1
|
Ghiandai V, Grassi ES, Gazzano G, Fugazzola L, Persani L. Characterization of EpCAM in thyroid cancer biology by three-dimensional spheroids in vitro model. Cancer Cell Int 2024; 24:196. [PMID: 38835027 DOI: 10.1186/s12935-024-03378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/19/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Thyroid cancer (TC) is the most common endocrine malignancy. Nowadays, undifferentiated thyroid cancers (UTCs) are still lethal, mostly due to the insurgence of therapy resistance and disease relapse. These events are believed to be caused by a subpopulation of cancer cells with stem-like phenotype and specific tumor-initiating abilities, known as tumor-initiating cells (TICs). A comprehensive understanding of how to isolate and target these cells is necessary. Here we provide insights into the role that the protein Epithelial Cell Adhesion Molecule (EpCAM), a known TICs marker for other solid tumors, may have in TC biology, thus considering EpCAM a potential marker of thyroid TICs in UTCs. METHODS The characterization of EpCAM was accomplished through Western Blot and Immunofluorescence on patient-derived tissue samples, adherent cell cultures, and 3D sphere cultures of poorly differentiated thyroid cancer (PDTC) and anaplastic thyroid cancer (ATC) cell lines. The frequency of tumor cells with putative tumor-initiating ability within the 3D cultures was assessed through extreme limiting dilution analysis (ELDA). EpCAM proteolytic cleavages were studied through treatments with different cleavages' inhibitors. To evaluate the involvement of EpCAM in inducing drug resistance, Vemurafenib (PLX-4032) treatments were assessed through MTT assay. RESULTS Variable EpCAM expression pattern was observed in TC tissue samples, with increased cleavage in the more UTC. We demonstrated that EpCAM is subjected to an intense cleavage process in ATC-derived 3D tumor spheres and that the 3D model faithfully mimics what was observed in patient's samples. We also proved that the integrity of the protein appears to be crucial for the generation of 3D spheres, and its expression and cleavage in a 3D system could contribute to drug resistance in thyroid TICs. CONCLUSIONS Our data provide novel information on the role of EpCAM expression and cleavage in the biology of thyroid TICs, and our 3D model reflects the variability of EpCAM cleavage observed in tissue samples. EpCAM evaluation could play a role in clinical decisions regarding patient therapy since its expression and cleavage may have a fundamental role in the switch to a drug-resistant phenotype of UTC cells.
Collapse
Affiliation(s)
- Viola Ghiandai
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Elisa Stellaria Grassi
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Giacomo Gazzano
- Pathology Unit, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Laura Fugazzola
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Luca Persani
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy.
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
2
|
Cao Y, Efetov SK, He M, Fu Y, Beeraka NM, Zhang J, Zhang X, Bannimath N, Chen K. Updated Clinical Perspectives and Challenges of Chimeric Antigen Receptor-T Cell Therapy in Colorectal Cancer and Invasive Breast Cancer. Arch Immunol Ther Exp (Warsz) 2023; 71:19. [DOI: https:/doi.org/10.1007/s00005-023-00684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/28/2023] [Indexed: 09/20/2024]
|
3
|
Cao Y, Efetov SK, He M, Fu Y, Beeraka NM, Zhang J, Zhang X, Bannimath N, Chen K. Updated Clinical Perspectives and Challenges of Chimeric Antigen Receptor-T Cell Therapy in Colorectal Cancer and Invasive Breast Cancer. Arch Immunol Ther Exp (Warsz) 2023; 71:19. [PMID: 37566162 DOI: 10.1007/s00005-023-00684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/28/2023] [Indexed: 08/12/2023]
Abstract
In recent years, the incidence of colorectal cancer (CRC) and breast cancer (BC) has increased worldwide and caused a higher mortality rate due to the lack of selective anti-tumor therapies. Current chemotherapies and surgical interventions are significantly preferred modalities to treat CRC or BC in advanced stages but the prognosis for patients with advanced CRC and BC remains dismal. The immunotherapy technique of chimeric antigen receptor (CAR)-T cells has resulted in significant clinical outcomes when treating hematologic malignancies. The novel CAR-T therapy target antigens include GUCY2C, CLEC14A, CD26, TEM8/ANTXR1, PDPN, PTK7, PODXL, CD44, CD19, CD20, CD22, BCMA, GD2, Mesothelin, TAG-72, CEA, EGFR, B7H3, HER2, IL13Ra2, MUC1, EpCAM, PSMA, PSCA, NKG2D. The significant aim of this review is to explore the recently updated information pertinent to several novel targets of CAR-T for CRC, and BC. We vividly described the challenges of CAR-T therapies when treating CRC or BC. The immunosuppressive microenvironment of solid tumors, the shortage of tumor-specific antigens, and post-treatment side effects are the major hindrances to promoting the development of CAR-T cells. Several clinical trials related to CAR-T immunotherapy against CRC or BC have already been in progress. This review benefits academicians, clinicians, and clinical oncologists to explore more about the novel CAR-T targets and overcome the challenges during this therapy.
Collapse
Affiliation(s)
- Yu Cao
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Sergey K Efetov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Mingze He
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Yu Fu
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Narasimha M Beeraka
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Chiyyedu, Anantapuramu, Andhra Pradesh, 515721, India
| | - Jin Zhang
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Xinliang Zhang
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Namitha Bannimath
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Kuo Chen
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, #1 Jianshedong Str., Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
4
|
Umemori K, Ono K, Eguchi T, Kawai H, Nakamura T, Ogawa T, Yoshida K, Kanemoto H, Sato K, Obata K, Ryumon S, Yutori H, Katase N, Okui T, Nagatsuka H, Ibaragi S. EpEX, the soluble extracellular domain of EpCAM, resists cetuximab treatment of EGFR-high head and neck squamous cell carcinoma. Oral Oncol 2023; 142:106433. [PMID: 37236125 DOI: 10.1016/j.oraloncology.2023.106433] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/14/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
OBJECTIVES Cetuximab (Cmab) is a molecularly targeted monoclonal antibody drug for head and neck squamous cell carcinoma (HNSC), although cetuximab resistance is a serious challenge. Epithelial cell adhesion molecule (EpCAM) is an established marker for many epithelial tumors, while the soluble EpCAM extracellular domain (EpEX) functions as a ligand for epidermal growth factor receptor (EGFR). We investigated the expression of EpCAM in HNSC, its involvement in Cmab action, and the mechanism by which soluble EpEX activated EGFR and played key roles in Cmab resistance. MATERIALS AND METHODS We first examined EPCAM expression in HNSCs and its clinical significance by searching gene expression array databases. We then examined the effects of soluble EpEX and Cmab on intracellular signaling and Cmab efficacy in HNSC cell lines (HSC-3 and SAS). RESULTS EPCAM expression was found to be enhanced in HNSC tumor tissues compared to normal tissues, and the enhancement was correlated with stage progression and prognosis. Soluble EpEX activated the EGFR-ERK signaling pathway and nuclear translocation of EpCAM intracellular domains (EpICDs) in HNSC cells. EpEX resisted the antitumor effect of Cmab in an EGFR expression-dependent manner. CONCLUSION Soluble EpEX activates EGFR to increase Cmab resistance in HNSC cells. The EpEX-activated Cmab resistance in HNSC is potentially mediated by the EGFR-ERK signaling pathway and the EpCAM cleavage-induced nuclear translocation of EpICD. High expression and cleavage of EpCAM are potential biomarkers for predicting the clinical efficacy and resistance to Cmab.
Collapse
Affiliation(s)
- Koki Umemori
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Kisho Ono
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan.
| | - Takanori Eguchi
- Department of Dental Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Hotaka Kawai
- Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Tomoya Nakamura
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Tatsuo Ogawa
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Kunihiro Yoshida
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Hideka Kanemoto
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Kohei Sato
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Kyoichi Obata
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Shoji Ryumon
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Hirokazu Yutori
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Naoki Katase
- Department of Oral Pathology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Tatsuo Okui
- Department of Oral and Maxillofacial Surgery, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Soichiro Ibaragi
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| |
Collapse
|
5
|
Li YN, Li YY, Wang SX, Ma XY. Efficacy of Bispecific Antibody Targeting EpCAM and CD3 for Immunotherapy in Ovarian Cancer Ascites: An Experimental Study. Curr Med Sci 2023:10.1007/s11596-023-2753-2. [PMID: 37119369 DOI: 10.1007/s11596-023-2753-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/11/2023] [Indexed: 05/01/2023]
Abstract
OBJECTIVE This study aimed to explore the value of M701, targeting epithelial cell adhesion molecule (EpCAM) and CD3, in the immunotherapy of ovarian cancer ascites by the in vitro assay. METHODS The expression of EpCAM in ovarian cancer tissues was analyzed by databases. The EpCAM expression and immune cell infiltration in different foci of ovarian cancer were detected by 8-channel flow cytometry. The toxic effect of M701 on OVCAR3 was tested using the in vitro cytotoxicity assay. The 3D cell culture and drug intervention experiments were performed to evaluate the therapeutic effect of M701 in ovarian cancer specimens. Flow cytometry was used to examine the effect of M701 on the binding of immune cells to tumor cells and the activation capacity of T cells. RESULTS The results of the bioinformatic analysis showed that the expression of EpCAM in ovarian cancer tissue was significantly higher than that in normal ovarian tissue. The 8-channel flow cytometry of clinical samples showed that the EpCAM expression and lymphocyte infiltration were significantly heterogeneous among ovarian cancer patients and lesions at different sites. The in vitro experiment results showed that M701 had a significant killing effect on OVCAR3 cells. M701 also obviously killed primary tumor cells derived from some patients with ovarian cancer ascites. M701 could mediate the binding of CD3+ T cells to EpCAM+ tumor cells and induce T cell activation in a dose-dependent manner. CONCLUSION M701 showed significant inhibitory activity on tumor cells derived from ovarian cancer ascites, which had a promising application in immunotherapy for patients with ovarian cancer ascites.
Collapse
Affiliation(s)
- Yi-Nuo Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuan-Yuan Li
- Department of Gynecology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shi-Xuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xiang-Yi Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
6
|
Identification of Key Genes and Pathways Involved in Circulating Tumor Cells in Colorectal Cancer. Anal Cell Pathol 2022; 2022:9943571. [PMID: 35127345 PMCID: PMC8813301 DOI: 10.1155/2022/9943571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 11/28/2021] [Accepted: 12/22/2021] [Indexed: 12/26/2022] Open
Abstract
Background. Characterization of the features associated with circulating tumor cells (CTCs) is one of major interests for predicting clinical outcome of colorectal cancer (CRC) patients. However, the molecular features of CTCs remain largely unclear. Methods. For identification of key genes and pathways, GSE31023, contained CTCs from six metastatic CRC patients and three controls, was retrieved for differentially expressed gene (DEG) analysis. Protein-protein interaction networks of DEGs were constructed. Hub genes from the network were prognostic analyzed, as well as the association with tumor-infiltrating immune cells. Results. 1353 DEGs were identified between the CTC and control groups, with 403 genes upregulated and 950 downregulated. 32 pathways were significantly enriched in KEGG, with ribosome pathway as top. The top 10 hub genes were included, including eukaryotic translation elongation factor 2 (EEF2), ribosomal protein S2 (RPS2), ribosomal protein S5 (RPS5), ribosomal protein L3 (RPL3), ribosomal protein S3 (RPS3), ribosomal protein S14 (RPS14), ribosomal protein SA (RPSA), eukaryotic translation elongation factor 1 alpha 1 (EEF1A1), ribosomal protein S15a (RPS15A), and ribosomal protein L4 (RPL4). The correlation between CD4+ T cells and RPS14 (
) was the highest in colon cancer while CD8+ T and RPS2 (
) was the highest in rectal cancer. Conclusion. This study identified potential role of ribosome pathway in CTC, providing further insightful therapeutic targets and biomarkers for CRC.
Collapse
|
7
|
Patil K, Khan FB, Akhtar S, Ahmad A, Uddin S. The plasticity of pancreatic cancer stem cells: implications in therapeutic resistance. Cancer Metastasis Rev 2021; 40:691-720. [PMID: 34453639 PMCID: PMC8556195 DOI: 10.1007/s10555-021-09979-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
The ever-growing perception of cancer stem cells (CSCs) as a plastic state rather than a hardwired defined entity has evolved our understanding of the functional and biological plasticity of these elusive components in malignancies. Pancreatic cancer (PC), based on its biological features and clinical evolution, is a prototypical example of a CSC-driven disease. Since the discovery of pancreatic CSCs (PCSCs) in 2007, evidence has unraveled their control over many facets of the natural history of PC, including primary tumor growth, metastatic progression, disease recurrence, and acquired drug resistance. Consequently, the current near-ubiquitous treatment regimens for PC using aggressive cytotoxic agents, aimed at ‘‘tumor debulking’’ rather than eradication of CSCs, have proven ineffective in providing clinically convincing improvements in patients with this dreadful disease. Herein, we review the key hallmarks as well as the intrinsic and extrinsic resistance mechanisms of CSCs that mediate treatment failure in PC and enlist the potential CSC-targeting ‘natural agents’ that are gaining popularity in recent years. A better understanding of the molecular and functional landscape of PCSC-intrinsic evasion of chemotherapeutic drugs offers a facile opportunity for treating PC, an intractable cancer with a grim prognosis and in dire need of effective therapeutic advances.
Collapse
Affiliation(s)
- Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Farheen B Khan
- Department of Biology, College of Science, The United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.,Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar. .,Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar. .,Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
8
|
Functional Implications of the Dynamic Regulation of EpCAM during Epithelial-to-Mesenchymal Transition. Biomolecules 2021; 11:biom11070956. [PMID: 34209658 PMCID: PMC8301972 DOI: 10.3390/biom11070956] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein expressed in epithelial tissues. EpCAM forms intercellular, homophilic adhesions, modulates epithelial junctional protein complex formation, and promotes epithelial tissue homeostasis. EpCAM is a target of molecular therapies and plays a prominent role in tumor biology. In this review, we focus on the dynamic regulation of EpCAM expression during epithelial-to-mesenchymal transition (EMT) and the functional implications of EpCAM expression on the regulation of EMT. EpCAM is frequently and highly expressed in epithelial cancers, while silenced in mesenchymal cancers. During EMT, EpCAM expression is downregulated by extracellular signal-regulated kinases (ERK) and EMT transcription factors, as well as by regulated intramembrane proteolysis (RIP). The functional impact of EpCAM expression on tumor biology is frequently dependent on the cancer type and predominant oncogenic signaling pathways, suggesting that the role of EpCAM in tumor biology and EMT is multifunctional. Membrane EpCAM is cleaved in cancers and its intracellular domain (EpICD) is transported into the nucleus and binds β-catenin, FHL2, and LEF1. This stimulates gene transcription that promotes growth, cancer stem cell properties, and EMT. EpCAM is also regulated by epidermal growth factor receptor (EGFR) signaling and the EpCAM ectoderm (EpEX) is an EGFR ligand that affects EMT. EpCAM is expressed on circulating tumor and cancer stem cells undergoing EMT and modulates metastases and cancer treatment responses. Future research exploring EpCAM’s role in EMT may reveal additional therapeutic opportunities.
Collapse
|
9
|
Gires O, Pan M, Schinke H, Canis M, Baeuerle PA. Expression and function of epithelial cell adhesion molecule EpCAM: where are we after 40 years? Cancer Metastasis Rev 2020; 39:969-987. [PMID: 32507912 PMCID: PMC7497325 DOI: 10.1007/s10555-020-09898-3] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
EpCAM (epithelial cell adhesion molecule) was discovered four decades ago as a tumor antigen on colorectal carcinomas. Owing to its frequent and high expression on carcinomas and their metastases, EpCAM serves as a prognostic marker, a therapeutic target, and an anchor molecule on circulating and disseminated tumor cells (CTCs/DTCs), which are considered the major source for metastatic cancer cells. Today, EpCAM is reckoned as a multi-functional transmembrane protein involved in the regulation of cell adhesion, proliferation, migration, stemness, and epithelial-to-mesenchymal transition (EMT) of carcinoma cells. To fulfill these functions, EpCAM is instrumental in intra- and intercellular signaling as a full-length molecule and following regulated intramembrane proteolysis, generating functionally active extra- and intracellular fragments. Intact EpCAM and its proteolytic fragments interact with claudins, CD44, E-cadherin, epidermal growth factor receptor (EGFR), and intracellular signaling components of the WNT and Ras/Raf pathways, respectively. This plethora of functions contributes to shaping intratumor heterogeneity and partial EMT, which are major determinants of the clinical outcome of carcinoma patients. EpCAM represents a marker for the epithelial status of primary and systemic tumor cells and emerges as a measure for the metastatic capacity of CTCs. Consequentially, EpCAM has reclaimed potential as a prognostic marker and target on primary and systemic tumor cells.
Collapse
Affiliation(s)
- Olivier Gires
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer", Helmholtz Zentrum, Neuherberg, Germany.
| | - Min Pan
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Henrik Schinke
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Patrick A Baeuerle
- Institute for Immunology, LMU Munich, Grosshadernerstr. 9, 82152 Planegg, Martinsried, Germany
- MPM Capital, Cambridge MA, 450 Kendall Street, Cambridge, MA, 02142, USA
| |
Collapse
|
10
|
Zhou Y, Wen P, Li M, Li Y, Li X. Construction of chimeric antigen receptor‑modified T cells targeting EpCAM and assessment of their anti‑tumor effect on cancer cells. Mol Med Rep 2019; 20:2355-2364. [PMID: 31322180 DOI: 10.3892/mmr.2019.10460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 05/09/2019] [Indexed: 11/05/2022] Open
Affiliation(s)
- Yan Zhou
- Gastroenterology Tumor and Microenvironment Laboratory, Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, Sichuan 610041, P.R. China
| | - Ping Wen
- Gastroenterology Tumor and Microenvironment Laboratory, Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, Sichuan 610041, P.R. China
| | - Mingmei Li
- Gastroenterology Tumor and Microenvironment Laboratory, Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, Sichuan 610041, P.R. China
| | - Yaqi Li
- Gastroenterology Tumor and Microenvironment Laboratory, Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, Sichuan 610041, P.R. China
| | - Xiao‑An Li
- Gastroenterology Tumor and Microenvironment Laboratory, Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
11
|
High Expression of EpCAM and Sox2 is a Positive Prognosticator of Clinical Outcome for Head and Neck Carcinoma. Sci Rep 2018; 8:14582. [PMID: 30275505 PMCID: PMC6167386 DOI: 10.1038/s41598-018-32178-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/29/2018] [Indexed: 01/06/2023] Open
Abstract
Locally advanced head and neck squamous cell carcinomas (HNSCC) have limited prognosis due to frequent treatment failure. Currently, TNM-classification and human papillomavirus (HPV) infection are the sole clinical prognosticators of outcome. Tumor heterogeneity and stemness based on epithelial-mesenchymal-transition reportedly associate with therapy resistance. The capacity of epithelial marker EpCAM (EpEX), stemness regulator Sox2 and mesenchymal marker vimentin to predict clinical outcome of HSNCC patients was assessed upon immunohistochemistry staining in two cohorts of HNSCC patients treated with surgery and adjuvant radio (chemo) therapy (n = 94) and primary radio (chemo) therapy (n = 94), respectively. Prognostic values with respect to overall, disease-free and disease-specific survival were assessed in uni- and multivariate cox proportional hazard models to generate integrated risk scores. EpEX, Sox2 and vimentin displayed substantial inter- and intratumoral heterogeneity. EpEXhigh and Sox2high predicted improved clinical outcome in the discovery cohort and in the HPV-negative sub-cohort. EpEXhigh and Sox2high were confirmed as prognosticators of clinical outcome in the validation cohort treated with definitive radio(chemo)therapy. Importantly, EpEXhigh identified patients with improved survival within the HPV-negative subgroup of the validation cohort. Hence, Sox2high and particularly EpEXhigh have potential as tools to predict clinical performance of HNSCC patients, foremost HPV-negative cases, in the frame of molecular-guided treatment decision-making.
Collapse
|
12
|
Pan M, Schinke H, Luxenburger E, Kranz G, Shakhtour J, Libl D, Huang Y, Gaber A, Pavšič M, Lenarčič B, Kitz J, Jakob M, Schwenk-Zieger S, Canis M, Hess J, Unger K, Baumeister P, Gires O. EpCAM ectodomain EpEX is a ligand of EGFR that counteracts EGF-mediated epithelial-mesenchymal transition through modulation of phospho-ERK1/2 in head and neck cancers. PLoS Biol 2018; 16:e2006624. [PMID: 30261040 PMCID: PMC6177200 DOI: 10.1371/journal.pbio.2006624] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/09/2018] [Accepted: 09/12/2018] [Indexed: 12/18/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are characterized by outstanding molecular heterogeneity that results in severe therapy resistance and poor clinical outcome. Inter- and intratumoral heterogeneity in epithelial-mesenchymal transition (EMT) was recently revealed as a major parameter of poor clinical outcome. Here, we addressed the expression and function of the therapeutic target epidermal growth factor receptor (EGFR) and of the major determinant of epithelial differentiation epithelial cell adhesion molecule (EpCAM) in clinical samples and in vitro models of HNSCCs. We describe improved survival of EGFRlow/EpCAMhigh HNSCC patients (n = 180) and provide a molecular basis for the observed disparities in clinical outcome. EGF/EGFR have concentration-dependent dual capacities as inducers of proliferation and EMT through differential activation of the central molecular switch phosphorylated extracellular signal–regulated kinase 1/2 (pERK1/2) and EMT transcription factors (EMT-TFs) Snail, zinc finger E-box-binding homeobox 1 (Zeb1), and Slug. Furthermore, soluble ectodomain of EpCAM (EpEX) was identified as a ligand of EGFR that activates pERK1/2 and phosphorylated AKT (pAKT) and induces EGFR-dependent proliferation but represses EGF-mediated EMT, Snail, Zeb1, and Slug activation and cell migration. EMT repression by EpEX is realized through competitive modulation of pERK1/2 activation strength and inhibition of EMT-TFs, which is reflected in levels of pERK1/2 and its target Slug in clinical samples. Accordingly, high expression of pERK1/2 and/or Slug predicted poor outcome of HNSCCs. Hence, EpEX is a ligand of EGFR that induces proliferation but counteracts EMT mediated by the EGF/EGFR/pERK1/2 axis. Therefore, the emerging EGFR/EpCAM molecular cross talk represents a promising target to improve patient-tailored adjuvant treatment of HNSCCs. Head and neck squamous cell carcinomas (HNSCCs) display poor survival, with death rates above 55%. Major factors affecting survival are metastases’ formation and therapy resistance. Phenotypic changes during partial epithelial-mesenchymal transition (EMT) provide tumor cells with increased migration, invasion, and therapy resistance. Understanding molecular mechanisms of EMT, as a central process of the metastatic cascade and the development of therapy resistance, is therefore important. In the present work, we identified molecular cross talk between epidermal growth factor receptor (EGFR) and epithelial cell adhesion molecule (EpCAM) as a novel determinant of clinical outcome in HNSCCs. Low levels of EGFR but high levels of EpCAM (EGFRlow/EpCAMhigh) were associated with favorable prognosis, with survival rates above 90%, whereas EGFRhigh/EpCAMlow correlated with poor survival, below 10%. EGFR was shown to have a concentration-dependent capacity to induce proliferation and EMT. Proteolytic cleavage of the extracellular domain of EpCAM (EpEX) produces a ligand of EGFR that induces EGFR-dependent proliferation but counteracts EGF-induced EMT. We delineate an EGFR/extracellular signal–regulated kinase 1/2 (ERK1/2)/EpCAM signaling axis that may be a promising therapeutic target for HNSCCs.
Collapse
Affiliation(s)
- Min Pan
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Henrik Schinke
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Elke Luxenburger
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Gisela Kranz
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Julius Shakhtour
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Darko Libl
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Yuanchi Huang
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Aljaž Gaber
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Miha Pavšič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Brigita Lenarčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
- Department of Biochemistry, Molecular and Structural Biology, Institute Jožef Stefan, Ljubljana, Slovenia
| | - Julia Kitz
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Mark Jakob
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Sabina Schwenk-Zieger
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Julia Hess
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer“, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Kristian Unger
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer“, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Philipp Baumeister
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer“, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer“, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Neuherberg, Germany
- * E-mail:
| |
Collapse
|
13
|
Guo S, Gao S, Liu R, Shen J, Shi X, Bai S, Wang H, Zheng K, Shao Z, Liang C, Peng S, Jin G. Oncological and genetic factors impacting PDX model construction with NSG mice in pancreatic cancer. FASEB J 2018; 33:873-884. [PMID: 30091943 DOI: 10.1096/fj.201800617r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A patient-derived xenograft (PDX) approach, which relies on direct transplantation of tumor specimens into an immunocompromised animal, is a commonly used method for investigating tumor therapy predictions in vivo. This study evaluated influencing factors, including clinical, oncological, and genetic variables, for a pancreatic PDX model in mice. Tumor specimens were obtained from 121 patients with pancreatic ductal adenocarcinoma who underwent surgical resection at the Changhai Pancreatic Surgery Medical Center (Shanghai, China) between April 2016 and February 2017. Pancreatic cancer (PC) samples <3 mm3 were subcutaneously implanted into the NOD/Shi-scid/IL-2Rγnull (NSG) mice. Once the xenograft reached 300-500 mm3 or reached 180 d after cell inoculation, the tumor was excised. Part of the tumor was subsequently transplanted to next-generation mice, and another part was analyzed by using immunohistochemistry. Among the 121 patients with PC, tumor xenograft was successfully generated in 86 patients (71.1%). Primary tumor >3.5 cm in size was independently associated with xenograft formation rate. In addition, several enriched mutated genes within the VEGF pathway and higher microvessel density were found in the positive group (with xenograft) compared with the negative group (without xenograft). We concluded that tumor size and mutated VEGF pathway in PC are important factors affecting PDX model construction with NSG mice.-Guo, S., Gao, S., Liu, R., Shen, J., Shi, X., Bai, S., Wang, H., Zheng, K., Shao, Z., Liang, C., Peng, S., Jin, G. Oncological and genetic factors impacting PDX model construction with NSG mice in pancreatic cancer.
Collapse
Affiliation(s)
- Shiwei Guo
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China; and
| | - Suizhi Gao
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China; and
| | - Rendong Liu
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China; and
| | - Jing Shen
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China; and
| | - Xiaohan Shi
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China; and
| | - Sijia Bai
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China; and
| | - Huan Wang
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China; and
| | - Kailian Zheng
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China; and
| | - Zhuo Shao
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China; and
| | | | - Siying Peng
- Beijing IDMO Company Limited, Beijing, China
| | - Gang Jin
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China; and
| |
Collapse
|
14
|
Herreros-Pomares A, Aguilar-Gallardo C, Calabuig-Fariñas S, Sirera R, Jantus-Lewintre E, Camps C. EpCAM duality becomes this molecule in a new Dr. Jekyll and Mr. Hyde tale. Crit Rev Oncol Hematol 2018; 126:52-63. [DOI: 10.1016/j.critrevonc.2018.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 02/08/2023] Open
|
15
|
Kebenko M, Goebeler ME, Wolf M, Hasenburg A, Seggewiss-Bernhardt R, Ritter B, Rautenberg B, Atanackovic D, Kratzer A, Rottman JB, Friedrich M, Vieser E, Elm S, Patzak I, Wessiepe D, Stienen S, Fiedler W. A multicenter phase 1 study of solitomab (MT110, AMG 110), a bispecific EpCAM/CD3 T-cell engager (BiTE®) antibody construct, in patients with refractory solid tumors. Oncoimmunology 2018; 7:e1450710. [PMID: 30221040 PMCID: PMC6136859 DOI: 10.1080/2162402x.2018.1450710] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/13/2018] [Accepted: 03/05/2018] [Indexed: 01/01/2023] Open
Abstract
We assessed the tolerability and antitumor activity of solitomab, a bispecific T-cell engager (BiTE®) antibody construct targeting epithelial cell adhesion molecule (EpCAM). Patients with relapsed/refractory solid tumors not amenable to standard therapy received solitomab as continuous IV infusion in a phase 1 dose-escalation study with six different dosing schedules. The primary endpoint was frequency and severity of adverse events (AEs). Secondary endpoints included pharmacokinetics, pharmacodynamics, immunogenicity, and antitumor activity. Sixty-five patients received solitomab at doses between 1 and 96 µg/day for ≥28 days. Fifteen patients had dose-limiting toxicities (DLTs): eight had transient abnormal liver parameters shortly after infusion start or dose escalation (grade 3, n = 4; grade 4, n = 4), and one had supraventricular tachycardia (grade 3); all events resolved with solitomab discontinuation. Six patients had a DLT of diarrhea: four events resolved (grade 3, n = 3; grade 4, n = 1), one (grade 3) was ongoing at the time of treatment-unrelated death, and one (grade 3) progressed to grade 5 after solitomab discontinuation. The maximum tolerated dose was 24 µg/day. Overall, 95% of patients had grade ≥3 treatment-related AEs, primarily diarrhea, elevated liver parameters, and elevated lipase. Solitomab half-life was 4.5 hours; serum levels plateaued within 24 hours. One unconfirmed partial response was observed. In this study of a BiTE® antibody construct targeting solid tumors, treatment of relapsed/refractory EpCAM-positive solid tumors with solitomab was associated with DLTs, including severe diarrhea and increased liver enzymes, which precluded dose escalation to potentially therapeutic levels.
Collapse
Affiliation(s)
- Maxim Kebenko
- Department of Oncology/Hematology, Bone Marrow Transplantation and Section Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Annette Hasenburg
- Department of Gynecology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | | | | | - Beate Rautenberg
- Department of Gynecology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Djordje Atanackovic
- Department of Oncology/Hematology, Bone Marrow Transplantation and Section Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | - Eva Vieser
- Amgen Research (Munich) GmbH, Munich, Germany
| | | | | | | | | | - Walter Fiedler
- Department of Oncology/Hematology, Bone Marrow Transplantation and Section Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
16
|
Boesch M, Spizzo G, Seeber A. Concise Review: Aggressive Colorectal Cancer: Role of Epithelial Cell Adhesion Molecule in Cancer Stem Cells and Epithelial-to-Mesenchymal Transition. Stem Cells Transl Med 2018; 7:495-501. [PMID: 29667344 PMCID: PMC5980125 DOI: 10.1002/sctm.17-0289] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/31/2018] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide. In spite of various attempts to ameliorate outcome by escalating treatment, significant improvement is lacking particularly in the adjuvant setting. It has been proposed that cancer stem cells (CSCs) and the epithelial‐to‐mesenchymal transition (EMT) are at least partially responsible for therapy resistance in CRC. The epithelial cell adhesion molecule (EpCAM) was one of the first CSC antigens to be described. Furthermore, an EpCAM‐specific antibody (edrecolomab) has the merit of having launched the era of monoclonal antibody treatment in oncology in the 1990s. However, despite great initial enthusiasm, monoclonal antibody treatment has not proven successful in the adjuvant treatment of CRC patients. In the meantime, new insights into the function of EpCAM in CRC have emerged and new drugs targeting various epitopes have been developed. In this review article, we provide an update on the role of EpCAM in CSCs and EMT, and emphasize the potential predictive selection criteria for novel treatment strategies and refined clinical trial design. stemcellstranslationalmedicine2018;7:495–501
Collapse
Affiliation(s)
- Maximilian Boesch
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland.,Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute (TKFI), Innsbruck, Austria
| | - Gilbert Spizzo
- Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute (TKFI), Innsbruck, Austria
| | - Andreas Seeber
- Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute (TKFI), Innsbruck, Austria
| |
Collapse
|
17
|
Hu D, Ansari D, Pawłowski K, Zhou Q, Sasor A, Welinder C, Kristl T, Bauden M, Rezeli M, Jiang Y, Marko-Varga G, Andersson R. Proteomic analyses identify prognostic biomarkers for pancreatic ductal adenocarcinoma. Oncotarget 2018. [PMID: 29515771 PMCID: PMC5839402 DOI: 10.18632/oncotarget.23929] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy. Here we show that shotgun and targeted protein sequencing can be used to identify potential prognostic biomarkers in formalin-fixed paraffin-embedded specimens from 9 patients with PDAC with “short” survival (<12 months) and 10 patients with “long” survival (>45 months) undergoing surgical resection. A total of 24 and 147 proteins were significantly upregulated [fold change ≥2 or ≤0.5 and P<0.05; or different detection frequencies (≥5 samples)] in patients with “short” survival (including GLUT1) and “long” survival (including C9orf64, FAM96A, CDH1 and CDH17), respectively. STRING analysis of these proteins indicated a tight protein-protein interaction network centered on TP53. Ingenuity pathway analysis linked proteins representing “activated stroma factors” and “basal tumor factors” to poor prognosis of PDAC. It also highlighted TCF1 and CTNNB1 as possible upstream regulators. Further parallel reaction monitoring verified that seven proteins were upregulated in patients with “short” survival (MMP9, CLIC3, MMP8, PRTN3, P4HA2, THBS1 and FN1), while 18 proteins were upregulated in patients with “long” survival, including EPCAM, LGALS4, VIL1, CLCA1 and TPPP3. Thus, we verified 25 protein biomarker candidates for PDAC prognosis at the tissue level. Furthermore, an activated stroma status and protein-protein interactions with TP53 might be linked to poor prognosis of PDAC.
Collapse
Affiliation(s)
- Dingyuan Hu
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund (Surgery), Lund, Sweden.,Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Daniel Ansari
- Lund University, Skane University Hospital, Department of Clinical Sciences Lund (Surgery), Lund, Sweden
| | - Krzysztof Pawłowski
- Department of Experimental Design and Bioinformatics, Warsaw University of Life Sciences, Warsaw, Poland.,Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Qimin Zhou
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund (Surgery), Lund, Sweden
| | - Agata Sasor
- Department of Pathology, Skåne University Hospital, Lund, Sweden
| | - Charlotte Welinder
- Lund University, Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund, Sweden
| | - Theresa Kristl
- Lund University, Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund, Sweden
| | - Monika Bauden
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund (Surgery), Lund, Sweden
| | - Melinda Rezeli
- Department of Biomedical Engineering, Clinical Protein Science and Imaging, Lund University, Lund, Sweden
| | - Yi Jiang
- Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - György Marko-Varga
- Department of Biomedical Engineering, Clinical Protein Science and Imaging, Lund University, Lund, Sweden
| | - Roland Andersson
- Lund University, Skane University Hospital, Department of Clinical Sciences Lund (Surgery), Lund, Sweden
| |
Collapse
|
18
|
Brychta N, Drosch M, Driemel C, Fischer JC, Neves RP, Esposito I, Knoefel W, Möhlendick B, Hille C, Stresemann A, Krahn T, Kassack MU, Stoecklein NH, von Ahsen O. Isolation of circulating tumor cells from pancreatic cancer by automated filtration. Oncotarget 2017; 8:86143-86156. [PMID: 29156783 PMCID: PMC5689673 DOI: 10.18632/oncotarget.21026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/07/2017] [Indexed: 01/05/2023] Open
Abstract
It is now widely recognized that the isolation of circulating tumor cells based on cell surface markers might be hindered by variability in their protein expression. Especially in pancreatic cancer, isolation based only on EpCAM expression has produced very diverse results. Methods that are independent of surface markers and therefore independent of phenotypical changes in the circulating cells might increase CTC recovery also in pancreatic cancer. We compared an EpCAM-dependent (IsoFlux) and a size-dependent (automated Siemens Healthineers filtration device) isolation method for the enrichment of pancreatic cancer CTCs. The recovery rate of the filtration based approach is dramatically superior to the EpCAM-dependent approach especially for cells with low EpCAM-expression (filtration: 52%, EpCAM-dependent: 1%). As storage and shipment of clinical samples is important for centralized analyses, we also evaluated the use of frozen diagnostic leukapheresis (DLA) as source for isolating CTCs and subsequent genetic analysis such as KRAS mutation detection analysis. Using frozen DLA samples of pancreatic cancer patients we detected CTCs in 42% of the samples by automated filtration.
Collapse
Affiliation(s)
- Nora Brychta
- Bayer AG, Biomarker Research, 13353 Berlin, Germany
| | - Michael Drosch
- Bayer AG, Biomarker Research, 13353 Berlin, Germany.,Current/Present address: JPT Peptide Technologies GmbH, 12489 Berlin, Germany
| | - Christiane Driemel
- Department of General, Visceral and Pediatric Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany
| | - Johannes C Fischer
- Department of General, Visceral and Pediatric Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany
| | - Rui P Neves
- Department of General, Visceral and Pediatric Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany
| | - Irene Esposito
- Institute of Pathology, Heinrich-Heine-University of Duesseldorf, 40225 Duesseldorf, Germany
| | - Wolfram Knoefel
- Department of General, Visceral and Pediatric Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany
| | - Birte Möhlendick
- Department of General, Visceral and Pediatric Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany
| | - Claudia Hille
- Bayer AG, Biomarker Research, 13353 Berlin, Germany.,Current/Present address: University Medical Center Hamburg-Eppendorf, Department of Tumor Biology, 20246 Hamburg, Germany
| | | | - Thomas Krahn
- Bayer AG, Biomarker Research, 13353 Berlin, Germany
| | - Matthias U Kassack
- Institute of Pharmaceutical & Medicinal Chemistry, University of Duesseldorf, 40225 Duesseldorf, Germany
| | - Nikolas H Stoecklein
- Department of General, Visceral and Pediatric Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany
| | | |
Collapse
|
19
|
Hsu YT, Osmulski P, Wang Y, Huang YW, Liu L, Ruan J, Jin VX, Kirma NB, Gaczynska ME, Huang THM. EpCAM-Regulated Transcription Exerts Influences on Nanomechanical Properties of Endometrial Cancer Cells That Promote Epithelial-to-Mesenchymal Transition. Cancer Res 2016; 76:6171-6182. [PMID: 27569206 DOI: 10.1158/0008-5472.can-16-0752] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/15/2016] [Indexed: 12/24/2022]
Abstract
Overexpression of epithelial cell adhesion molecule (EpCAM) has been implicated in advanced endometrial cancer, but its roles in this progression remain to be elucidated. In addition to its structural role in modulating cell-surface adhesion, here we demonstrate that EpCAM is a regulatory molecule in which its internalization into the nucleus turns on a transcription program. Activation of EGF/EGFR signal transduction triggered cell-surface cleavage of EpCAM, leading to nuclear internalization of its cytoplasmic domain EpICD. ChIP-seq analysis identified target genes that are coregulated by EpICD and its transcription partner, LEF-1. Network enrichment analysis further uncovered a group of 105 genes encoding functions for tight junction, adherent, and cell migration. Furthermore, nanomechanical analysis by atomic force microscopy revealed increased softness and decreased adhesiveness of EGF-stimulated cancer cells, implicating acquisition of an epithelial-mesenchymal transition (EMT) phenotype. Thus, genome editing of EpCAM could be associated with altering these nanomechanical properties towards a less aggressive phenotype. Using this integrative genomic-biophysical approach, we demonstrate for the first time an intricate relationship between EpCAM-regulated transcription and altered biophysical properties of cells that promote EMT in advanced endometrial cancer. Cancer Res; 76(21); 6171-82. ©2016 AACR.
Collapse
Affiliation(s)
- Ya-Ting Hsu
- Departments of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Pawel Osmulski
- Departments of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Yao Wang
- Departments of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Yi-Wen Huang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Lu Liu
- Department of Computer Science, University of Texas at San Antonio, San Antonio, Texas
| | - Jianhua Ruan
- Department of Computer Science, University of Texas at San Antonio, San Antonio, Texas
| | - Victor X Jin
- Departments of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Nameer B Kirma
- Departments of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Maria E Gaczynska
- Departments of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas.
| | - Tim Hui-Ming Huang
- Departments of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas.
| |
Collapse
|
20
|
Wang R, Chu GCY, Mrdenovic S, Annamalai AA, Hendifar AE, Nissen NN, Tomlinson JS, Lewis M, Palanisamy N, Tseng HR, Posadas EM, Freeman MR, Pandol SJ, Zhau HE, Chung LWK. Cultured circulating tumor cells and their derived xenografts for personalized oncology. Asian J Urol 2016; 3:240-253. [PMID: 29264192 PMCID: PMC5730836 DOI: 10.1016/j.ajur.2016.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 02/07/2023] Open
Abstract
Recent cancer research has demonstrated the existence of circulating tumor cells (CTCs) in cancer patient's blood. Once identified, CTC biomarkers will be invaluable tools for clinical diagnosis, prognosis and treatment. In this review, we propose ex vivo culture as a rational strategy for large scale amplification of the limited numbers of CTCs from a patient sample, to derive enough CTCs for accurate and reproducible characterization of the biophysical, biochemical, gene expressional and behavioral properties of the harvested cells. Because of tumor cell heterogeneity, it is important to amplify all the CTCs in a blood sample for a comprehensive understanding of their role in cancer metastasis. By analyzing critical steps and technical issues in ex vivo CTC culture, we developed a cost-effective and reproducible protocol directly culturing whole peripheral blood mononuclear cells, relying on an assumed survival advantage in CTCs and CTC-like cells over the normal cells to amplify this specified cluster of cancer cells.
Collapse
Affiliation(s)
- Ruoxiang Wang
- Uro-Oncology Research, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Gina C Y Chu
- Uro-Oncology Research, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stefan Mrdenovic
- Uro-Oncology Research, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alagappan A Annamalai
- Uro-Oncology Research, Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Andrew E Hendifar
- Uro-Oncology Research, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nicholas N Nissen
- Uro-Oncology Research, Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - James S Tomlinson
- Department of Surgery, West Los Angeles VA Hospital, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA
| | - Michael Lewis
- Department of Pathology, West Los Angeles VA Hospital, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA
| | | | - Hsian-Rong Tseng
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| | - Edwin M Posadas
- Uro-Oncology Research, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael R Freeman
- Uro-Oncology Research, Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephen J Pandol
- Uro-Oncology Research, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Haiyen E Zhau
- Uro-Oncology Research, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Leland W K Chung
- Uro-Oncology Research, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Uro-Oncology Research, Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
21
|
Gao J, Liu X, Yang F, Liu T, Yan Q, Yang X. By inhibiting Ras/Raf/ERK and MMP-9, knockdown of EpCAM inhibits breast cancer cell growth and metastasis. Oncotarget 2016; 6:27187-98. [PMID: 26356670 PMCID: PMC4694982 DOI: 10.18632/oncotarget.4551] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/21/2015] [Indexed: 01/29/2023] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is a type I transmembrane protein that is expressed in the majority of normal epithelial tissues and is overexpressed in most epithelial cancers including breast cancer, where it plays an important role in cancer progression. However, the mechanism by which EpCAM promotes the progression of breast cancer is not understood. In this study, we found that EpCAM expression was increased in tumor tissue from breast cancer patients compared to healthy patients. Overexpression of EpCAM in breast cancer cells enhanced tumor cell growth in vitro and increased invasiveness, whereas small interfering RNA-mediated silencing of EpCAM (si-EpCAM) had the opposite effect. EpCAM knockdown led to decreased phosphorylation of Raf and ERK, suppression of malignant behavior of breast cancer cells, and inhibition of the Ras/Raf/ERK signaling pathway. Furthermore, si-EpCAM-mediated invasion and metastasis of breast carcinoma cells required the downregulation of matrix metalloproteinase-9 (MMP-9) through inhibition of this signaling pathway. In conclusion, our data show that knockdown of EpCAM can inhibition breast cancer cell growth and metastasis via inhibition of the Ras/Raf/ERK signaling pathway and MMP-9.
Collapse
Affiliation(s)
- Jiujiao Gao
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, People's Republic of China
| | - Xue Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, People's Republic of China
| | - Fan Yang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, People's Republic of China
| | - Tingjiao Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, People's Republic of China
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, People's Republic of China
| | - Xuesong Yang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, People's Republic of China
| |
Collapse
|
22
|
Characterization of cancer stem cells from different grades of human colorectal cancer. Tumour Biol 2016; 37:14069-14081. [PMID: 27507615 DOI: 10.1007/s13277-016-5232-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/15/2016] [Indexed: 12/23/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common solid tumors worldwide. Recent evidence suggests that a population of cancer cells, called cancer stem cells (CSCs), is responsible for tumor heterogeneity, invasion, metastasis, therapeutic resistance, and recurrence of CRC. The isolation and characterization of CSCs using cell surface markers have been reported previously with varying results. In this study, we investigated a panel of four putative CSC markers, CD44, CD24, CD166, and EpCAM, to define CRC-CSC. Paraffin embedded tissue samples from different grades of primary, untreated CRC were analyzed for the expression of four CSC markers CD44, CD326, CD24, and CD166, using immunohistochemistry. Flow cytometric analysis of CRC-CSC from HT29 (low grade) and HCT116 (high grade) human colorectal cancer cell lines was done. Marker-based isolation of CSC and non-CSC-bulk-tumor cells from HT29 was done using FACS, and tumor sphere assay was performed. There was a statistically significant difference (p < 0.05) in the expression of CD44, CD326, and CD166 between cases and controls. A novel cutoff distribution of CD44 and CD166 was suggested to help for better immunohistochemical analysis of CRC. Higher prevalence of CSC was seen in high-grade CRC as compared to low-grade CRC. Sorted and cultured CD44 + CD166+ cells formed tumor spheres, suggesting that these cells, having properties of self renewal and anchorage independent proliferation, were in fact CSC. Hence, CD44 and CD166 may serve as good CRC-CSC markers when used together with novel cutoff immunohistochemistry (IHC) expression levels.
Collapse
|
23
|
Systematic review of peri-operative prognostic biomarkers in pancreatic ductal adenocarcinoma. HPB (Oxford) 2016; 18:652-63. [PMID: 27485059 PMCID: PMC4972371 DOI: 10.1016/j.hpb.2016.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/09/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) continues to be associated with a poor prognosis. This systematic review aimed to summarize the literature regarding potential prognostic biomarkers to facilitate validation studies and clinical application. METHODS A systematic review was performed (2004-2014) according to PRISMA guidelines. Studies were ranked using REMARK criteria and the following outcomes were examined: overall/disease free survival, nodal involvement, tumour characteristics, metastasis, recurrence and resectability. RESULTS 256 biomarkers were identified in 158 studies. 171 biomarkers were assessed with respect to overall survival: urokinase-type plasminogen activator receptor, atypical protein kinase C and HSP27 ranked the highest. 33 biomarkers were assessed for disease free survival: CD24 and S100A4 were the highest ranking. 17 biomarkers were identified for lymph node involvement: Smad4/Dpc4 and FOXC1 ranked highest. 13 biomarkers were examined for tumour grade: mesothelin and EGFR were the highest ranking biomarkers. 10 biomarkers were identified for metastasis: p16 and sCD40L were the highest ranking. 4 biomarkers were assessed resectability: sCD40L, s100a2, Ca 19-9, CEA. CONCLUSION This review has identified and ranked specific biomarkers that should be a primary focus of ongoing validation and clinical translational work in PDAC.
Collapse
|
24
|
Somasundaram RT, Kaur J, Leong I, MacMillan C, Witterick IJ, Walfish PG, Ralhan R. Subcellular differential expression of Ep-ICD in oral dysplasia and cancer is associated with disease progression and prognosis. BMC Cancer 2016; 16:486. [PMID: 27421772 PMCID: PMC4947324 DOI: 10.1186/s12885-016-2507-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 06/20/2016] [Indexed: 01/25/2023] Open
Abstract
Background Identification of patients with oral dysplasia at high risk of cancer development and oral squamous cell carcinoma (OSCC) at increased risk of disease recurrence will enable rigorous personalized treatment. Regulated intramembranous proteolysis of Epithelial cell adhesion molecule (EpCAM) resulting in release of its intracellular domain Ep-ICD into cytoplasm and nucleus triggers oncogenic signaling. We analyzed the expression of Ep-ICD in oral dysplasia and cancer and determined its clinical significance in disease progression and prognosis. Methods In a retrospective study, immunohistochemical analysis of nuclear and cytoplasmic Ep-ICD and EpEx (extracellular domain of EpCAM), was carried out in 115 OSCC, 97 oral dysplasia and 105 normal oral tissues, correlated with clinicopathological parameters and disease outcome over 60 months for oral dysplasia and OSCC patients. Disease-free survival (DFS) was determined by Kaplan-Meier method and multivariate Cox regression analysis. Results In comparison with normal oral tissues, significant increase in nuclear Ep-ICD and membrane EpEx was observed in dysplasia, and OSCC (p = 0.013 and < 0.001 respectively). Oral dysplasia patients with increased overall Ep-ICD developed cancer in short time period (mean = 47 months; p = 0.044). OSCC patients with increased nuclear Ep-ICD and membrane EpEx had significantly reduced mean DFS of 33.7 months (p = 0.018). Conclusions Our study provided clinical evidence for Ep-ICD as a predictor of cancer development in patients with oral dysplasia and recurrence in OSCC patients, suggesting its potential utility in enhanced management of those patients detected to have increased risk of progression to cancer and recurrence in OSCC patients.
Collapse
Affiliation(s)
- Raj Thani Somasundaram
- Alex and Simona Shnaider Laboratory, Laboratory Medicine in Molecular Onocolgy, Mount Sinia Hospital, Room 6-318, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
| | - Jatinder Kaur
- Alex and Simona Shnaider Laboratory, Laboratory Medicine in Molecular Onocolgy, Mount Sinia Hospital, Room 6-318, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
| | - Iona Leong
- Department of Otolaryngology, Head and Neck Surgery, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, 600 University Avenue, 6-500, Toronto, ON, M5G 1X5, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Christina MacMillan
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Ian J Witterick
- Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Otolaryngology - Head and Neck Surgery, Alex and Simona Shnaider Laboratory in Molecular Oncology, Mount Sinai Hospital, Joseph & Wolf Lebovic Health Complex, 600 University Avenue, 6-500, Toronto, ON, M5G 1X5, Canada.,Department of Otolaryngology - Head and Neck Surgery, University of Toronto, Toronto, ON, M5G 2N2, Canada
| | - Paul G Walfish
- Alex and Simona Shnaider Laboratory, Laboratory Medicine in Molecular Onocolgy, Mount Sinia Hospital, Room 6-318, 600 University Avenue, Toronto, ON, M5G 1X5, Canada. .,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada. .,Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada. .,Department of Otolaryngology - Head and Neck Surgery, University of Toronto, Toronto, ON, M5G 2N2, Canada. .,Department of Medicine, Endocrine Division, Mount Sinai Hospital and University of Toronto, Joseph & Wolf Lebovic Health Complex, Room 413-7, 600 University Avenue, Toronto, ON, M5G 1X5, Canada.
| | - Ranju Ralhan
- Alex and Simona Shnaider Laboratory, Laboratory Medicine in Molecular Onocolgy, Mount Sinia Hospital, Room 6-318, 600 University Avenue, Toronto, ON, M5G 1X5, Canada. .,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada. .,Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada. .,Department of Otolaryngology - Head and Neck Surgery, Alex and Simona Shnaider Laboratory in Molecular Oncology, Mount Sinai Hospital, Joseph & Wolf Lebovic Health Complex, 600 University Avenue, 6-500, Toronto, ON, M5G 1X5, Canada. .,Department of Otolaryngology - Head and Neck Surgery, University of Toronto, Toronto, ON, M5G 2N2, Canada.
| |
Collapse
|
25
|
Seeber A, Untergasser G, Spizzo G, Terracciano L, Lugli A, Kasal A, Kocher F, Steiner N, Mazzoleni G, Gastl G, Fong D. Predominant expression of truncated EpCAM is associated with a more aggressive phenotype and predicts poor overall survival in colorectal cancer. Int J Cancer 2016; 139:657-63. [PMID: 26996277 DOI: 10.1002/ijc.30099] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 02/12/2016] [Accepted: 03/04/2016] [Indexed: 12/13/2022]
Abstract
Regulated intramembrane proteolysis (RIP) has been shown to be an important mechanism for oncogenic activation of EpCAM through nuclear translocation of the intracellular domain EpICD. Recently, we identified two different membranous EpCAM variants namely EpCAM(MF) (full-length) and EpCAM(MT) (truncated) to be expressed in the majority of human epithelial tumors. The aim of our study was to evaluate the potential role of these two protein variants as additional prognostic biomarkers in colorectal cancer. In most studies only one antibody targeting the extracellular domain of EpCAM (EpEX) has been used, whereas in the present study additionally an antibody which detects the intracellular domain (EpICD) was applied to discriminate between different EpCAM variants. Using immunohistochemistry, we analyzed the expression of EpCAM(MF) and EpCAM(MT) variants in 640 patients with colorectal cancer and determined their correlations with other prognostic factors and clinical outcome. A statistically significant association was observed for EpCAM(MT) with advanced tumor stage (p < 0.001), histological grade (p = 0.01), vascular (p < 0.001) and marginal (p = 0.002) invasion. Survival analysis demonstrated reduced overall survival (p < 0.004) in patients with tumors expressing the EpCAM(MT) phenotype when compared to patients with tumors expressing the EpCAM(MF) variant. In conclusion, this study for the first time indicates that expression of EpCAM(MT) is associated with a more aggressive phenotype and predicts poor survival in patients with colorectal cancer.
Collapse
Affiliation(s)
- Andreas Seeber
- Tyrolean Cancer Research Institute, Innsbruck, Austria.,Oncotyrol-Center for Personalized Cancer Medicine, Innsbruck, Austria.,Department of Haematology and Oncology, Medical University of Innsbruck, Austria
| | - Gerold Untergasser
- Tyrolean Cancer Research Institute, Innsbruck, Austria.,Department of Haematology and Oncology, Medical University of Innsbruck, Austria
| | - Gilbert Spizzo
- Tyrolean Cancer Research Institute, Innsbruck, Austria.,Oncotyrol-Center for Personalized Cancer Medicine, Innsbruck, Austria.,Department of Haematology and Oncology, Medical University of Innsbruck, Austria.,Haemato-Oncological Day Hospital, Hospital of Merano, Italy
| | - Luigi Terracciano
- Molecular Pathology Division, Institute of Pathology, University of Basel, Switzerland
| | - Alessandro Lugli
- Translational Research Unit (TRU), Institute of Pathology, University of Bern, Switzerland
| | - Armin Kasal
- Department of Pathology, Central Hospital of Bolzano, Italy
| | - Florian Kocher
- Tyrolean Cancer Research Institute, Innsbruck, Austria.,Department of Haematology and Oncology, Medical University of Innsbruck, Austria
| | - Normann Steiner
- Department of Haematology and Oncology, Medical University of Innsbruck, Austria
| | | | - Guenther Gastl
- Department of Haematology and Oncology, Medical University of Innsbruck, Austria
| | - Dominic Fong
- Tyrolean Cancer Research Institute, Innsbruck, Austria.,Oncotyrol-Center for Personalized Cancer Medicine, Innsbruck, Austria.,Department of Haematology and Oncology, Medical University of Innsbruck, Austria.,Haemato-Oncological Day Hospital, Hospital of Merano, Italy
| |
Collapse
|
26
|
Wang W, Qin DY, Zhang BL, Wei W, Wang YS, Wei YQ. Establishing guidelines for CAR-T cells: challenges and considerations. SCIENCE CHINA-LIFE SCIENCES 2016; 59:333-9. [DOI: 10.1007/s11427-016-5026-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/17/2016] [Indexed: 01/08/2023]
|
27
|
Cives M, Rizzo F, Simone V, Bisceglia F, Stucci S, Seeber A, Spizzo G, Montrone T, Resta L, Silvestris F. Reviewing the Osteotropism in Neuroendocrine Tumors: The Role of Epithelial-Mesenchymal Transition. Neuroendocrinology 2016; 103:321-34. [PMID: 26227818 DOI: 10.1159/000438902] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 07/15/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Neuroendocrine tumors (NETs) metastasize to the bone. However, the incidence, clinical features, management and pathogenesis of bone involvement in NET patients have been poorly investigated. METHODS We reviewed all published reports of histologically confirmed bone metastatic NETs and explored clinical, radiological, prognostic and therapeutic characteristics in a population of 152 patients. We then evaluated immunohistochemical expression of a panel of eight epithelial-mesenchymal transition (EMT)-related factors including SNAIL, TGF-β1, CTGF, IL-11, PTHrP, EpCAM, CXCR4 and RANK in an independent cohort of 44 archival primary NETs. Biomarker expression was correlated with clinicopathological variables, including skeletal involvement, and tested for survival prediction. RESULTS We found that 55% of NET patients with bone metastases were male, with a median age of 55 years at diagnosis. Metastases were restricted to the skeleton in 34% of the NET population, and axial and osteoblastic lesions were prevalent. NETs differently expressed proteins involved in EMT activation. High CXCR4 (p < 0.0001) and low TGF-β1 levels (p = 0.0015) were significantly associated with increased risk of skeletal metastases, suggesting that EMT is implicated in NET osteotropism. By applying an algorithm measuring distinct immunohistochemical predictors of osteotropism on primary tumors, we were able to identify NET patients with bone metastases with a sensitivity and specificity of 91 and 100%, respectively (p < 0.0001). Patients whose primary tumors expressed CTGF (p = 0.0007) as well as the truncated form of EpCAM (p = 0.06) showed shorter survival. CONCLUSION Although underestimated, bone metastases are a prominent feature of NETs, and the tumor expression of EMT markers at diagnosis may predict concurrent or subsequent skeleton colonization.
Collapse
Affiliation(s)
- Mauro Cives
- Department of Biomedical Sciences and Clinical Oncology, University of Bari, Bari, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Assi J, Srivastava G, Matta A, MacMillan C, Ralhan R, Walfish PG. Nuclear Ep-ICD expression is a predictor of poor prognosis in "low risk" prostate adenocarcinomas. PLoS One 2015; 10:e0107586. [PMID: 25695234 PMCID: PMC4335027 DOI: 10.1371/journal.pone.0107586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/12/2014] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Molecular markers for predicting prostate cancer (PCa) that would have poor prognosis are urgently needed for a more personalized treatment for patients. Regulated intramembrane proteolysis of Epithelial cell adhesion molecule results in shedding of the extracellular domain (EpEx) and release of its intracellular domain (Ep-ICD) which triggers oncogenic signaling and might correlate to tumor aggressiveness. This study aimed to explore the potential of Ep-ICD and EpEx to identify PCa that have poor prognosis. METHODS Immunohistochemical analysis of Ep-ICD and EpEx was carried out in normal prostate tissues (n = 100), benign prostate hyperplasia (BPH, n = 83), and prostate cancer (n = 249) using domain specific antibodies. The expression of Ep-ICD and EpEx was correlated with clinico- pathological parameters and disease free survival (DFS). RESULTS Reduced expression of nuclear Ep-ICD and membrane EpEx was observed in PCa in comparison with BPH and normal prostate tissues (p = 0.006, p < 0.001 respectively). For patients who had PCa with Gleason Score less than 7, preserved nuclear Ep-ICD emerged as the most significant marker in multivariate analysis for prolonged DFS, where these patients did not have recurrence during follow up of up to 12 years (p = 0.001). CONCLUSION Reduced expression of nuclear Ep-ICD was associated with shorter disease free survival in patients with a Gleason Score less than 7 and may be useful in identifying patients likely to have aggressive tumors with poor prognosis. Furthermore, nuclear Ep-ICD can differentiate between normal and prostate cancer tissues for ambiguous cases.
Collapse
Affiliation(s)
- Jasmeet Assi
- Alex and Simona Shnaider Laboratory in Molecular Oncology, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada
| | - Gunjan Srivastava
- Alex and Simona Shnaider Laboratory in Molecular Oncology, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada
| | - Ajay Matta
- Alex and Simona Shnaider Laboratory in Molecular Oncology, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada
| | - Christina MacMillan
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ranju Ralhan
- Alex and Simona Shnaider Laboratory in Molecular Oncology, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Otolaryngology—Head and Neck Surgery, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Otolaryngology—Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (PGW); (RR)
| | - Paul G. Walfish
- Alex and Simona Shnaider Laboratory in Molecular Oncology, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Medicine, Endocrine Division, Mount Sinai Hospital and University of Toronto, Toronto, Ontario, Canada
- Department of Otolaryngology—Head and Neck Surgery, Mount Sinai Hospital, Toronto, Ontario, Canada
- * E-mail: (PGW); (RR)
| |
Collapse
|
29
|
Dollé L, Theise ND, Schmelzer E, Boulter L, Gires O, van Grunsven LA. EpCAM and the biology of hepatic stem/progenitor cells. Am J Physiol Gastrointest Liver Physiol 2015; 308:G233-50. [PMID: 25477371 PMCID: PMC4329473 DOI: 10.1152/ajpgi.00069.2014] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein, which is frequently and highly expressed on carcinomas, tumor-initiating cells, selected tissue progenitors, and embryonic and adult stem cells. During liver development, EpCAM demonstrates a dynamic expression, since it can be detected in fetal liver, including cells of the parenchyma, whereas mature hepatocytes are devoid of EpCAM. Liver regeneration is associated with a population of EpCAM-positive cells within ductular reactions, which gradually lose the expression of EpCAM along with maturation into hepatocytes. EpCAM can be switched on and off through a wide panel of strategies to fine-tune EpCAM-dependent functional and differentiative traits. EpCAM-associated functions relate to cell-cell adhesion, proliferation, maintenance of a pluripotent state, regulation of differentiation, migration, and invasion. These functions can be conferred by the full-length protein and/or EpCAM-derived fragments, which are generated upon regulated intramembrane proteolysis. Control by EpCAM therefore not only depends on the presence of full-length EpCAM at cellular membranes but also on varying rates of the formation of EpCAM-derived fragments that have their own regulatory properties and on changes in the association of EpCAM with interaction partners. Thus spatiotemporal localization of EpCAM in immature liver progenitors, transit-amplifying cells, and mature liver cells will decisively impact the regulation of EpCAM functions and might be one of the triggers that contributes to the adaptive processes in stem/progenitor cell lineages. This review will summarize EpCAM-related molecular events and how they relate to hepatobiliary differentiation and regeneration.
Collapse
Affiliation(s)
- Laurent Dollé
- Department of Biomedical Sciences, Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels, Belgium;
| | - Neil D. Theise
- 2Departments of Pathology and Medicine, Beth Israel Medical Center of Albert Einstein College of Medicine, New York, New York;
| | - Eva Schmelzer
- 3McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania;
| | - Luke Boulter
- 4Medical Research Council Human Genetics Unit, Institute for Genetics and Molecular Medicine, Edinburgh, Scotland; and
| | - Olivier Gires
- 5Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Leo A. van Grunsven
- 1Department of Biomedical Sciences, Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels, Belgium;
| |
Collapse
|
30
|
Ogasawara S, Akiba J, Nakayama M, Nakashima O, Torimura T, Yano H. Epithelial cell adhesion molecule-positive human hepatic neoplastic cells: development of combined hepatocellular-cholangiocarcinoma in mice. J Gastroenterol Hepatol 2015; 30:413-20. [PMID: 25087473 DOI: 10.1111/jgh.12692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/14/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIM Human combined hepatocellular-cholangiocarcinoma (CHC) expresses several hepatic stem/progenitor cell (HSPC) markers, suggesting this neoplasm originates from HSPCs. We examined the significance of HSPC marker in CHC using a human CHC cell line. METHODS We used a human CHC cell line (KMCH-1) previously established in our laboratory. The original tumor was classified as CHC, showing areas of typical hepatocellular carcinoma (HCC) and cholangiocarcinoma (ChC). We examined the expression of HSPC markers and hepatocyte markers in KMCH-1 by flow cytometry (FCM) and quantitative real-time polymerase chain reaction. EpCAM(+) and EpCAM(-) KMCH-1 cells were isolated. Subsequently, their morphological features, HSPC marker expression, and biological characteristics were examined in vitro and in vivo. RESULTS FCM showed expression of EpCAM, K7, K19, and ABCG2 in KMCH-1, with various degrees. EpCAM(+) cells expressed K19 mRNA, but did not express α-fetoprotein (AFP). In contrast, EpCAM(-) cells expressed AFP mRNA, but did not express K19. EpCAM(+) cells produced both EpCAM(+) and EpCAM(-) cells, but EpCAM(-) cells produced only EpCAM(-) cells in vitro. EpCAM(+) cells showed higher tumorigenicity and formed larger tumors than EpCAM(-) cells. Inoculation of EpCAM(+) and EpCAM(-) cells produced both ChC and HCC-like component and HCC-like component only, respectively. CONCLUSION It is speculated that some CHCs may originate from EpCAM(+) neoplastic cells, and that these cells may affect malignant behavior and progression in such CHCs.
Collapse
Affiliation(s)
- Sachiko Ogasawara
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Bobek V, Gurlich R, Eliasova P, Kolostova K. Circulating tumor cells in pancreatic cancer patients: Enrichment and cultivation. World J Gastroenterol 2014; 20:17163-17170. [PMID: 25493031 PMCID: PMC4258587 DOI: 10.3748/wjg.v20.i45.17163] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/20/2014] [Accepted: 07/16/2014] [Indexed: 02/07/2023] Open
Abstract
AIM: To investigate the feasibility of separation and cultivation of circulating tumor cells (CTCs) in pancreatic cancer (PaC) using a filtration device.
METHODS: In total, 24 PaC patients who were candidates for surgical treatment were enrolled into the study. Peripheral blood samples were collected before an indicated surgery. For each patient, approximately 8 mL of venous blood was drawn from the antecubital veins. A new size-based separation MetaCell® technology was used for enrichment and cultivation of CTCs in vitro. (Separated CTCs were cultured on a membrane in FBS enriched RPMI media and observed by inverted microscope. The cultured cells were analyzed by means of histochemistry and immunohistochemistry using the specific antibodies to identify the cell origin.
RESULTS: CTCs were detected in 16 patients (66.7%) of the 24 evaluable patients. The CTC positivity did not reflect the disease stage, tumor size, or lymph node involvement. The same percentage of CTC positivity was observed in the metastatic and non-metastatic patients (66.7% vs 66.7%). We report a successful isolation of CTCs in PaC patients capturing proliferating cells. The cells were captured by a capillary action driven size-based filtration approach that enabled cells cultures from the viable CTCs to be unaffected by any antibodies or lysing solutions. The captured cancer cells displayed plasticity which enabled some cells to invade the separating membrane. Further, the cancer cells in the “bottom fraction”, may represent a more invasive CTC-fraction. The CTCs were cultured in vitro for further downstream applications.
CONCLUSION: The presented size-based filtration method enables culture of CTCs in vitro for possible downstream applications.
Collapse
|
32
|
Gires O, Stoecklein NH. Dynamic EpCAM expression on circulating and disseminating tumor cells: causes and consequences. Cell Mol Life Sci 2014; 71:4393-402. [PMID: 25103341 PMCID: PMC11113679 DOI: 10.1007/s00018-014-1693-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/22/2014] [Accepted: 07/24/2014] [Indexed: 12/19/2022]
Abstract
Formation of metastasis is the most important and lethal step in cancer progression. Circulating and disseminated cancer cells (CTCs/DTCs) in blood and bone marrow are considered as potential metastases-inducing cells. Their detection and characterization has, therefore, become a field of major interest in translational and clinical research in oncology. The main strategy to detect these cells relies thus far on the epithelial characteristics of carcinoma cells and epithelial cell adhesion molecule (EpCAM) represents the most commonly used epithelial marker to capture CTCs/DTCs. Recent data, however, demonstrated a dynamic expression of EpCAM associated with a loss during epithelial-to-mesenchymal transition. The present review summarizes the potential mechanisms and reasons for a dynamic expression of EpCAM.
Collapse
Affiliation(s)
- Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, 81377, Munich, Germany,
| | | |
Collapse
|
33
|
Jachin S, Bae JS, Sung JJ, Park HS, Jang KY, Chung MJ, Kim DG, Moon WS. The role of nuclear EpICD in extrahepatic cholangiocarcinoma: association with β-catenin. Int J Oncol 2014; 45:691-8. [PMID: 24888903 DOI: 10.3892/ijo.2014.2472] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/15/2014] [Indexed: 11/05/2022] Open
Abstract
After intramembranous proteolysis-mediated loss of the extracellular domain of the epithelial cell adhesion molecule (EpEx) and release of an intracellular domain (EpICD) into the cytoplasm, EpICD sequentially associates with FHL2 to form a nuclear complex with β-catenin and Lef-1. This association induces gene transcription involved in the activation of the oncogenic potential of epithelial cell adhesion molecule (EpCAM). We examined the localization and expression of EpEx, EpICD and β-catenin in surgical specimens of extrahepatic cholangiocarcinoma (ECC) from 79 patients and focused on the relationship between nuclear expression of EpICD and β-catenin. We also examined the role of EpICD by transfecting the EpICD cDNA in cholangiocarcinoma (CC) cell lines. There was a significant correlation between the nuclear expression of EpICD and β-catenin in ECC tissues. Frequent nuclear co-localization of EpICD and β-catenin was observed in cancer cells forming the invasive front. Nuclear expression of EpICD also significantly correlated with histologic grade of tumor. Overexpression of EpICD in the CC cells significantly increased the cell growth and proliferation. The overexpression of EpICD in the CC cells also increased the expression levels of the active form of β-catenin and EpCAM target genes, such as c-myc and cyclin D1. Furthermore, the overexpression of EpICD significantly enhanced the migration and invasiveness of CC cells. Conversely, the inhibition of EpCAM in EpCAM-overexpressing cells by siRNA significantly decreased cell proliferation, migration and invasion. These results indicate that the spatial localization of EpICD and its mutual interaction with β-catenin may be important in ECC progression and invasion.
Collapse
Affiliation(s)
- Sarangerel Jachin
- Department of Pathology, Chonbuk National University, Medical School, Research Institute of Clinical Medicine of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju 561-756, Republic of Korea
| | - Jun Sang Bae
- Department of Pathology, Chonbuk National University, Medical School, Research Institute of Clinical Medicine of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju 561-756, Republic of Korea
| | - Jong Jin Sung
- Department of Pathology, Chonbuk National University, Medical School, Research Institute of Clinical Medicine of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju 561-756, Republic of Korea
| | - Ho Sung Park
- Department of Pathology, Chonbuk National University, Medical School, Research Institute of Clinical Medicine of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju 561-756, Republic of Korea
| | - Kyu Yun Jang
- Department of Pathology, Chonbuk National University, Medical School, Research Institute of Clinical Medicine of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju 561-756, Republic of Korea
| | - Myoung Ja Chung
- Department of Pathology, Chonbuk National University, Medical School, Research Institute of Clinical Medicine of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju 561-756, Republic of Korea
| | - Dae Gohn Kim
- Department of Internal Medicine, Chonbuk National University, Medical School, Research Institute of Clinical Medicine of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju 561-756, Republic of Korea
| | - Woo Sung Moon
- Department of Pathology, Chonbuk National University, Medical School, Research Institute of Clinical Medicine of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju 561-756, Republic of Korea
| |
Collapse
|
34
|
Fong D, Seeber A, Terracciano L, Kasal A, Mazzoleni G, Lehne F, Gastl G, Spizzo G. Expression of EpCAM(MF) and EpCAM(MT) variants in human carcinomas. J Clin Pathol 2014; 67:408-14. [PMID: 24465008 PMCID: PMC3995261 DOI: 10.1136/jclinpath-2013-201932] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aims Regulated intramembrane proteolysis has been shown to be an important mechanism for oncogenic activation of epithelial cell adhesion molecule (EpCAM) through nuclear translocation of the intracellular domain EpICD. Recent studies have identified new membrane-bound EpCAM variants. To evaluate the prevalence of two membranous EpCAM variants in human tumours, we performed a large-scale expression analysis using specific antibodies against the extracellular domain EpEX (MOC-31 clone) and the intracellular domain EpICD (9-2 clone) of the EpCAM antigen by immunohistochemistry. Material and methods Two multi-tissue microarrays (TMA) series containing 1564 tissue samples each of 53 different histological tumour types were stained and compared. One TMA was stained for EpEX and one for EpICD. Membranous full-length EpCAM (EpCAMMF) expression in tissues was defined by the expression of EpEX and EpICD, while the truncated variant of EpCAM (EpCAMMT) was characterised by a significant loss of membranous EpICD expression compared with EpEX expression. Results We defined tumours with high EpCAMMT expression (ie, cancers of the endometrium and bladder), tumours with intermediate (ie, gastric, pancreatic, colorectal and oesophageal cancer) and tumours with low rates of expression of the EpCAMMT variant (ie, lung, ovarian, gallbladder, breast and prostate cancer). Conclusions Our results indicate that loss of membranous EpICD expression is a common event in human epithelial carcinomas, arguing for the expression of different degrees of EpCAMMF and EpCAMMT variants across the most important tumour entities. Future studies evaluating the prognostic and predictive role of these variants in human malignancies, especially in patients treated with EpCAM-specific antibodies, are clearly warranted.
Collapse
Affiliation(s)
- Dominic Fong
- Tyrolean Cancer Research Institute, , Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|