pathways from those of ‘classical’ autophagy and that they are controlled by parasites in a peculiar way. In xenophagy clearance at the intracellular level, the pathogens are first ubiquitinated before autophagy receptors acknowledgement, followed by labeling with light chain 3 (LC3) protein. The LC3 in LC3-associated phagocytosis (LAP) is added directly into vacuole membrane and functions regardless of the ULK, an initiation complex. The activation of the ULK complex composed of ATG13, FIP200 and ATG101causes the initiation of host autophagic response. Again, the recognition of PAMPs by conserved PRRs marks the first line of defense against pathogens, involving Toll-like receptors (TLRs). These all important immune-related receptors have been reported recently to regulate autophagy. Conclusion In this review, we sum up recent advances in autophagy to acknowledge and understand the interplay between host and parasites, focusing on target proteins for the design of therapeutic drugs. The target host proteins on the initiation of the ULK complex and PRRs-mediated recognition of PAMPs may provide strong potential for the design of therapeutic drugs against parasitic infections.
Collapse
Affiliation(s)
- George Ghartey-Kwansah
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Frank Adu-Nti
- Department of Medical Laboratory Science, Radford University College, Accra, Ghana
| | - Benjamin Aboagye
- Department of Forensic Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Amandus Ankobil
- School of Nursing and Midwifery, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana.,Department of Epidemiology and Biostatistics, State University of New York at Albany, New York, USA
| | - Edward Eyipe Essuman
- US Food and Drugs Administration CBER, OBRR, DETTD 10903 New Hampshire Avenue, White Oak, USA
| | - Yeboah Kwaku Opoku
- Department of Biology Education, Faculty of Science, University of Education, Winneba, Ghana
| | - Samuel Abokyi
- Department of Optometry and Vision Science, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana.,School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Emmanuel Kwasi Abu
- Department of Optometry and Vision Science, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Johnson Nyarko Boampong
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
19
|
Clyne M, Rowland M. The Role of Host Genetic Polymorphisms in Helicobacter pylori Mediated Disease Outcome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:151-172. [PMID: 31016623 DOI: 10.1007/5584_2019_364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The clinical outcome of infection with the chronic gastric pathogen Helicobacter pylori is not the same for all individuals and also differs in different ethnic groups. Infection occurs in early life (<3 years of age), and while all infected persons mount an immune response and develop gastritis, the majority of individuals are asymptomatic. However, up to 10-15% develop duodenal ulceration, up to 1% develop gastric cancer (GC) and up to 0.1% can develop gastric mucosa-associated lymphoid tissue (MALT) lymphoma. The initial immune response fails to clear infection and H. pylori can persist for decades. H. pylori has been classified as a group one carcinogen by the WHO. Interestingly, development of duodenal ulceration protects against GC. Factors that determine the outcome of infection include the genotype of the infecting strains and the environment. Host genetic polymorphisms have also been identified as factors that play a role in mediating the clinical outcome of infection. Several studies present compelling evidence that polymorphisms in genes involved in the immune response such as pro and anti-inflammatory cytokines and pathogen recognition receptors (PRRs) play a role in modulating disease outcome. However, as the number of studies grows emerging confounding factors are small sample size and lack of appropriate controls, lack of consideration of environmental and bacterial factors and ethnicity of the population. This chapter is a review of current evidence that host genetic polymorphisms play a role in mediating persistent H. pylori infection and the consequences of the subsequent inflammatory response.
Collapse
Affiliation(s)
- Marguerite Clyne
- School of Medicine and The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| | - Marion Rowland
- School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
20
|
Zhang F, Chen C, Hu J, Su R, Zhang J, Han Z, Chen H, Li Y. Molecular mechanism of Helicobacter pylori-induced autophagy in gastric cancer. Oncol Lett 2019; 18:6221-6227. [PMID: 31788098 DOI: 10.3892/ol.2019.10976] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a gram-negative pathogen that colonizes gastric epithelial cells. The drug resistance rates of H. pylori have dramatically increased, causing persistent infections. Chronic infection by H. pylori is a critical cause of gastritis, peptic ulcers and even gastric cancer. In host cells, autophagy is stimulated to maintain cellular homeostasis following intracellular pathogen recognition by the innate immune defense system. However, H. pylori-induced autophagy is not consistent during acute and chronic infection. Therefore, a deeper understanding of the association between H. pylori infection and autophagy in gastric epithelial cells could aid the understanding of the mechanisms of persistent infection and the identification of autophagy-associated therapeutic targets for H. pylori infection. The present review describes the role of H. pylori and associated virulence factors in the induction of autophagy by different signaling pathways during acute infection. Additionally, the inhibition of autophagy in gastric epithelial cells during chronic infection was discussed. The present review summarized H. pylori-mediated autophagy and provided insights into its mechanism of action, suggesting the induction of autophagy as a novel therapeutic target for persistent H. pylori infection.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Cong Chen
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Jike Hu
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Ruiliang Su
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Junqiang Zhang
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Zhijian Han
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Hao Chen
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Yumin Li
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
21
|
Moazeni-Roodi A, Tabasi F, Ghavami S, Hashemi M. Investigation of ATG16L1 rs2241880 Polymorphism with Cancer Risk: A Meta-Analysis. ACTA ACUST UNITED AC 2019; 55:medicina55080425. [PMID: 31370304 PMCID: PMC6722794 DOI: 10.3390/medicina55080425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/16/2019] [Accepted: 07/30/2019] [Indexed: 01/04/2023]
Abstract
Background and Objectives: Previous studies have investigated the impact of the ATG16L1 rs2241880 (Thr300Ala) polymorphism on individual susceptibility to cancer, but the conclusions are still controversial. To get a more precise evaluation of the correlation between ATG16L1 rs2241880 polymorphism and cancer susceptibility, we performed a meta-analysis of the association of all eligible studies. Materials and Methods: Searches were performed in the Web of Science, PubMed, Scopus and Google Scholar databases up to November 2018. A total of 12 case-control studies from 9 articles comprising 2254 cases and 4974 controls were included. Statistical analysis was achieved by STATA 14.1 and Review Manager 5.3 software. The odds ratios (ORs) with 95% confidence intervals (95% CIs) under five genetic models were used to determine the strength of association among rs2241880 polymorphism and cancer susceptibility. Results: The findings did not support an association between the rs2241880 variant in either the overall study population or the subgroups, based on cancer types and ethnicity in any of the genetic models. As far as we know, our study is the first meta-analysis of the association between rs2241880 polymorphism and cancer risk. Conclusions: In conclusion, the findings of this meta-analysis proposes that the ATG16L1 rs2241880 polymorphism may not play a role in cancer development. Further well-designed studies are necessary to clarify the precise role of the ATG16L1 rs2241880 polymorphism on cancer risk.
Collapse
Affiliation(s)
- Abdolkarim Moazeni-Roodi
- Department of Clinical Biochemistry, Iranshahr University of Medical Sciences, Iranshahr 9916643535, Iran
| | - Farhad Tabasi
- Student Research Committee, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Research Institute in Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| | - Mohammad Hashemi
- Genetics of Non-communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran.
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743175, Iran.
| |
Collapse
|
22
|
Jang YJ, Kim JH, Byun S. Modulation of Autophagy for Controlling Immunity. Cells 2019; 8:cells8020138. [PMID: 30744138 PMCID: PMC6406335 DOI: 10.3390/cells8020138] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 02/07/2023] Open
Abstract
Autophagy is an essential process that maintains physiological homeostasis by promoting the transfer of cytoplasmic constituents to autophagolysosomes for degradation. In immune cells, the autophagy pathway plays an additional role in facilitating proper immunological functions. Specifically, the autophagy pathway can participate in controlling key steps in innate and adaptive immunity. Accordingly, alterations in autophagy have been linked to inflammatory diseases and defective immune responses against pathogens. In this review, we discuss the various roles of autophagy signaling in coordinating immune responses and how these activities are connected to pathological conditions. We highlight the therapeutic potential of autophagy modulators that can impact immune responses and the mechanisms of action responsible.
Collapse
Affiliation(s)
- Young Jin Jang
- Research Group of Natural Materials and Metabolism, Korea Food Research Institute, Wanjugun55365, Korea.
| | - Jae Hwan Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.
| | - Sanguine Byun
- Division of Bioengineering, Incheon National University, Incheon 22012, Korea.
| |
Collapse
|
23
|
Lim KG, Palayan K. A Review of Gastric Cancer Research in Malaysia. Asian Pac J Cancer Prev 2019; 20:5-11. [PMID: 30677863 PMCID: PMC6485554 DOI: 10.31557/apjcp.2019.20.1.5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/02/2019] [Indexed: 12/21/2022] Open
Abstract
Incidence rates of gastric cancer in Malaysia has declined by 48% among males and 31% among females in the latest reporting period of 13 years. Malays used to have age-standardized-rates only a fifth of those in Chinese and Indians, but the incidence among them is slightly rising even as the rates drop in the other races. Besides ethnicity, a low level of education, high intake of salted fish and vegetables, H pylori infection and smoking are risk factors. Consumption of fresh fruit and vegetable is protective. Variation in the strains of H pylori infection affect gastric cancer risk, with hspEAsia isolates among Chinese appearing linked to a high incidence than with hpAsia2 or hpEurope strains among Indians and Malays. It was reported in the 1980s that only about 3% of patients presented with early gastric cancer, but more encouraging rates reaching 27% with Stage 1 and 2 disease have been reported in the twenty-first century from leading centres. More tumours occur in the distal stomach except in Kelantan, where the incidence is low and main site is the cardia. Prompt endoscopy is advocated and open access, with direct referrals, to such services using a weighted scoring system should be more utilized. In view of the high rate of late disease laparoscopic staging unnecessary laparotomy needs to be avoided. Late presentation of gastric cancer however, is still predominant and the mortality to incidence ratio is relatively high. Besides seeking to reduce risk factors and achieve early detection, implementation of improved care for patients with late disease must be promoted in Malaysia.
Collapse
Affiliation(s)
- Kean Ghee Lim
- Department of Surgery, Clinical Campus, International Medical University, Jalan Rasah, Seremban, Negeri Sembilan, Malaysia.
| | | |
Collapse
|
24
|
Reyes VE, Peniche AG. Helicobacter pylori Deregulates T and B Cell Signaling to Trigger Immune Evasion. Curr Top Microbiol Immunol 2019; 421:229-265. [PMID: 31123892 DOI: 10.1007/978-3-030-15138-6_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori is a prevalent human pathogen that successfully establishes chronic infection, which leads to clinically significant gastric diseases including chronic gastritis, peptic ulcer disease (PUD), and gastric cancer (GC). H. pylori is able to produce a persistent infection due in large part to its ability to hijack the host immune response. The host adaptive immune response is activated to strategically and specifically attack pathogens and normally clears them from the infected host. Since B and T lymphocytes are central mediators of adaptive immunity, in this chapter we review their development and the fundamental mechanisms regulating their activation in order to understand how some of the normal processes are subverted by H. pylori. In this review, we place particular emphasis on the CD4+ T cell responses, their subtypes, and regulatory mechanisms because of the expanding literature in this area related to H. pylori. T lymphocyte differentiation and function are finely orchestrated through a series of cell-cell interactions, which include immune checkpoint receptors. Among the immune checkpoint receptor family, there are some with inhibitory properties that are exploited by tumor cells to facilitate their immune evasion. Gastric epithelial cells (GECs), which act as antigen-presenting cells (APCs) in the gastric mucosa, are induced by H. pylori to express immune checkpoint receptors known to sway T lymphocyte function and thus circumvent effective T effector lymphocyte responses. This chapter reviews these and other mechanisms used by H. pylori to interfere with host immunity in order to persist.
Collapse
Affiliation(s)
- Victor E Reyes
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| | - Alex G Peniche
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
25
|
Polymorphisms in Autophagy-Related Gene IRGM Are Associated with Susceptibility to Autoimmune Thyroid Diseases. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7959707. [PMID: 29992164 PMCID: PMC6016217 DOI: 10.1155/2018/7959707] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/21/2018] [Accepted: 03/26/2018] [Indexed: 01/19/2023]
Abstract
Background To date, studies have shown that polymorphisms in an autophagy-related gene, IRGM, are linked with different diseases, especially autoimmune diseases. The present study aimed to examine the roles of IRGM polymorphisms in autoimmune thyroid diseases (AITD). Methods Three polymorphisms in IRGM gene (rs10065172, rs4958847, and rs13361189) were genotyped in 1569 participants (488 with Graves' disease, 292 with Hashimoto's thyroiditis, and 789 healthy controls) using PCR-based ligase detection reaction method. Gene-disease associations were evaluated for the three SNPs. Results T allele of rs10065172, A allele of rs4958847, and C allele of rs13361189 were all higher in Graves' disease patients than controls, and the ORs were OR = 1.207 (P = 0.022), OR = 1.207 (P = 0.027), and OR = 1.200 (P = 0.027), respectively. After adjusting for sex and age, rs10065172 and rs13361189 were still associated with GD under both the allele model and dominant model, and the adjusted ORs for rs10065172 were 1.20 (P = 0.033) and 1.33 (P = 0.024), while the adjusted ORs for rs13361189 were 1.19 (P = 0.042) and 1.33 (P = 0.026), respectively. No significant difference was found between Hashimoto's thyroiditis patients and controls. Haplotype analysis found that CTA frequency was distinguishingly higher in Graves' disease patients (OR = 1.195, P = 0.030). The frequency of TCG haplotype was distinguishingly lower in AITD and Graves' disease patients (OR = 0.861, P = 0.044; OR = 0.816, P = 0.017). Conclusions Our study reveals IRGM as a susceptibility gene of AITD and Graves' disease for the first time.
Collapse
|
26
|
Díaz P, Valenzuela Valderrama M, Bravo J, Quest AFG. Helicobacter pylori and Gastric Cancer: Adaptive Cellular Mechanisms Involved in Disease Progression. Front Microbiol 2018; 9:5. [PMID: 29403459 PMCID: PMC5786524 DOI: 10.3389/fmicb.2018.00005] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori (H. pylori) infection is the major risk factor associated with the development of gastric cancer. The transition from normal mucosa to non-atrophic gastritis, triggered primarily by H. pylori infection, initiates precancerous lesions which may then progress to atrophic gastritis and intestinal metaplasia. Further progression to dysplasia and gastric cancer is generally believed to be attributable to processes that no longer require the presence of H. pylori. The responses that develop upon H. pylori infection are directly mediated through the action of bacterial virulence factors, which drive the initial events associated with transformation of infected gastric cells. Besides genetic and to date poorly defined environmental factors, alterations in gastric cell stress-adaptive mechanisms due to H. pylori appear to be crucial during chronic infection and gastric disease progression. Firstly, H. pylori infection promotes gastric cell death and reduced epithelial cell turnover in the majority of infected cells, resulting in primary tissue lesions associated with an initial inflammatory response. However, in the remaining gastric cell population, adaptive responses are induced that increase cell survival and proliferation, resulting in the acquisition of potentially malignant characteristics that may lead to precancerous gastric lesions. Thus, deregulation of these intrinsic survival-related responses to H. pylori infection emerge as potential culprits in promoting disease progression. This review will highlight the most relevant cellular adaptive mechanisms triggered upon H. pylori infection, including endoplasmic reticulum stress and the unfolded protein response, autophagy, oxidative stress, and inflammation, together with a subsequent discussion on how these factors may participate in the progression of a precancerous lesion. Finally, this review will shed light on how these mechanisms may be exploited as pharmacological targets, in the perspective of opening up new therapeutic alternatives for non-invasive risk control in gastric cancer.
Collapse
Affiliation(s)
- Paula Díaz
- Cellular Communication Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Manuel Valenzuela Valderrama
- Cellular Communication Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
| | - Jimena Bravo
- Cellular Communication Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andrew F G Quest
- Cellular Communication Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
27
|
Yang JS, Wang CM, Su CH, Ho HC, Chang CH, Chou CH, Hsu YM. Eudesmin attenuates Helicobacter pylori-induced epithelial autophagy and apoptosis and leads to eradication of H. pylori infection. Exp Ther Med 2018; 15:2388-2396. [PMID: 29456644 PMCID: PMC5795382 DOI: 10.3892/etm.2018.5701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 07/01/2016] [Indexed: 01/15/2023] Open
Abstract
Eudesmin has been proven to possess anti-inflammatory effects. In the present study, the effects of eudesmin on Helicobacter pylori (H. pylori)-mediated autophagy, apoptosis, immune response and inflammation were determined in human gastric adenocarcinoma (AGS) cells in vitro and in C57BL/6 mice in vivo. Detection of the production of interleukin (IL)-8, IL-1β and immunoglobulin M (IgM) was performed using ELISA. Identification of the activation of apoptosis-associated caspase-3, -8 and -9 proteins, Bcl-2-associated X protein (Bax) and BH3 interacting domain death agonist (Bid) protein, was determined through western blot analysis. Autophagy microtubule-associated protein 1A/1B-light chain 3, isoform B (LC-3B) expression was measured using immunostaining. The results of the present study demonstrated that eudesmin inhibited the growth of H. pylori, with increased inhibition activity against antibiotic resistant strains compared with the reference strain. In addition, H. pylori-induced IL-8 secretion, LC-3B expression and apoptosis-associated protein (caspase-3, -8 and -9, Bax and Bid) activation in AGS cells was suppressed by eudesmin. Furthermore, eudesmin suppressed IL-1β and IgM production in H. pylori-infected C57BL/6 mice in vivo. In conclusion, eudesmin may be developed as a promising therapeutic agent to prevent and/or treat H. pylori-associated gastric inflammation.
Collapse
Affiliation(s)
- Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan, R.O.C
| | - Chao-Min Wang
- Research Center for Biodiversity, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Chiu-Hsian Su
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Han-Chen Ho
- Department of Anatomy, Tzu-Chi University, Hualien 97004, Taiwan, R.O.C
| | - Chiung-Hung Chang
- Department of Traditional Chinese Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan, R.O.C.,Department of Traditional Chinese Medicine, Tainan Municipal Hospital, Tainan 70173, Taiwan, R.O.C
| | - Chang-Hung Chou
- Research Center for Biodiversity, China Medical University, Taichung 40402, Taiwan, R.O.C.,Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan, R.O.C
| |
Collapse
|
28
|
Gong Y, Yuan Y. Resistance mechanisms of Helicobacter pylori and its dual target precise therapy. Crit Rev Microbiol 2018; 44:371-392. [PMID: 29293032 DOI: 10.1080/1040841x.2017.1418285] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori drug resistance presents a significant challenge to the successful eradication of this pathogen. To find strategies to improve the eradication efficacy of H. pylori, it is necessary to clarify the resistance mechanisms involved. The mechanisms of H. pylori drug resistance can be investigated from two angles: the pathogen and the host. A comprehensive understanding of the molecular mechanisms of H. pylori resistance based on both pathogen and host would aid the implementation of precise therapy, or ideally "dual target precise therapy" (bacteria and host-specific target therapy). In recent years, with increased understanding of the mechanisms of H. pylori resistance, the focus of eradication has shifted from disease-specific to patient-specific treatment. The implementation of "precision medicine" has also provided a new perspective on the treatment of infectious diseases. In this article, we systematically review current research on H. pylori drug resistance from the perspective of both the pathogen and the host. We also review therapeutic strategies targeted to pathogen and host factors that are aimed at achieving precise treatment of H. pylori.
Collapse
Affiliation(s)
- Yuehua Gong
- a Tumor Etiology and Screening Department of Cancer Institute and General Surgery , the First Hospital of China Medical University , Shenyang , China.,b Key Laboratory of Cancer Etiology and Prevention (China Medical University) Liaoning Provincial Education Department , Shenyang , China.,c National Clinical Research Center for Digestive Diseases , Xi'an , China
| | - Yuan Yuan
- a Tumor Etiology and Screening Department of Cancer Institute and General Surgery , the First Hospital of China Medical University , Shenyang , China.,b Key Laboratory of Cancer Etiology and Prevention (China Medical University) Liaoning Provincial Education Department , Shenyang , China.,c National Clinical Research Center for Digestive Diseases , Xi'an , China
| |
Collapse
|
29
|
Mao K, Klionsky DJ. Xenophagy: A battlefield between host and microbe, and a possible avenue for cancer treatment. Autophagy 2017; 13:223-224. [PMID: 28026986 DOI: 10.1080/15548627.2016.1267075] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
In eukaryotes, xenophagy is defined as a type of selective macroautophagy/autophagy that is used for eliminating invading pathogens. In contrast to other types of selective autophagy, such as mitophagy, pexophagy and ribophagy, xenophagy is used by eukaryotes for targeting microbes-hence the prefix "xeno" meaning "other" or "foreign"-that have infected a host cell, leading to their lysosomal degradation. This unique characteristic links xenophagy to antibacterial and antiviral defenses, as well as the immune response. Furthermore, recent studies suggest a complicated role of xenophagy in cancer, through either suppressing tumorigenesis or promoting survival of established tumors. In this issue, Sui et al. summarize previous and current studies of xenophagy and consider them in the context of anticancer treatment.
Collapse
Affiliation(s)
- Kai Mao
- a Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology , University of Michigan , Ann Arbor , MI , USA.,b Present address: Department of Molecular Biology, Massachusetts General Hospital, and Department of Genetics , Harvard Medical School , Boston , MA , USA
| | - Daniel J Klionsky
- a Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
30
|
Mommersteeg MC, Yu J, Peppelenbosch MP, Fuhler GM. Genetic host factors in Helicobacter pylori-induced carcinogenesis: Emerging new paradigms. Biochim Biophys Acta Rev Cancer 2017; 1869:42-52. [PMID: 29154808 DOI: 10.1016/j.bbcan.2017.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 02/09/2023]
Abstract
Helicobacter Pylori is a gram negative rod shaped microaerophilic bacterium that colonizes the stomach of approximately half the world's population. Infection with c may cause chronic gastritis which via a quite well described process known as Correas cascade can progress through sequential development of atrophic gastritis, intestinal metaplasia and dysplasia to gastric cancer. H. pylori is currently the only bacterium that is classified as a class 1 carcinogen by the WHO, although the exact mechanisms by which this bacterium contributes to gastric carcinogenesis are still poorly understood. Only a minority of H. pylori-infected patients will eventually develop gastric cancer, suggesting that host factors may be important in determining the outcome of H. pylori infection. This is supported by a growing body of evidence suggesting that the host genetic background contributes to risk of H. pylori infection and gastric carcinogenesis. In particular single nucleotide polymorphisms in genes that influence bacterial handling via pattern recognition receptors appear to be involved, further strengthening the link between host risk factors, H. pylori incidence and cancer. Many of these genes influence cellular pathways leading to inflammatory signaling, inflammasome formation and autophagy. In this review we summarize known carcinogenic effects of H. pylori, and discuss recent findings that implicate host genetic pattern recognition pathways in the development of gastric cancer and their relation with H. pylori.
Collapse
Affiliation(s)
- Michiel C Mommersteeg
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical center Rotterdam, Office NA-619, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Jun Yu
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences and CUHK-Shenzhen Research Institute, Rm 707A, 7/F., Li Ka Shing Medical Science Building, The Chinese University of Hong Kong, Hong Kong.
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical center Rotterdam, Office NA-619, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Gwenny M Fuhler
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical center Rotterdam, Office NA-619, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| |
Collapse
|
31
|
Castaño-Rodríguez N, Goh KL, Fock KM, Mitchell HM, Kaakoush NO. Dysbiosis of the microbiome in gastric carcinogenesis. Sci Rep 2017; 7:15957. [PMID: 29162924 PMCID: PMC5698432 DOI: 10.1038/s41598-017-16289-2] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022] Open
Abstract
The gastric microbiome has been proposed as an etiological factor in gastric carcinogenesis. We compared the gastric microbiota in subjects presenting with gastric cancer (GC, n = 12) and controls (functional dyspepsia (FD), n = 20) from a high GC risk population in Singapore and Malaysia. cDNA from 16S rRNA transcripts were amplified (515F-806R) and sequenced using Illumina MiSeq 2 × 250 bp chemistry. Increased richness and phylogenetic diversity but not Shannon’s diversity was found in GC as compared to controls. nMDS clustered GC and FD subjects separately, with PERMANOVA confirming a significant difference between the groups. H. pylori serological status had a significant impact on gastric microbiome α-diversity and composition. Several bacterial taxa were enriched in GC, including Lactococcus, Veilonella, and Fusobacteriaceae (Fusobacterium and Leptotrichia). Prediction of bacterial metabolic contribution indicated that serological status had a significant impact on metabolic function, while carbohydrate digestion and pathways were enriched in GC. Our findings highlight three mechanisms of interest in GC, including enrichment of pro-inflammatory oral bacterial species, increased abundance of lactic acid producing bacteria, and enrichment of short chain fatty acid production pathways.
Collapse
Affiliation(s)
| | - Khean-Lee Goh
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kwong Ming Fock
- Division of Gastroenterology, Department of Medicine, Changi General Hospital, Singapore City, Singapore
| | - Hazel M Mitchell
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Nadeem O Kaakoush
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia.
| |
Collapse
|
32
|
Tanaka S, Nagashima H, Uotani T, Graham DY, Yamaoka Y. Autophagy-related genes in Helicobacter pylori infection. Helicobacter 2017; 22:10.1111/hel.12376. [PMID: 28111844 PMCID: PMC5422124 DOI: 10.1111/hel.12376] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND In vitro studies have shown that Helicobacter pylori (H. pylori) infection induces autophagy in gastric epithelial cells. However, prolonged exposure to H. pylori reduces autophagy by preventing maturation of the autolysosome. The alterations of the autophagy-related genes in H. pylori infection are not yet fully understood. MATERIALS AND METHODS We analyzed autophagy-related gene expression in H. pylori-infected gastric mucosa compared with uninfected gastric mucosa obtained from 136 Bhutanese volunteers with mild dyspeptic symptoms. We also studied single nucleotide polymorphisms (SNPs) of autophagy-related gene in 283 Bhutanese participants to identify the influence on susceptibility to H. pylori infection. RESULTS Microarray analysis of 226 autophagy-related genes showed that 16 genes were upregulated (7%) and nine were downregulated (4%). We used quantitative reverse transcriptase polymerase chain reaction to measure mRNA levels of the downregulated genes (ATG16L1, ATG5, ATG4D, and ATG9A) that were core molecules of autophagy. ATG16L1 and ATG5 mRNA levels in H. pylori-positive specimens (n=86) were significantly less than those in H. pylori-negative specimens (n=50). ATG16L1 mRNA levels were inversely related to H. pylori density. We also compared SNPs of ATG16L1 (rs2241880) among 206 H. pylori-positive and 77 H. pylori-negative subjects. The odds ratio for the presence of H. pylori in the GG genotype was 0.40 (95% CI: 0.18-0.91) relative to the AA/AG genotypes. CONCLUSIONS Autophagy-related gene expression profiling using high-throughput microarray analysis indicated that downregulation of core autophagy machinery genes may depress autophagy functions and possibly provide a better intracellular habit for H. pylori in gastric epithelial cells.
Collapse
Affiliation(s)
- Shingo Tanaka
- Department of Medicine-Gastroenterology, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, Texas 77030, USA,Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Japan
| | - Hiroyuki Nagashima
- Department of Medicine-Gastroenterology, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, Texas 77030, USA,Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Japan
| | - Takahiro Uotani
- Department of Medicine-Gastroenterology, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, Texas 77030, USA,Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Japan
| | - David Y. Graham
- Department of Medicine-Gastroenterology, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yoshio Yamaoka
- Department of Medicine-Gastroenterology, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, Texas 77030, USA,Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Japan,Correspondence: Yoshio Yamaoka MD, PhD, Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu-City, Oita 879-5593, Japan. Tel.: + 81-97-586-5740, Fax: + 81-97-586-5749,
| |
Collapse
|
33
|
Muhammad JS, Nanjo S, Ando T, Yamashita S, Maekita T, Ushijima T, Tabuchi Y, Sugiyama T. Autophagy impairment by Helicobacter pylori-induced methylation silencing of MAP1LC3Av1 promotes gastric carcinogenesis. Int J Cancer 2017; 140:2272-2283. [PMID: 28214334 DOI: 10.1002/ijc.30657] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/25/2017] [Indexed: 12/31/2022]
Abstract
Helicobacter pylori (H. pylori) infection induces methylation silencing of tumor suppressor genes causing gastric carcinogenesis. Impairment of autophagy induces DNA damage leading to genetic instability and carcinogenesis. We aimed to identify whether H. pylori infection induced methylation silencing of host autophagy-related (Atg) genes, impairing autophagy and enhancing gastric carcinogenesis. Gastric mucosae were obtained from 41 gastric cancer patients and 11 healthy volunteers (8 H. pylori-uninfected and 3 H. pylori-infected). Methylation status of Atg genes was analyzed by a methylation microarray and quantitative methylation-specific PCR (qMSP); mRNA expression was assessed by quantitative reverse transcription PCR (qRT-PCR). Cell proliferation, migration and invasion were assessed in normal rat gastric epithelial cells. Gene knock-down was performed by siRNA. Autophagy was assessed by western blotting. Of 34 Atg genes, MAP1LC3A variant 1 (MAP1LC3Av1) and ULK2 were identified by methylation microarray analysis as exhibiting specific methylation in H. pylori-infected mucosae and gastric cancer tissues. Methylation silencing of MAP1LC3Av1 was confirmed by qMSP, qRT-PCR and de-methylation treatment in two gastric cancer cell lines. Knock-down of map1lc3a, the rat homolog of the human MAP1LC3Av1, inhibited autophagy response and increased cell proliferation, migration and invasion in normal rat gastric epithelial cells, despite the presence of map1lc3b, the rat homolog of the human MAP1LC3B gene important for autophagy. Furthermore, MAP1LC3Av1 was methylation-silenced in 23.3% of gastric cancerous mucosae and 40% of non-cancerous mucosae with H. pylori infection. MAP1LC3Av1 is essential for autophagy and H. pylori-induced methylation silencing of MAP1LC3Av1 may impair autophagy, facilitating gastric carcinogenesis.
Collapse
Affiliation(s)
- Jibran Sualeh Muhammad
- Department of Gastroenterology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Department of Biological and Biomedical Sciences, Faculty of Health Sciences, The Aga Khan University, Karachi, Pakistan
| | - Sohachi Nanjo
- Department of Gastroenterology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Takayuki Ando
- Department of Gastroenterology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Satoshi Yamashita
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Takao Maekita
- Second Department of Internal Medicine, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetic Research, Life Science Research Center, University of Toyama, Toyama, Japan
| | - Toshiro Sugiyama
- Department of Gastroenterology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
34
|
Castaño-Rodríguez N, Kaakoush NO, Lee WS, Mitchell HM. Dual role of Helicobacter and Campylobacter species in IBD: a systematic review and meta-analysis. Gut 2017; 66:235-249. [PMID: 26508508 DOI: 10.1136/gutjnl-2015-310545] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/03/2015] [Accepted: 10/05/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To conduct a comprehensive global systematic review and meta-analysis on the association between Helicobacter pylori infection and IBD. As bacterial antigen cross-reactivity has been postulated to be involved in this association, published data on enterohepatic Helicobacter spp (EHS) and Campylobacter spp and IBD was also analysed. DESIGN Electronic databases were searched up to July 2015 for all case-control studies on H. pylori infection/EHS/Campylobacter spp and IBD. Pooled ORs (P-OR) and 95% CIs were obtained using the random effects model. Heterogeneity, sensitivity and stratified analyses were performed. RESULTS Analyses comprising patients with Crohn's disease (CD), UC and IBD unclassified (IBDU), showed a consistent negative association between gastric H. pylori infection and IBD (P-OR: 0.43, p value <1e-10). This association appears to be stronger in patients with CD (P-OR: 0.38, p value <1e-10) and IBDU (P-OR: 0.43, p value=0.008) than UC (P-OR: 0.53, p value <1e-10). Stratification by age, ethnicity and medications showed significant results. In contrast to gastric H. pylori, non H. pylori-EHS (P-OR: 2.62, p value=0.001) and Campylobacter spp, in particular C. concisus (P-OR: 3.76, p value=0.006) and C. showae (P-OR: 2.39, p value=0.027), increase IBD risk. CONCLUSIONS H. pylori infection is negatively associated with IBD regardless of ethnicity, age, H. pylori detection methods and previous use of aminosalicylates and corticosteroids. Antibiotics influenced the magnitude of this association. Closely related bacteria including EHS and Campylobacter spp increase the risk of IBD. These results infer that H. pylori might exert an immunomodulatory effect in IBD.
Collapse
Affiliation(s)
- Natalia Castaño-Rodríguez
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Nadeem O Kaakoush
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Way Seah Lee
- Department of Paediatrics, University Malaya Medical Centre, Kuala Lumpur, Malaysia.,University Malaya Pediatrics and Child Health Research Group, University Malaya, Kuala Lumpur, Malaysia
| | - Hazel M Mitchell
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
35
|
Sui X, Liang X, Chen L, Guo C, Han W, Pan H, Li X. Bacterial xenophagy and its possible role in cancer: A potential antimicrobial strategy for cancer prevention and treatment. Autophagy 2016; 13:237-247. [PMID: 27924676 DOI: 10.1080/15548627.2016.1252890] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Macroautophagy/autophagy is a conserved catabolic process through which cellular excessive or dysfunctional proteins and organelles are transported to the lysosome for terminal degradation and recycling. Over the past few years increasing evidence has suggested that autophagy is not only a simple metabolite recycling mechanism, but also plays a critical role in the removal of intracellular pathogens such as bacteria and viruses. When autophagy engulfs intracellular pathogens, the pathway is called 'xenophagy' because it leads to the elimination of foreign microbes. Recent studies support the idea that xenophagy can be modulated by bacterial infection. Meanwhile, convincing evidence indicates that xenophagy may be involved in malignant transformation and cancer therapy. Xenophagy can suppress tumorigenesis, particularly during the early stages of tumor initiation. However, in established tumors, xenophagy may also function as a prosurvival pathway in response to microenvironment stresses including bacterial infection. Therefore, bacterial infection-related xenophagy may have an effect on tumor initiation and cancer treatment. However, the role and machinery of bacterial infection-related xenophagy in cancer remain elusive. Here we will discuss recent developments in our understanding of xenophagic mechanisms targeting bacteria, and how they contribute to tumor initiation and anticancer therapy. A better understanding of the role of xenophagy in bacterial infection and cancer will hopefully provide insight into the design of novel and effective therapies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Xinbing Sui
- a Department of Medical Oncology , Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University , Hangzhou , Zhejiang , China.,b Departments of Urology and Pathology , Boston Children's Hospital , Boston , MA , USA.,c Department of Surgery , Harvard Medical School , Boston , MA , USA.,d Zhejiang Chinese Medical University , Hangzhou , Zhejiang , China
| | - Xiao Liang
- e Department of General Surgery , Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University , Hangzhou , Zhejiang , China
| | - Liuxi Chen
- a Department of Medical Oncology , Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University , Hangzhou , Zhejiang , China
| | - Chunming Guo
- b Departments of Urology and Pathology , Boston Children's Hospital , Boston , MA , USA.,c Department of Surgery , Harvard Medical School , Boston , MA , USA
| | - Weidong Han
- a Department of Medical Oncology , Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University , Hangzhou , Zhejiang , China
| | - Hongming Pan
- a Department of Medical Oncology , Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University , Hangzhou , Zhejiang , China
| | - Xue Li
- b Departments of Urology and Pathology , Boston Children's Hospital , Boston , MA , USA.,c Department of Surgery , Harvard Medical School , Boston , MA , USA
| |
Collapse
|
36
|
Ricci V. Relationship between VacA Toxin and Host Cell Autophagy in Helicobacter pylori Infection of the Human Stomach: A Few Answers, Many Questions. Toxins (Basel) 2016; 8:toxins8070203. [PMID: 27376331 PMCID: PMC4963836 DOI: 10.3390/toxins8070203] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/14/2016] [Accepted: 06/17/2016] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori is a Gram-negative bacterium that colonizes the stomach of about half the global population and represents the greatest risk factor for gastric malignancy. The relevance of H. pylori for gastric cancer development is equivalent to that of tobacco smoking for lung cancer. VacA toxin seems to play a pivotal role in the overall strategy of H. pylori towards achieving persistent gastric colonization. This strategy appears to involve the modulation of host cell autophagy. After an overview of autophagy and its role in infection and carcinogenesis, I critically review current knowledge about the action of VacA on host cell autophagy during H. pylori infection of the human stomach. Although VacA is a key player in modulation of H. pylori-induced autophagy, a few discrepancies in the data are also evident and many questions remain to be answered. We are thus still far from a definitive understanding of the molecular mechanisms through which VacA affects autophagy and the consequences of this toxin action on the overall pathogenic activity of H. pylori.
Collapse
Affiliation(s)
- Vittorio Ricci
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia Medical School, Via Forlanini 6, 27100 Pavia, Italy.
| |
Collapse
|
37
|
White JR, Winter JA, Robinson K. Differential inflammatory response to Helicobacter pylori infection: etiology and clinical outcomes. J Inflamm Res 2015; 8:137-47. [PMID: 26316793 PMCID: PMC4540215 DOI: 10.2147/jir.s64888] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The bacterial pathogen Helicobacter pylori commonly colonizes the human gastric mucosa during early childhood and persists throughout life. The organism has evolved multiple mechanisms for evading clearance by the immune system and, despite inducing inflammation in the stomach, the majority of infections are asymptomatic. H. pylori is the leading cause of peptic ulcer disease and gastric cancer. However, disease outcomes are related to the pattern and severity of chronic inflammation in the gastric mucosa, which in turn is influenced by both bacterial and host factors. Despite over 2 decades of intensive research, there remains an incomplete understanding of the circumstances leading to disease development, due to the fascinating complexity of the host-pathogen interactions. There is accumulating data concerning the virulence factors associated with increased risk of disease, and the majority of these have pro-inflammatory activities. Despite this, only a small proportion of those infected with virulent strains develop disease. Several H. pylori virulence factors have multiple effects on different cell types, including the induction of pro- and anti-inflammatory, immune stimulatory, and immune modulatory responses. The expression of multiple virulence factors is also often linked, making it difficult to assess the meaning of their effects in isolation. Overall, H. pylori is thought to usually modulate inflammation and limit acute damage to the mucosa, enabling the bacteria to persist. If this delicate balance is disturbed, disease may then develop.
Collapse
Affiliation(s)
- Jonathan Richard White
- NIHR Biomedical Research Unit in Gastrointestinal and Liver Diseases at Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham, UK
| | - Jody Anne Winter
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Karen Robinson
- NIHR Biomedical Research Unit in Gastrointestinal and Liver Diseases at Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham, UK
| |
Collapse
|