1
|
Li H, Aggarwal A, Toro P, Fu P, Badve SS, Cuzick J, Madabhushi A, Thorat MA. A prognostic and predictive computational pathology immune signature for ductal carcinoma in situ: retrospective results from a cohort within the UK/ANZ DCIS trial. Lancet Digit Health 2024; 6:e562-e569. [PMID: 38987116 DOI: 10.1016/s2589-7500(24)00116-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/21/2024] [Accepted: 05/23/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND The density of tumour-infiltrating lymphocytes (TILs) could be prognostic in ductal carcinoma in situ (DCIS). However, manual TIL quantification is time-consuming and suffers from interobserver and intraobserver variability. In this study, we developed a TIL-based computational pathology biomarker and evaluated its association with the risk of recurrence and benefit of adjuvant treatment in a clinical trial cohort. METHODS In this retrospective cohort study, a computational pathology pipeline was developed to generate a TIL-based biomarker (CPath TIL categories). Subsequently, the signature underwent a masked independent validation on H&E-stained whole-section images of 755 patients with DCIS from the UK/ANZ DCIS randomised controlled trial. Specifically, continuous biomarker CPath TIL score was calculated as the average TIL density in the DCIS microenvironment and dichotomised into binary biomarker CPath TIL categories (CPath TIL-high vs CPath TIL-low) using the median value as a cutoff. The primary outcome was ipsilateral breast event (IBE; either recurrence of DCIS [DCIS-IBE] or invasive progression [I-IBE]). The Cox proportional hazards model was used to estimate the hazard ratio (HR). FINDINGS CPath TIL-score was evaluable in 718 (95%) of 755 patients (151 IBEs). Patients with CPath TIL-high DCIS had a greater risk of IBE than those with CPath TIL-low DCIS (HR 2·10 [95% CI 1·39-3·18]; p=0·0004). The risk of I-IBE was greater in patients with CPath TIL-high DCIS than those with CPath TIL-low DCIS (3·09 [1·56-6·14]; p=0·0013), and the risk of DCIS-IBE was non-significantly higher in those with CPath TIL-high DCIS (1·61 [0·95-2·72]; p=0·077). A significant interaction (pinteraction=0·025) between CPath TIL categories and radiotherapy was observed with a greater magnitude of radiotherapy benefit in preventing IBE in CPath TIL-high DCIS (0·32 [0·19-0·54]) than CPath TIL-low DCIS (0·40 [0·20-0·81]). INTERPRETATION High TIL density is associated with higher recurrence risk-particularly of invasive recurrence-and greater radiotherapy benefit in patients with DCIS. Our TIL-based computational pathology signature has a prognostic and predictive role in DCIS. FUNDING National Cancer Institute under award number U01CA269181, Cancer Research UK (C569/A12061; C569/A16891), and the Breast Cancer Research Foundation, New York (NY, USA).
Collapse
Affiliation(s)
- Haojia Li
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Arpit Aggarwal
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Paula Toro
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Pingfu Fu
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sunil S Badve
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute, Atlanta, GA, USA
| | - Jack Cuzick
- Centre for Cancer Screening, Prevention and Early Diagnosis, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Anant Madabhushi
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA; Joseph Maxwell Cleland Atlanta VA Medical Center, Atlanta, GA, USA.
| | - Mangesh A Thorat
- Centre for Cancer Screening, Prevention and Early Diagnosis, Wolfson Institute of Population Health, Queen Mary University of London, London, UK; School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK; Breast Surgery, Homerton University Hospital, London, UK; Breast Surgery, Guy's Hospital, Great Maze Pond, London, UK.
| |
Collapse
|
2
|
Gerashchenko T, Frolova A, Patysheva M, Fedorov A, Stakheyeva M, Denisov E, Cherdyntseva N. Breast Cancer Immune Landscape: Interplay Between Systemic and Local Immunity. Adv Biol (Weinh) 2024; 8:e2400140. [PMID: 38727796 DOI: 10.1002/adbi.202400140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Indexed: 07/13/2024]
Abstract
Breast cancer (BC) is one of the most common malignancies in women worldwide. Numerous studies in immuno-oncology and successful trials of immunotherapy have demonstrated the causal role of the immune system in cancer pathogenesis. The interaction between the tumor and the immune system is known to have a dual nature. Despite cytotoxic lymphocyte activity against transformed cells, a tumor can escape immune surveillance and leverage chronic inflammation to maintain its own development. Research on antitumor immunity primarily focuses on the role of the tumor microenvironment, whereas the systemic immune response beyond the tumor site is described less thoroughly. Here, a comprehensive review of the formation of the immune profile in breast cancer patients is offered. The interplay between systemic and local immune reactions as self-sustaining mechanism of tumor progression is described and the functional activity of the main cell populations related to innate and adaptive immunity is discussed. Additionally, the interaction between different functional levels of the immune system and their contribution to the development of the pro- or anti-tumor immune response in BC is highlighted. The presented data can potentially inform the development of new immunotherapy strategies in the treatment of patients with BC.
Collapse
Affiliation(s)
- Tatiana Gerashchenko
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Anastasia Frolova
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Researc, Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
- Tomsk State University, 36 Lenin Ave., Tomsk, 634050, Russia
| | - Marina Patysheva
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Anton Fedorov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Marina Stakheyeva
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Researc, Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Evgeny Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Nadezda Cherdyntseva
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Researc, Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
- Tomsk State University, 36 Lenin Ave., Tomsk, 634050, Russia
| |
Collapse
|
3
|
Gonçalves IV, Pinheiro-Rosa N, Torres L, Oliveira MDA, Rapozo Guimarães G, Leite CDS, Ortega JM, Lopes MTP, Faria AMC, Martins MLB, Felicori LF. Dynamic changes in B cell subpopulations in response to triple-negative breast cancer development. Sci Rep 2024; 14:11576. [PMID: 38773133 PMCID: PMC11109097 DOI: 10.1038/s41598-024-60243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/19/2024] [Indexed: 05/23/2024] Open
Abstract
Despite presenting a worse prognosis and being associated with highly aggressive tumors, triple-negative breast cancer (TNBC) is characterized by the higher frequency of tumor-infiltrating lymphocytes, which have been implicated in better overall survival and response to therapy. Though recent studies have reported the capacity of B lymphocytes to recognize overly-expressed normal proteins, and tumor-associated antigens, how tumor development potentially modifies B cell response is yet to be elucidated. Our findings reveal distinct effects of 4T1 and E0771 murine tumor development on B cells in secondary lymphoid organs. Notably, we observe a significant expansion of total B cells and plasma cells in the tumor-draining lymph nodes (tDLNs) as early as 7 days after tumor challenge in both murine models, whereas changes in the spleen are less pronounced. Surprisingly, within the tumor microenvironment (TME) of both models, we detect distinct B cell subpopulations, but tumor development does not appear to cause major alterations in their frequency over time. Furthermore, our investigation into B cell regulatory phenotypes highlights that the B10 Breg phenotype remains unaffected in the evaluated tissues. Most importantly, we identified an increase in CD19 + LAG-3 + cells in tDLNs of both murine models. Interestingly, although CD19 + LAG-3 + cells represent a minor subset of total B cells (< 3%) in all evaluated tissues, most of these cells exhibit elevated expression of IgD, suggesting that LAG-3 may serve as an activation marker for B cells. Corroborating with these findings, we detected distinct cell cycle and proliferation genes alongside LAG-3 analyzing scRNA-Seq data from a cohort of TNBC patients. More importantly, our study suggests that the presence of LAG-3 B cells in breast tumors could be associated with a good prognosis, as patients with higher levels of LAG-3 B cell transcripts had a longer progression-free interval (PFI). This novel insight could pave the way for targeted therapies that harness the unique properties of LAG-3 + B cells, potentially offering new avenues for improving patient outcomes in TNBC. Further research is warranted to unravel the mechanistic pathways of these cells and to validate their prognostic value in larger, diverse patient cohorts.
Collapse
Affiliation(s)
- Igor Visconte Gonçalves
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Natália Pinheiro-Rosa
- NYU Grossman School of Medicine, NYU Langone Health, New York University, 550 1st Ave, New York, NY, 10016, USA
| | - Lícia Torres
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Mariana de Almeida Oliveira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Gabriela Rapozo Guimarães
- Instituto Nacional de Câncer, Ministério da Saúde, Coordenação de Pesquisa, Laboratório de Bioinformática e Biologia Computacional - Rua André Cavalcanti, 37, 1 Andar, Centro, Rio de Janeiro, RJ, 20231050, Brasil
| | - Christiana da Silva Leite
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - José Miguel Ortega
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Miriam Teresa Paz Lopes
- Department of Pharmacology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Ana Maria Caetano Faria
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Mariana Lima Boroni Martins
- Instituto Nacional de Câncer, Ministério da Saúde, Coordenação de Pesquisa, Laboratório de Bioinformática e Biologia Computacional - Rua André Cavalcanti, 37, 1 Andar, Centro, Rio de Janeiro, RJ, 20231050, Brasil
| | - Liza Figueiredo Felicori
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
4
|
Akinsipe T, Mohamedelhassan R, Akinpelu A, Pondugula SR, Mistriotis P, Avila LA, Suryawanshi A. Cellular interactions in tumor microenvironment during breast cancer progression: new frontiers and implications for novel therapeutics. Front Immunol 2024; 15:1302587. [PMID: 38533507 PMCID: PMC10963559 DOI: 10.3389/fimmu.2024.1302587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/16/2024] [Indexed: 03/28/2024] Open
Abstract
The breast cancer tumor microenvironment (TME) is dynamic, with various immune and non-immune cells interacting to regulate tumor progression and anti-tumor immunity. It is now evident that the cells within the TME significantly contribute to breast cancer progression and resistance to various conventional and newly developed anti-tumor therapies. Both immune and non-immune cells in the TME play critical roles in tumor onset, uncontrolled proliferation, metastasis, immune evasion, and resistance to anti-tumor therapies. Consequently, molecular and cellular components of breast TME have emerged as promising therapeutic targets for developing novel treatments. The breast TME primarily comprises cancer cells, stromal cells, vasculature, and infiltrating immune cells. Currently, numerous clinical trials targeting specific TME components of breast cancer are underway. However, the complexity of the TME and its impact on the evasion of anti-tumor immunity necessitate further research to develop novel and improved breast cancer therapies. The multifaceted nature of breast TME cells arises from their phenotypic and functional plasticity, which endows them with both pro and anti-tumor roles during tumor progression. In this review, we discuss current understanding and recent advances in the pro and anti-tumoral functions of TME cells and their implications for developing safe and effective therapies to control breast cancer progress.
Collapse
Affiliation(s)
- Tosin Akinsipe
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, United States
| | - Rania Mohamedelhassan
- Department of Chemical Engineering, College of Engineering, Auburn University, Auburn, AL, United States
| | - Ayuba Akinpelu
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Satyanarayana R. Pondugula
- Department of Chemical Engineering, College of Engineering, Auburn University, Auburn, AL, United States
| | - Panagiotis Mistriotis
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - L. Adriana Avila
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, United States
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
5
|
Reznitsky FM, Jensen JD, Knoop A, Jensen MB, Laenkholm AV. Evaluation of tumor-infiltrating lymphocytes, PD-L1, and PIK3CA mutations and association with prognosis in HER2-positive early stage breast cancer. Acta Oncol 2023; 62:1913-1920. [PMID: 37961947 DOI: 10.1080/0284186x.2023.2279685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Tumor-infiltrating lymphocytes (TILs) have predictive and prognostic potential in HER2-positive breast cancer (HER2+ BC). Programmed death-ligand 1 (PD-L1) is an immune checkpoint protein, with important roles in the tumor microenvironment, possibly in both tumor and immune cells (ICs), providing rationale for targeting with immune-checkpoint therapy. PIK3CA mutations are oncogenic, activating mutations, which are also of relevance in breast cancer. Herein, we investigate the frequency of TILs, PD-L1 and PIK3CA mutations, and whether these factors influence outcome, in early HER2+ BC. MATERIALS AND METHODS Stromal TILs (sTILs) and PD-L1 expressions were assessed using full tumor-sections and TMA, respectively, from 236 patients with HER2+ BC. TILs were assessed, according to a standardized method, as continuous measurement and according to three predefined categories: low (0-10%), intermediate (11-59%), and high (60-100%). PD-L1 immunohistochemistry (Ventana SP263) was evaluated and positivity defined as ≥1% expression in tumor and ICs. PIK3CA mutations (exons 9 and 20) were determined by pyrosequencing. RESULTS Fourteen percent of patients had high sTILs and 25% had a PIK3CA mutation. PD-L1 expression was more frequent in ICs (68%) than tumor cells (24%). Patients with low sTILs had a significantly worse overall survival (multivariate: HR 2.80; 95% CI 1.36-5.78; p = .02). DISCUSSION Patients with low sTILs had a significantly poorer survival, despite adequate treatment with adjuvant therapy.
Collapse
Affiliation(s)
- Frances M Reznitsky
- Department of Surgical Pathology, Zealand University Hospital, Roskilde, Denmark
- Department of Pathology, Herlev and Gentofte Hospital, Herlev, Denmark
| | | | - Ann Knoop
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Maj-Britt Jensen
- Danish Breast Cancer Group, Copenhagen University Hospital, Copenhagen, Denmark
| | | |
Collapse
|
6
|
Jatoi I, Shaaban AM, Jou E, Benson JR. The Biology and Management of Ductal Carcinoma in Situ of the Breast. Curr Probl Surg 2023; 60:101361. [PMID: 37596033 DOI: 10.1016/j.cpsurg.2023.101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/27/2023] [Indexed: 08/20/2023]
Affiliation(s)
- Ismail Jatoi
- Division of Surgical Oncology and Endocrine Surgery, University of Texas Health Science Center, San Antonio, TX.
| | - Abeer M Shaaban
- Department of Cellular Pathology, Queen Elizabeth Hospital Birmingham and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Eric Jou
- Oxford University Hospitals NHS Trust, University of Oxford, Oxford, UK
| | - John R Benson
- Addenbrooke's Hospital, University of Cambridge, Cambridge; School of Medicine, Anglia Ruskin University, Cambridge and Chelmsford, UK
| |
Collapse
|
7
|
Bernhardt SM, Mitchell E, Stamnes S, Hoffmann RJ, Calhoun A, Klug A, Russell TD, Pennock ND, Walker JM, Schedin P. Isogenic Mammary Models of Intraductal Carcinoma Reveal Progression to Invasiveness in the Absence of a Non-Obligatory In Situ Stage. Cancers (Basel) 2023; 15:2257. [PMID: 37190184 PMCID: PMC10136757 DOI: 10.3390/cancers15082257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
In breast cancer, progression to invasive ductal carcinoma (IDC) involves interactions between immune, myoepithelial, and tumor cells. Development of IDC can proceed through ductal carcinoma in situ (DCIS), a non-obligate, non-invasive stage, or IDC can develop without evidence of DCIS and these cases associate with poorer prognosis. Tractable, immune-competent mouse models are needed to help delineate distinct mechanisms of local tumor cell invasion and prognostic implications. To address these gaps, we delivered murine mammary carcinoma cell lines directly into the main mammary lactiferous duct of immune-competent mice. Using two strains of immune-competent mice (BALB/c, C57BL/6), one immune-compromised (severe combined immunodeficiency; SCID) C57BL/6 strain, and six different murine mammary cancer cell lines (D2.OR, D2A1, 4T1, EMT6, EO771, Py230), we found early loss of ductal myoepithelial cell differentiation markers p63, α-smooth muscle actin, and calponin, and rapid formation of IDC in the absence of DCIS. Rapid IDC formation also occurred in the absence of adaptive immunity. Combined, these studies demonstrate that loss of myoepithelial barrier function does not require an intact immune system, and suggest that these isogenic murine models may prove a useful tool to study IDC in the absence of a non-obligatory DCIS stage-an under-investigated subset of poor prognostic human breast cancer.
Collapse
Affiliation(s)
- Sarah M. Bernhardt
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Elizabeth Mitchell
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Stephanie Stamnes
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Reuben J. Hoffmann
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrea Calhoun
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alex Klug
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Tanya D. Russell
- Center for Advancing Professional Excellence, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nathan D. Pennock
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Joshua M. Walker
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Pepper Schedin
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Young Women’s Breast Cancer Translational Program, University of Colorado Cancer Center, Aurora, CO 80045, USA
| |
Collapse
|
8
|
Li M, Quintana A, Alberts E, Hung MS, Boulat V, Ripoll MM, Grigoriadis A. B Cells in Breast Cancer Pathology. Cancers (Basel) 2023; 15:1517. [PMID: 36900307 PMCID: PMC10000926 DOI: 10.3390/cancers15051517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
B cells have recently become a focus in breast cancer pathology due to their influence on tumour regression, prognosis, and response to treatment, besides their contribution to antigen presentation, immunoglobulin production, and regulation of adaptive responses. As our understanding of diverse B cell subsets in eliciting both pro- and anti-inflammatory responses in breast cancer patients increases, it has become pertinent to address the molecular and clinical relevance of these immune cell populations within the tumour microenvironment (TME). At the primary tumour site, B cells are either found spatially dispersed or aggregated in so-called tertiary lymphoid structures (TLS). In axillary lymph nodes (LNs), B cell populations, amongst a plethora of activities, undergo germinal centre reactions to ensure humoral immunity. With the recent approval for the addition of immunotherapeutic drugs as a treatment option in the early and metastatic settings for triple-negative breast cancer (TNBC) patients, B cell populations or TLS may resemble valuable biomarkers for immunotherapy responses in certain breast cancer subgroups. New technologies such as spatially defined sequencing techniques, multiplex imaging, and digital technologies have further deciphered the diversity of B cells and the morphological structures in which they appear in the tumour and LNs. Thus, in this review, we comprehensively summarise the current knowledge of B cells in breast cancer. In addition, we provide a user-friendly single-cell RNA-sequencing platform, called "B singLe cEll rna-Seq browSer" (BLESS) platform, with a focus on the B cells in breast cancer patients to interrogate the latest publicly available single-cell RNA-sequencing data collected from diverse breast cancer studies. Finally, we explore their clinical relevance as biomarkers or molecular targets for future interventions.
Collapse
Affiliation(s)
- Mengyuan Li
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
| | | | - Elena Alberts
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
- Immunity and Cancer Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Miu Shing Hung
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
| | - Victoire Boulat
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
- Immunity and Cancer Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Mercè Martí Ripoll
- Immunology Unit, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Biosensing and Bioanalysis Group, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Anita Grigoriadis
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
- Breast Cancer Now Unit, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
| |
Collapse
|
9
|
Lam BM, Verrill C. Clinical Significance of Tumour-Infiltrating B Lymphocytes (TIL-Bs) in Breast Cancer: A Systematic Literature Review. Cancers (Basel) 2023; 15:cancers15041164. [PMID: 36831506 PMCID: PMC9953777 DOI: 10.3390/cancers15041164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Although T lymphocytes have been considered the major players in the tumour microenvironment to induce tumour regression and contribute to anti-tumour immunity, much less is known about the role of tumour-infiltrating B lymphocytes (TIL-Bs) in solid malignancies, particularly in breast cancer, which has been regarded as heterogeneous and much less immunogenic compared to other common tumours like melanoma, colorectal cancer and non-small cell lung cancer. Such paucity of research could translate to limited opportunities for this most common type of cancer in the UK to join the immunotherapy efforts in this era of precision medicine. Here, we provide a systematic literature review assessing the clinical significance of TIL-Bs in breast cancer. Articles published between January 2000 and April 2022 were retrieved via an electronic search of two databases (PubMed and Embase) and screened against pre-specified eligibility criteria. The majority of studies reported favourable prognostic and predictive roles of TIL-Bs, indicating that they could have a profound impact on the clinical outcome of breast cancer. Further studies are, however, needed to better define the functional role of B cell subpopulations and to discover ways to harness this intrinsic mechanism in the fight against breast cancer.
Collapse
Affiliation(s)
- Brian M. Lam
- Department of Oncology, University of Oxford, Oxford OX3 9DU, UK
- Correspondence:
| | - Clare Verrill
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
10
|
Akrida I, Mulita F. The clinical significance of HER2 expression in DCIS. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:16. [PMID: 36352293 DOI: 10.1007/s12032-022-01876-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/15/2022] [Indexed: 11/11/2022]
Abstract
HER2 is an established prognostic and predictive marker for patients with invasive breast cancer. The clinical and biological significance of HER2 overexpression in patients with ductal carcinoma in situ (DCIS) remains poorly defined. DCIS is a heterogeneous disease and some patients with DCIS will not progress to invasive breast cancer. However, clinically significant recurrence rates have been reported after breast-conserving surgery for DCIS and approximately half of these cases will be life-threatening invasive recurrences. Since the incidence of DCIS is rising due to the widespread use of screening mammography, there is robust interest in selecting high-risk DCIS patients that may benefit from adjuvant therapies. Molecular prognostic and predictive models in early invasive breast cancer help clinicians identify patients that will benefit from chemotherapy. Molecular subtyping and profiling could also be useful in treating DCIS patients. According to current practice guidelines, HER2 testing is not recommended in DCIS patients. Nevertheless, evidence suggests that HER2-positive DCIS cases may be associated with adverse clinicopathological parameters and increased recurrence rates. This review summarizes the existing body of evidence linking HER2 expression and ipsilateral breast cancer recurrence in DCIS. HER2, as well as its correlation with other clinicopathological markers might be a useful prognostic and predictive marker, helping clinical decision-making in DCIS patients.
Collapse
Affiliation(s)
- Ioanna Akrida
- Department of General Surgery, University General Hospital of Patras, Rion, Greece. .,Department of Anatomy-Histology-Embryology, University of Patras Medical School, 26504, Rion, Greece.
| | - Francesk Mulita
- Department of General Surgery, University General Hospital of Patras, Rion, Greece
| |
Collapse
|
11
|
Heterogeneity and Functions of Tumor-Infiltrating Antibody Secreting Cells: Lessons from Breast, Ovarian, and Other Solid Cancers. Cancers (Basel) 2022; 14:cancers14194800. [PMID: 36230721 PMCID: PMC9563085 DOI: 10.3390/cancers14194800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary B cells are gaining increasing recognition as important contributors to the tumor microenvironment, influencing, positively or negatively, tumor growth, patient survival, and response to therapies. Antibody secreting cells (ASCs) constitute a variable fraction of tumor-infiltrating B cells in most solid tumors, and they produce tumor-specific antibodies that can drive distinct immune responses depending on their isotypes and specificities. In this review, we discuss the current knowledge of the heterogeneity of ASCs infiltrating solid tumors and how both their canonical and noncanonical functions shape antitumor immunity, with a special emphasis on breast and ovarian cancers. Abstract Neglected for a long time in cancer, B cells and ASCs have recently emerged as critical actors in the tumor microenvironment, with important roles in shaping the antitumor immune response. ASCs indeed exert a major influence on tumor growth, patient survival, and response to therapies. The mechanisms underlying their pro- vs. anti-tumor roles are beginning to be elucidated, revealing the contributions of their secreted antibodies as well as of their emerging noncanonical functions. Here, concentrating mostly on ovarian and breast cancers, we summarize the current knowledge on the heterogeneity of tumor-infiltrating ASCs, we discuss their possible local or systemic origin in relation to their immunoglobulin repertoire, and we review the different mechanisms by which antibody (Ab) subclasses and isoforms differentially impact tumor cells and anti-tumor immunity. We also discuss the emerging roles of cytokines and other immune modulators produced by ASCs in cancer. Finally, we propose strategies to manipulate the tumor ASC compartment to improve cancer therapies.
Collapse
|
12
|
Badve SS, Cho S, Lu X, Cao S, Ghose S, Thike AA, Tan PH, Ocal IT, Generali D, Zanconati F, Harris AL, Ginty F, Gökmen-Polar Y. Tumor Infiltrating Lymphocytes in Multi-National Cohorts of Ductal Carcinoma In Situ (DCIS) of Breast. Cancers (Basel) 2022; 14:3916. [PMID: 36010908 PMCID: PMC9406008 DOI: 10.3390/cancers14163916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 01/25/2023] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) are prognostic in invasive breast cancer. However, their prognostic significance in ductal carcinoma in situ (DCIS) has been controversial. To investigate the prognostic role of TILs in DCIS outcome, we used different scoring methods for TILs in multi-national cohorts from Asian and European women. Self-described race was genetically confirmed using QC Infinium array combined with radmixture software. Stromal TILs, touching TILs, circumferential TILs, and hotspots were quantified on H&E-stained slides and correlated with the development of second breast cancer events (BCE) and other clinico-pathological variables. In univariate survival analysis, age older than 50 years, hormone receptor positivity and the presence of circumferential TILs were weakly associated with the absence of BCE at the 5-year follow-up in all cohorts (p < 0.03; p < 0.02; and p < 0.02, respectively, adjusted p = 0.11). In the multivariable analysis, circumferential TILs were an independent predictor of a better outcome (Wald test p = 0.01), whereas younger age was associated with BCE. Asian patients were younger with larger, higher grade, HR negative DCIS lesions, and higher TIL variables. The spatial arrangement of TILs may serve as a better prognostic indicator in DCIS cases than stromal TILs alone and may be added in guidelines for TILs evaluation in DCIS.
Collapse
Affiliation(s)
- Sunil S. Badve
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute, Atlanta, GA 30322, USA
| | - Sanghee Cho
- GE Global Research Center, Niskayuna, NY 12309, USA
| | - Xiaoyu Lu
- Center for Computational Biology and Bioinformatics, Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Sha Cao
- Center for Computational Biology and Bioinformatics, Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Soumya Ghose
- GE Global Research Center, Niskayuna, NY 12309, USA
| | - Aye Aye Thike
- Anatomical Pathology, Singapore General Hospital, Singapore 169856, Singapore
| | - Puay Hoon Tan
- Division of Pathology, Singapore General Hospital, Singapore 169856, Singapore
| | - Idris Tolgay Ocal
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix, AZ 85054, USA
| | - Daniele Generali
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Adrian L. Harris
- Cancer and Haematology Centre, Department of Oncology, Oxford University, Oxford OX3 7LE, UK
| | - Fiona Ginty
- GE Global Research Center, Niskayuna, NY 12309, USA
| | - Yesim Gökmen-Polar
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute, Atlanta, GA 30322, USA
| |
Collapse
|
13
|
Identification of Immune Cell Components in Breast Tissues by a Multiparametric Flow Cytometry Approach. Cancers (Basel) 2022; 14:cancers14163869. [PMID: 36010863 PMCID: PMC9406207 DOI: 10.3390/cancers14163869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The tumor microenvironment in breast cancer plays important roles in tumor development and treatment response, giving important information critical for disease management. Today, an analysis of the tumor microenvironment is included in routine histopathologic reporting for practical clinical application. This manuscript aimed to deepen the study of the tumor microenvironment, analyzing the immune cells in breast tumoral and benign pathologies. Indeed, using a deep immunophenotyping approach by flow cytometry, we have studied the immune cells at the level of breast tissues, identifying different immunophenotyping that could be useful in the diagnosis and follow up of breast pathologies. As possible targets are continually being discovered in the tumor microenvironment, a future approach to breast cancer diagnosis and therapy could likely combine cancer cell elimination and tumor microenvironment modulation. Abstract Immune cell components are able to infiltrate tumor tissues, and different reports described the presence of infiltrating immune cells (TILs) in several types of solid tumors, including breast cancer. The primary immune cell component cells are reported as a lymphocyte population mainly comprising the cytotoxic (CD8+) T cells, with varying proportions of helper (CD4+) T cells and CD19+ B cells, and rarely NK cells. In clinical practice, an expert pathologist commonly detects TILs areas in hematoxylin and eosin (H&E)-stained histological slides via light microscopy. Moreover, other more in-depth approaches could be used to better define the immunological component associated with tumor tissues. Using a multiparametric flow cytometry approach, we have studied the immune cells obtained from breast tumor tissues compared to benign breast pathologies. A detailed evaluation of immune cell components was performed on 15 and 14 biopsies obtained from breast cancer and fibroadenoma subjects, respectively. The percentage of tumor-infiltrating T lymphocytes was significantly higher in breast cancer patients compared to patients with fibroadenoma. Infiltrating helper T lymphocytes were increased in the case of malignant breast lesions, while cytotoxic T lymphocytes disclosed an opposite trend. In addition, our data suggest that the synergistic effect of the presence/activation of NK cells and NKT cells, in line with the data in the literature, determines the dampening of the immune response. Moreover, the lymphocyte-to-monocyte ratio was calculated and was completely altered in patients with breast cancer. Our approach could be a potent prognostic factor to be used in diagnostic/therapeutic purposes for the improvement of breast cancer patients’ management.
Collapse
|
14
|
Wu SL, Yu X, Mao X, Jin F. Prognostic value of tumor-infiltrating lymphocytes in DCIS: a meta-analysis. BMC Cancer 2022; 22:782. [PMID: 35843951 PMCID: PMC9290222 DOI: 10.1186/s12885-022-09883-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/12/2022] [Indexed: 11/25/2022] Open
Abstract
Background Tumor infiltrating lymphocytes (TILs) have been shown to be associated with the prognosis of breast ductal carcinoma in situ (DCIS). In this systematic review and meta-analysis, we investigated the role of TILs and TIL subsets in predicting the recurrence risk of DCIS. Method PubMed, Medline, Web of Science, Embase and Cochrane were searched to identify publications investigating the prognostic role of TILs in DCIS. After study screening, data extraction and risk of bias assessment, a meta-analysis was performed to assess the association between TILs (total TILs, CD4+, CD8+, FOXP3+, PD-L1+ TILs) and the risk of DCIS recurrence. Results A pooled analysis indicated that dense stromal TILs in DCIS were associated with a higher recurrence risk (HR 2.11 (95% CI 1.35–3.28)). Subgroup analysis showed that touching TILs (HR 4.73 (95% CI 2.28–9.80)) was more precise than the TIL ratio (HR 1.49 (95% CI 1.11–1.99)) in estimating DCIS recurrence risk. Moreover, the prognostic value of TILs seemed more suitable for patients who are diagnosed with DCIS and then undergo surgery (HR 2.77, (95% CI 1.26–6.07)) or surgery accompanied by radiotherapy (HR 2.26, (95% CI 1.29–3.95)), than for patients who receive comprehensive adjuvant therapies (HR 1.16, (95% CI 1.35–3.28)). Among subsets of TILs, dense stromal PD-L1+ TILs were valuable in predicting higher recurrence risk of DCIS. Conclusion This systematic review and meta-analysis suggested a non-favorable prognosis of TILs and stromal PD-L1+ TILs in DCIS and indicated an appropriate assessment method for TILs and an eligible population.
Collapse
Affiliation(s)
- Shuang-Ling Wu
- Department of Surgical Oncology and Breast Surgery, the First Affiliated Hospital of China Medical University, No. 155, North Nanjing Street, Shenyang, 110001, Liaoning Province, China
| | - Xinmiao Yu
- Department of Surgical Oncology and Breast Surgery, the First Affiliated Hospital of China Medical University, No. 155, North Nanjing Street, Shenyang, 110001, Liaoning Province, China
| | - Xiaoyun Mao
- Department of Surgical Oncology and Breast Surgery, the First Affiliated Hospital of China Medical University, No. 155, North Nanjing Street, Shenyang, 110001, Liaoning Province, China.
| | - Feng Jin
- Department of Surgical Oncology and Breast Surgery, the First Affiliated Hospital of China Medical University, No. 155, North Nanjing Street, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
15
|
Almekinders MM, Bismeijer T, Kumar T, Yang F, Thijssen B, van der Linden R, van Rooijen C, Vonk S, Sun B, Parra Cuentas ER, Wistuba II, Krishnamurthy S, Visser LL, Seignette IM, Hofland I, Sanders J, Broeks A, Love JK, Menegaz B, Wessels L, Thompson AM, de Visser KE, Hooijberg E, Lips E, Futreal A, Wesseling J. Comprehensive multiplexed immune profiling of the ductal carcinoma in situ immune microenvironment regarding subsequent ipsilateral invasive breast cancer risk. Br J Cancer 2022; 127:1201-1213. [PMID: 35768550 PMCID: PMC9519539 DOI: 10.1038/s41416-022-01888-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/17/2022] [Accepted: 06/07/2022] [Indexed: 12/25/2022] Open
Abstract
Background Ductal carcinoma in situ (DCIS) is treated to prevent subsequent ipsilateral invasive breast cancer (iIBC). However, many DCIS lesions will never become invasive. To prevent overtreatment, we need to distinguish harmless from potentially hazardous DCIS. We investigated whether the immune microenvironment (IME) in DCIS correlates with transition to iIBC. Methods Patients were derived from a Dutch population-based cohort of 10,090 women with pure DCIS with a median follow-up time of 12 years. Density, composition and proximity to the closest DCIS cell of CD20+ B-cells, CD3+CD8+ T-cells, CD3+CD8− T-cells, CD3+FOXP3+ regulatory T-cells, CD68+ cells, and CD8+Ki67+ T-cells was assessed with multiplex immunofluorescence (mIF) with digital whole-slide analysis and compared between primary DCIS lesions of 77 women with subsequent iIBC (cases) and 64 without (controls). Results Higher stromal density of analysed immune cell subsets was significantly associated with higher grade, ER negativity, HER-2 positivity, Ki67 ≥ 14%, periductal fibrosis and comedonecrosis (P < 0.05). Density, composition and proximity to the closest DCIS cell of all analysed immune cell subsets did not differ between cases and controls. Conclusion IME features analysed by mIF in 141 patients from a well-annotated cohort of pure DCIS with long-term follow-up are no predictors of subsequent iIBC, but do correlate with other factors (grade, ER, HER2 status, Ki-67) known to be associated with invasive recurrences. ![]()
Collapse
Affiliation(s)
- Mathilde M Almekinders
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Pathology, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.,Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tycho Bismeijer
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tapsi Kumar
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX, USA.,Department of Genetics, MD Anderson Cancer Center, Houston, TX, USA.,MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Fei Yang
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Bram Thijssen
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Rianne van der Linden
- Department of Pathology, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Charlotte van Rooijen
- Department of Pathology, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Shiva Vonk
- Department of Pathology, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.,Core Facility Molecular Pathology and Biobanking, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Baohua Sun
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Edwin R Parra Cuentas
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Lindy L Visser
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Iris M Seignette
- Department of Pathology, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Ingrid Hofland
- Core Facility Molecular Pathology and Biobanking, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Joyce Sanders
- Department of Pathology, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Annegien Broeks
- Core Facility Molecular Pathology and Biobanking, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Jason K Love
- Breast Surgical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Brian Menegaz
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Lodewyk Wessels
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | | | - Karin E de Visser
- Oncode Institute, Utrecht, The Netherlands.,Division of Tumour Biology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Erik Hooijberg
- Department of Pathology, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Esther Lips
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Andrew Futreal
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Jelle Wesseling
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands. .,Department of Pathology, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands. .,Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.
| | | |
Collapse
|
16
|
Ma M, Sun J, Liu Z, Ouyang S, Zhang Z, Zeng Z, Li J, Kang W. The Immune Microenvironment in Gastric Cancer: Prognostic Prediction. Front Oncol 2022; 12:836389. [PMID: 35574386 PMCID: PMC9096124 DOI: 10.3389/fonc.2022.836389] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Although therapeutic methods have been developed, gastric cancer (GC) still leads to high rates of mortality and morbidity and is the fourth leading cause of cancer-associated death and the fifth most common cancer worldwide. To understand the factors associated with the prognostic prediction of GC and to discover efficient therapeutic targets, previous studies on tumour pathogenesis have mainly focused on the cancer cells themselves; in recent years, a large number of studies have shown that cancer invasion and metastasis are the results of coevolution between cancer cells and the microenvironment. It seems that studies on the tumour microenvironment could help in prognostic prediction and identify potential targets for treating GC. In this review, we mainly introduce the research progress for prognostic prediction and the immune microenvironment in GC in recent years, focusing on cancer-associated fibroblasts (CAFs), tumour-associated macrophages (TAMs), and tumour-infiltrating lymphocytes (TILs) in GC, and discuss the possibility of new therapeutic targets for GC.
Collapse
Affiliation(s)
- Mingwei Ma
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Juan Sun
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Zhen Liu
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Siwen Ouyang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Zimu Zhang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Ziyang Zeng
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Jie Li
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Weiming Kang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
17
|
Solek J, Chrzanowski J, Cieslak A, Zielinska A, Piasecka D, Braun M, Sadej R, Romanska HM. Subtype-Specific Tumour Immune Microenvironment in Risk of Recurrence of Ductal Carcinoma In Situ: Prognostic Value of HER2. Biomedicines 2022; 10:1061. [PMID: 35625798 PMCID: PMC9138378 DOI: 10.3390/biomedicines10051061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/30/2022] [Indexed: 11/16/2022] Open
Abstract
Increasing evidence suggests that the significance of the tumour immune microenvironment (TIME) for disease prognostication in invasive breast carcinoma is subtype-specific but equivalent studies in ductal carcinoma in situ (DCIS) are limited. The purpose of this paper is to review the existing data on immune cell composition in DCIS in relation to the clinicopathological features and molecular subtype of the lesion. We discuss the value of infiltration by various types of immune cells and the PD-1/PD-L1 axis as potential markers of the risk of recurrence. Analysis of the literature available in PubMed and Medline databases overwhelmingly supports an association between densities of infiltrating immune cells, traits of immune exhaustion, the foci of microinvasion, and overexpression of HER2. Moreover, in several studies, the density of immune infiltration was found to be predictive of local recurrence as either in situ or invasive cancer in HER2-positive or ER-negative DCIS. In light of the recently reported first randomized DCIS trial, relating recurrence risk with overexpression of HER2, we also include a closing paragraph compiling the latest mechanistic data on a functional link between HER2 and the density/composition of TIME in relation to its potential value in the prognostication of the risk of recurrence.
Collapse
Affiliation(s)
- Julia Solek
- Department of Pathology, Chair of Oncology, Medical University of Lodz, 92-213 Lodz, Poland; (J.S.); (A.Z.); (M.B.)
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 90-419 Lodz, Poland; (J.C.); (A.C.)
| | - Jedrzej Chrzanowski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 90-419 Lodz, Poland; (J.C.); (A.C.)
| | - Adrianna Cieslak
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 90-419 Lodz, Poland; (J.C.); (A.C.)
| | - Aleksandra Zielinska
- Department of Pathology, Chair of Oncology, Medical University of Lodz, 92-213 Lodz, Poland; (J.S.); (A.Z.); (M.B.)
| | - Dominika Piasecka
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Marcin Braun
- Department of Pathology, Chair of Oncology, Medical University of Lodz, 92-213 Lodz, Poland; (J.S.); (A.Z.); (M.B.)
| | - Rafal Sadej
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Hanna M. Romanska
- Department of Pathology, Chair of Oncology, Medical University of Lodz, 92-213 Lodz, Poland; (J.S.); (A.Z.); (M.B.)
| |
Collapse
|
18
|
Hypoxia and anaerobic metabolism relate with immunologically cold breast cancer and poor prognosis. Breast Cancer Res Treat 2022; 194:13-23. [PMID: 35482128 DOI: 10.1007/s10549-022-06609-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/13/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE Hypoxia-Inducible Factor HIF1α and lactate dehydrogenase LDHA drive anaerobic tumor metabolism and define clinical aggressiveness. We investigated their expression in breast cancer and their role in immune response and prognosis of breast cancer. METHODS Tissue material from 175 breast cancer patients treated in a prospective study were analyzed with immunohistochemistry for HIF1α and LDH5 expression, in parallel with the tumor-infiltrating lymphocyte TIL-density and tertiary lymphoid structure TLS-density. RESULTS High LDH5 expression was noted in 48/175 tumors, and this was related to HIF1α overexpression (p < 0.0001), triple-negative TNBC histology (p = 0.01), poor disease-specific survival (p < 0.007), metastasis (p < 0.01), and locoregional recurrence (p = 0.03). High HIF1α expression, noted in 39/175 cases, was linked with low steroid receptor expression (p < 0.05), her2 overexpression (p = 0.01), poor survival (p < 0.04), and high metastasis rates (p < 0.004). High TIL-density in the invading tumor front (TILinv) was linked with low LDH5 and HIF expression (p < 0.0001) and better prognosis (p < 0.02). High TIL-density in inner tumor areas (TILinn) was significantly linked with TNBC. Multivariate analysis showed that PgR-status (p = 0.003, HR 2.99, 95% CI 1.4-6.0), TILinv (p = 0.02, HR 2.31, 95% CI 1.1-4.8), LDH5 (p = 0.01, HR 2.43, 95% CI 1.2-5.0), N-stage (p = 0.04, HR 2.42, 95% CI 1.0-5.8), T-stage (p = 0.04, HR 2.31, 95% CI 1.0-5.1), and her2 status (p = 0.05, HR 2.01, 95% CI 1.0-4.2) were independent variables defining death events. CONCLUSION Overexpression of LDH5, an event directly related to HIF1α overexpression, characterizes a third of breast tumors, which is more frequent in TNBC. Both HIF1α and LDH5 define cold breast cancer microenvironment and poor prognosis. A rational is provided to study further whether metabolic manipulations targeting HIF and LDH5 may enhance the antitumor immune response in breast cancer.
Collapse
|
19
|
Wilson GM, Dinh P, Pathmanathan N, Graham JD. Ductal Carcinoma in Situ: Molecular Changes Accompanying Disease Progression. J Mammary Gland Biol Neoplasia 2022; 27:101-131. [PMID: 35567670 PMCID: PMC9135892 DOI: 10.1007/s10911-022-09517-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/13/2022] [Indexed: 10/26/2022] Open
Abstract
Ductal carcinoma in situ (DCIS) is a non-obligate precursor of invasive ductal carcinoma (IDC), whereby if left untreated, approximately 12% of patients develop invasive disease. The current standard of care is surgical removal of the lesion, to prevent potential progression, and radiotherapy to reduce risk of recurrence. There is substantial overtreatment of DCIS patients, considering not all DCIS lesions progress to invasive disease. Hence, there is a critical imperative to better predict which DCIS lesions are destined for poor outcome and which are not, allowing for tailored treatment. Active surveillance is currently being trialed as an alternative management practice, but this approach relies on accurately identifying cases that are at low risk of progression to invasive disease. Two DCIS-specific genomic profiling assays that attempt to distinguish low and high-risk patients have emerged, but imperfections in risk stratification coupled with a high price tag warrant the continued search for more robust and accessible prognostic biomarkers. This search has largely turned researchers toward the tumor microenvironment. Recent evidence suggests that a spectrum of cell types within the DCIS microenvironment are genetically and phenotypically altered compared to normal tissue and play critical roles in disease progression. Uncovering the molecular mechanisms contributing to DCIS progression has provided optimism for the search for well-validated prognostic biomarkers that can accurately predict the risk for a patient developing IDC. The discovery of such markers would modernize DCIS management and allow tailored treatment plans. This review will summarize the current literature regarding DCIS diagnosis, treatment, and pathology.
Collapse
Affiliation(s)
- Gemma M Wilson
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, 2145, Australia
| | - Phuong Dinh
- Westmead Breast Cancer Institute, Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Nirmala Pathmanathan
- Westmead Breast Cancer Institute, Westmead Hospital, Westmead, NSW, 2145, Australia
| | - J Dinny Graham
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, 2145, Australia.
- Westmead Breast Cancer Institute, Westmead Hospital, Westmead, NSW, 2145, Australia.
| |
Collapse
|
20
|
Bitsouni V, Tsilidis V. Mathematical modeling of tumor-immune system interactions: the effect of rituximab on breast cancer immune response. J Theor Biol 2022; 539:111001. [PMID: 34998860 DOI: 10.1016/j.jtbi.2021.111001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/25/2021] [Indexed: 12/11/2022]
Abstract
tBregs are a newly discovered subcategory of B regulatory cells, which are generated by breast cancer, resulting in the increase of Tregs and therefore in the death of NK cells. In this study, we use a mathematical and computational approach to investigate the complex interactions between the aforementioned cells as well as CD8+ T cells, CD4+ T cells and B cells. Furthermore, we use data fitting to prove that the functional response regarding the lysis of breast cancer cells by NK cells has a ratio-dependent form. Additionally, we include in our model the concentration of rituximab - a monoclonal antibody that has been suggested as a potential breast cancer therapy - and test its effect, when the standard, as well as experimental dosages, are administered.
Collapse
Affiliation(s)
- Vasiliki Bitsouni
- Department of Mathematics, National and Kapodistrian University of Athens, Panepistimioupolis, GR-15784 Athens, Greece; School of Science and Technology, Hellenic Open University, 18 Parodos Aristotelous Str., GR-26335 Patras, Greece.
| | - Vasilis Tsilidis
- School of Science and Technology, Hellenic Open University, 18 Parodos Aristotelous Str., GR-26335 Patras, Greece.
| |
Collapse
|
21
|
Yu J, Li Q, Zhang H, Meng Y, Liu YF, Jiang H, Ma C, Liu F, Fang X, Li J, Feng X, Shao C, Bian Y, Lu J. Contrast-enhanced computed tomography radiomics and multilayer perceptron network classifier: an approach for predicting CD20 + B cells in patients with pancreatic ductal adenocarcinoma. Abdom Radiol (NY) 2022; 47:242-253. [PMID: 34708252 DOI: 10.1007/s00261-021-03285-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/11/2021] [Accepted: 09/11/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE To develop and validate a machine-learning classifier based on contrast-enhanced computed tomography (CT) for the preoperative prediction of CD20+ B lymphocyte expression in patients with pancreatic ductal adenocarcinoma (PDAC). METHODS Overall, 189 patients with PDAC (n = 132 and n = 57 in the training and validation sets, respectively) underwent immunohistochemistry and radiomics feature extraction. The X-tile software was used to stratify them into groups with 'high' and 'low' CD20+ B lymphocyte expression levels. For each patient, 1409 radiomic features were extracted from volumes of interest and reduced using variance analysis and Spearman correlation analysis. A multilayer perceptron (MLP) network classifier was developed using the training and validation set. Model performance was determined by its discriminative ability, calibration, and clinical utility. RESULTS A log-rank test showed that the patients with high CD20+ B expression had significantly longer survival than those with low CD20+ B expression. The prediction model showed good discrimination in both the training and validation sets. For the training set, the area under the curve (AUC), sensitivity, specificity, accuracy, positive predictive value, and negative predictive value were 0.82 (95% CI 0.74-0.89), 92.42%, 57.58%, 0.75, 0.69, and 0.88, respectively; whereas these values for the validation set were 0.84 (95% CI 0.72-0.93), 86.21%, 78.57%, 0.83, 0.81, and 0.85, respectively. CONCLUSION The MLP network classifier based on contrast-enhanced CT can accurately predict CD20+ B expression in patients with PDAC.
Collapse
Affiliation(s)
- Jieyu Yu
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Qi Li
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Hao Zhang
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Yinghao Meng
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Yan Fang Liu
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hui Jiang
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chao Ma
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Fang Liu
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Xu Fang
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Jing Li
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Xiaochen Feng
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Chengwei Shao
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China
| | - Yun Bian
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China.
| | - Jianping Lu
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai, 200434, China.
| |
Collapse
|
22
|
Niwińska A, Olszewski WP. The role of stromal immune microenvironment in the progression of ductal carcinoma in situ (DCIS) to invasive breast cancer. Breast Cancer Res 2021; 23:118. [PMID: 34952631 PMCID: PMC8710011 DOI: 10.1186/s13058-021-01494-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022] Open
Abstract
Aim The first aim of the study was to compare the scores and types of stromal immune cells in 30 patients with primary DCIS and in the same patients after invasive breast recurrence in order to assess possible differences in both during tumor progression. The second aim was to evaluate possible differences in stromal cells of 30 patients with primary DCIS before progression and in the control group of 11 DCIS patients without recurrence during long-term follow-up. Material and methods Evaluation of tumor-infiltrating lymphocytes (TILs) and immunohistochemical stains for immune cell markers CD4, CD8, CD20, CD138, FOXP3, CD163 and TGF beta was performed on the stroma of primary DCIS before progression, invasive breast cancer of the same patients after progression and DCIS without progression. Results The comparison of stromal cells in 30 patients with initial DCIS and its invasive recurrence revealed an increased level of CD20 + immune cells (median score 5% vs. 17%, respectively, p < 0.001) and CD163 + cells (median score 1% vs. 5%, respectively, p < 0.001) in invasive breast cancer. The comparison of stromal cells in 30 patients with initial DCIS before recurrence and the control group of 11 patients with DCIS without recurrence showed statistically significant difference for CD138 + cells, which were more prevalent in patients with worse prognosis (median score 0 vs. 2%, respectively, p < 0.001). No similar relationship was found for the other tested cells as well as for TGF-beta. Conclusions CD138 + immune cells that were more prevalent in patients with a worse prognosis should be explored in further studies to confirm or exclude their role as a potential biological marker of DCIS invasive recurrence. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-021-01494-9.
Collapse
|
23
|
Kim NI, Park MH, Lee JS. Associations of B7-H3 and B7-H4 Expression in Ductal Carcinoma In Situ of the Breast With Clinicopathologic Features and T-Cell Infiltration. Appl Immunohistochem Mol Morphol 2021; 28:767-775. [PMID: 31714284 DOI: 10.1097/pai.0000000000000817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
B7-H3 and B7-H4 play an inhibitory role in T-cell function by limiting proliferation and cytokine production. Information about B7-H3 and B7-H4 expression in ductal carcinoma in situ (DCIS) remains uncertain. The objective of this study was to evaluate the expression levels of B7-H3 and B7-H4 in DCIS and their associations with clinicopathologic features and T-cell infiltration. B7-H3 and B7-H4 mRNA and protein expression levels in 8 pairs of DCIS tissues and matched normal adjacent tissues were examined by RNAscope in situ hybridization and immunohistochemistry analysis. Immunohistochemical staining of B7-H3, B7-H4, CD3, and CD8 was performed for 79 DCIS samples using tissue microarray. RNAscope in situ hybridization and immunohistochemistry analysis revealed that expression levels of B7-H3 and B7-H4 in DCIS tissues were higher than those in corresponding normal tissues. B7-H3 and B7-H4 mRNA and protein appeared to be mainly expressed in DCIS carcinoma cells. High B7-H3 and B7-H4 expression was observed in 58 (73.4%) and 62 (78.5%) cases with DCIS, respectively. High B7-H3 expression was significantly associated with high-nuclear grade and presence of comedo-type necrosis (both P<0.05). B7-H3 expression in HR/HER2 subtype was higher than that in HR/HER2 subtype (P<0.05). B7-H3 and B7-H4 expression levels were negatively related to the density of CD3 and CD8 T-cell infiltrates. B7-H3 and B7-H4 may play an important role in immune surveillance mechanisms of DCIS. They might be useful targets to develop immune-based therapy to alter or prevent DCIS progression.
Collapse
Affiliation(s)
| | - Min Ho Park
- Surgery, Chonnam National University Medical School, Gwangju, South Korea
| | | |
Collapse
|
24
|
Danforth DN. The Role of Chronic Inflammation in the Development of Breast Cancer. Cancers (Basel) 2021; 13:3918. [PMID: 34359821 PMCID: PMC8345713 DOI: 10.3390/cancers13153918] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammation contributes to the malignant transformation of several malignancies and is an important component of breast cancer. The role of chronic inflammation in the initiation and development of breast cancer from normal breast tissue, however, is unclear and needs to be clarified. A review of the literature was conducted to define the chronic inflammatory processes in normal breast tissue at risk for breast cancer and in breast cancer, including the role of lymphocyte and macrophage infiltrates, chronic active adipocytes and fibroblasts, and processes that may promote chronic inflammation including the microbiome and factors related to genomic abnormalities and cellular injury. The findings indicate that in healthy normal breast tissue there is systemic evidence to suggest inflammatory changes are present and associated with breast cancer risk, and adipocytes and crown-like structures in normal breast tissue may be associated with chronic inflammatory changes. The microbiome, genomic abnormalities, and cellular changes are present in healthy normal breast tissue, with the potential to elicit inflammatory changes, while infiltrating lymphocytes are uncommon in these tissues. Chronic inflammatory changes occur prominently in breast cancer tissues, with important contributions from tumor-infiltrating lymphocytes and tumor-associated macrophages, cancer-associated adipocytes and crown-like structures, and cancer-associated fibroblasts, while the microbiome and DNA damage may serve to promote inflammatory events. Together, these findings suggest that chronic inflammation may play a role in influencing the initiation, development and conduct of breast cancer, although several chronic inflammatory processes in breast tissue may occur later in breast carcinogenesis.
Collapse
Affiliation(s)
- David N Danforth
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
Diagnostic and prognostic value of tumor-infiltrating B cells in lymph node metastases of papillary thyroid carcinoma. Virchows Arch 2021; 479:947-959. [PMID: 34148127 DOI: 10.1007/s00428-021-03137-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/18/2021] [Accepted: 06/03/2021] [Indexed: 10/21/2022]
Abstract
Lymph node metastases are strongly associated with unfavorable prognosis in papillary thyroid carcinoma (PTC) patients. However, there are few sensitive or specific indicators that can diagnose or predict lymph node metastases in PTC. The objective of our study was to identify reliable indicators for the diagnosis and prediction of lymph node metastases of PTC. The PTC data set was obtained from The Cancer Genome Atlas (TCGA) cohort. Information on tumor-infiltrating immune cells in PTC was acquired using single-sample gene set enrichment analysis (ssGSEA). Then, the progression-free survival (PFS) rates of PTC patients were evaluated by Kaplan-Meier curves. A tissue microarray including 58 normal thyroid tissues and 57 PTC tissues was processed for CD19 immunohistochemistry staining. Finally, evaluation of phenotype permutations was performed using gene set enrichment analysis (GSEA). There was an appreciable association between immune infiltration and lymph node metastases in PTC. Among those immune cells, B cells and cytotoxic cells showed significant predictive accuracy for lymph node metastases in PTC. Tumor-infiltrating B cells and NK cells were associated with favorable prognosis, while tumor-associated NK CD56bright cells were correlated with poor prognosis in PTC patients. IHC analyses of PTC further confirmed a notably negative correlation between B cell infiltration and lymph node metastases in PTC. Additionally, mutations in BRAF, a dominant cause of tumor mutation burden (TMB), were positively correlated with reduced B cell infiltration and lymph node metastases in PTC. GSEA revealed that epithelial-mesenchymal transition, IL-6/JAK/STAT3 signaling, the inflammatory response, and TNF-α signaling via the NFκB pathway were remarkably suppressed pathways in patients with BRAF mutations. Tumor-associated lymphocytic infiltration, especially B cell infiltration, provides diagnostic and prognostic value for lymph node metastases in PTC.
Collapse
|
26
|
Qin Y, Peng F, Ai L, Mu S, Li Y, Yang C, Hu Y. Tumor-infiltrating B cells as a favorable prognostic biomarker in breast cancer: a systematic review and meta-analysis. Cancer Cell Int 2021; 21:310. [PMID: 34118931 PMCID: PMC8199375 DOI: 10.1186/s12935-021-02004-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 06/01/2021] [Indexed: 01/01/2023] Open
Abstract
Background Tumor-infiltrating B lymphocytes (TIL-Bs) is a heterogeneous population of lymphocytes. The prognostic value of TIL-Bs in patients with breast cancer remains controversial. Here we conducted this meta-analysis to clarify the association of TIL-Bs with outcomes of patients with breast cancer. Methods We searched PubMed, Embase, and Web of Science to identify relevant studies assessing the prognostic significance of TIL-Bs in patients with breast cancer. Fixed- or random-effects models were used to evaluate the pooled hazard ratios (HRs) for overall survival (OS), breast cancer-specific survival (BCSS), disease-free survival (DFS), and relapse-free survival (RFS) in breast cancer. Results
A total of 8 studies including 2628 patients were included in our study. Pooled analyses revealed that high level of TIL-Bs was associated with longer OS (pooled HR = 0.42, 95% CI 0.24–0.60), BCSS (pooled HR = 0.66, 95% CI 0.47–0.85), and DFS/RFS (pooled HR = 0.41, 95% CI 0.27–0.55). Conclusions This meta-analysis suggests that TIL-Bs could be a promising prognostic marker for breast cancer. Novel therapeutic strategies for breast cancer treatment could be developed by enhancement of B cell-mediated antitumor immunity. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02004-9.
Collapse
Affiliation(s)
- You Qin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fei Peng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Hubei, 430022, Wuhan, China
| | - Lisha Ai
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Hubei, 430022, Wuhan, China.
| | - Shidai Mu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Hubei, 430022, Wuhan, China
| | - Yuting Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chensu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Hubei, 430022, Wuhan, China.
| |
Collapse
|
27
|
Kinker GS, Vitiello GAF, Ferreira WAS, Chaves AS, Cordeiro de Lima VC, Medina TDS. B Cell Orchestration of Anti-tumor Immune Responses: A Matter of Cell Localization and Communication. Front Cell Dev Biol 2021; 9:678127. [PMID: 34164398 PMCID: PMC8215448 DOI: 10.3389/fcell.2021.678127] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/27/2021] [Indexed: 01/06/2023] Open
Abstract
The immune system plays a crucial role in cancer development either by fostering tumor growth or destroying tumor cells, which has open new avenues for cancer immunotherapy. It was only over the last decade that the role of B cells in controlling anti-tumor immune responses in the tumor milieu has begun to be appreciated. B and plasma cells can exert anti-tumor effects through antibody-dependent cell cytotoxicity (ADCC) and activation of the complement cascade, even though their effector functions extend beyond the classical humoral immunity. In tumor tissues, B cells can be found in lymphoid aggregates, known as tertiary lymphoid structures (TLSs), well-organized non-encapsulated structures composed of immune and stromal cells. These structures reflect a process of lymphoid neogenesis occurring in peripheral tissues upon long-lasting exposure to inflammatory signals. The TLS provides an area of intense B cell antigen presentation that can lead to optimal T cell activation and effector functions, as well as the generation of effector B cells, which can be further differentiated in either antibody-secreting plasma cells or memory B cells. Of clinical interest, the crosstalk between B cells and antigen-experienced and exhausted CD8+ T cells within mature TLS was recently associated with improved response to immune checkpoint blockade (ICB) in melanoma, sarcoma and lung cancer. Otherwise, B cells sparsely distributed in the tumor microenvironment or organized in immature TLSs were found to exert immune-regulatory functions, inhibiting anti-tumor immunity through the secretion of anti-inflammatory cytokines. Such phenotype might arise when B cells interact with malignant cells rather than T and dendritic cells. Differences in the spatial distribution likely underlie discrepancies between the role of B cells inferred from human samples or mouse models. Many fast-growing orthotopic tumors develop a malignant cell-rich bulk with reduced stroma and are devoid of TLSs, which highlights the importance of carefully selecting pre-clinical models. In summary, strategies that promote TLS formation in close proximity to tumor cells are likely to favor immunotherapy responses. Here, the cellular and molecular programs coordinating B cell development, activation and organization within TLSs will be reviewed, focusing on their translational relevance to cancer immunotherapy.
Collapse
Affiliation(s)
- Gabriela Sarti Kinker
- Translational Immuno-oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Glauco Akelinghton Freire Vitiello
- Translational Immuno-oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
- Department of Pathological Sciences, Londrina State University, Londrina, Brazil
| | - Wallax Augusto Silva Ferreira
- Translational Immuno-oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
- Laboratory of Tissue Culture and Cytogenetics, Environment Section (SAMAM), Evandro Chagas Institute, Ananindeua, Brazil
| | - Alexandre Silva Chaves
- Translational Immuno-oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
| | | | - Tiago da Silva Medina
- Translational Immuno-oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo, Brazil
| |
Collapse
|
28
|
Goff SL, Danforth DN. The Role of Immune Cells in Breast Tissue and Immunotherapy for the Treatment of Breast Cancer. Clin Breast Cancer 2021; 21:e63-e73. [PMID: 32893093 PMCID: PMC7775885 DOI: 10.1016/j.clbc.2020.06.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/10/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022]
Abstract
Immune cells are present in normal breast tissue and in breast carcinoma. The nature and distribution of the immune cell subtypes in these tissues are reviewed to promote a better understanding of their important role in breast cancer prevention and treatment. We conducted a review of the literature to define the type, location, distribution, and role of immune cells in normal breast tissue and in in situ and invasive breast cancer. Immune cells in normal breast tissue are located predominantly within the epithelial component in breast ductal lobules. Immune cell subtypes representing innate immunity (NK, CD68+, and CD11c+ cells) and adaptive immunity (most commonly CD8+, but CD4+ and CD20+ as well) are present; CD8+ cells are the most common subtype and are primarily effector memory cells. Immune cells may recognize neoantigens and endogenous and exogenous ligands and may serve in chronic inflammation and immunosurveillance. Progression to breast cancer is characterized by increased immune cell infiltrates in tumor parenchyma and stroma, including CD4+ and CD8+ granzyme B+ cytotoxic T cells, B cells, macrophages and dendritic cells. Tumor-infiltrating lymphocytes in breast cancer may serve as prognostic indicators for response to chemotherapy and for survival. Experimental strategies of adoptive transfer of breast tumor-infiltrating lymphocyte may allow regression of metastatic breast cancer and encourage development of innovative T-cell strategies for the immunotherapy of breast cancer. In conclusion, immune cells in breast tissues play an important role throughout breast carcinogenesis. An understanding of these roles has important implications for the prevention and the treatment of breast cancer.
Collapse
Affiliation(s)
- Stephanie L Goff
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - David N Danforth
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
29
|
NR3C2-Related Transcriptome Profile and Clinical Outcome in Invasive Breast Carcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9025481. [PMID: 33564687 PMCID: PMC7867450 DOI: 10.1155/2021/9025481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/09/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022]
Abstract
Background Increasing evidence has indicated that the nuclear receptor subfamily 3 group C member 2 (NR3C2) may be associated with tumorigenesis and patient prognosis for certain types of tumors. However, the clinical significance of NR3C2 is unclear in invasive breast carcinoma (BRCA). Methods We used bioinformatics to broadly investigate and obtain a deeper understanding of the prognostic significance between NR3C2 and BRCA. RNA-sequencing data and clinical information of patients with BRCA from the Cancer Genome Atlas database were collected for subsequent analysis. The diagnostic efficacy of NR3C2 was evaluated by calculating the receiver operating characteristic curve. The prognostic value of NR3C2 was evaluated by Kaplan-Meier analysis and Cox regression analysis for patients with BRCA. Moreover, the OSbrca database was used to validate NR3C2 as a prognostic biomarker for BRCA. Gene set enrichment analysis (GSEA) and tumor immune infiltration analysis were conducted to explore the molecular mechanism of NR3C2 in BRCA. Results The expression level of NR3C2 in BRCA tissues decreased compared to that in normal breast tissues (P < 0.001). NR3C2 presented good diagnostic efficacy (AUC = 0.908). Moreover, the expression of NR3C2 was verified using the Oncomine database. High expression of NR3C2 was statistically associated with prolonged overall survival (HR = 0.65, 95% CI: 0.47-0.91, and P = 0.012), progression-free interval (HR = 0.68, 95% CI: 0.49-0.95, and P = 0.024), and disease-specific survival (HR = 0.57, 95% CI: 0.36-0.89, and P = 0.015) for patients with BRCA. Besides, the prognostic value of NR3C2 was verified by the OSbrca database. GSEA results suggested that enriched pathways included neuroactive ligand-receptor interaction, focal adhesion, and ECM-receptor interaction. NR3C2 expression was moderately correlated with mast cells and some T cell subsets in BRCA. Conclusion NR3C2 is a potential prognostic biomarker that could help clinicians develop more appropriate treatment plans for individual patients with BRCA.
Collapse
|
30
|
Genco IS, Ozgultekin B, Hosseini H, Hackman K, Ferreira L, Santagada E, Wahl S, Hajiyeva S. High EZH2 expression in ductal carcinoma in situ diagnosed on breast core needle biopsy is an independent predictive factor for upgrade on surgical excision. Pathol Res Pract 2020; 216:153283. [PMID: 33197837 DOI: 10.1016/j.prp.2020.153283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE Approximately 25 % of DCIS diagnosed on breast core needle biopsy (CNB) is upgraded to invasive carcinoma on surgical excision. Risk factors to predict the upgrade on excision are not well established, leading many patients to be over or under-treated. EZH2 was shown to be associated with aggressive behavior of cancer from many sites, including breast cancer. We aimed to analyze EZH2 expression and tumor infiltrating lymphocytes (TILs) in DCIS as predictive factors for an upgrade on excision. METHODS We assessed EZH2 expression in 34 DCIS cases diagnosed on CNB and upgraded to invasive carcinoma on excision. Then, we compared these cases with 60 control cases that were not upgraded on excision. A staining score for DCIS (0-12) was obtained by multiplying the staining intensity (0-3) and the percentage of positive cells (1-4). The nuclear staining score ≥6 was considered as 'high' expression. RESULTS 46 of 94 (49 %) DCIS on CNB showed high EZH2 expression. EZH2 expression was directly correlated with TILs density, nuclear grade, HER2 expression, Ki-67 index and negative ER status. On univariate analysis, upgrade on excision was associated with high EZH2 expression, high TILs density, negative ER status and high Ki-67 index. Multivariate analysis revealed the high EZH2 expression as the only independent predictive factor for upgrade on excision. CONCLUSIONS Our study revealed the high EZH2 expression as the only independent predictive factor for an upgrade on excision. Future studies should focus on the evaluation of EZH2 expression in tumor-microenvironment interaction in terms of diagnostic, treatment and prognostic purposes.
Collapse
Affiliation(s)
- Iskender Sinan Genco
- Northwell Health Lenox Hill Hospital, Department of Pathology and Laboratory Medicine, 100 E 77th Street, New York, NY, 10075, United States.
| | | | - Hossein Hosseini
- Northwell Health Lenox Hill Hospital, Department of Pathology and Laboratory Medicine, 100 E 77th Street, New York, NY, 10075, United States
| | - Kayla Hackman
- Northwell Health Lenox Hill Hospital, Department of Pathology and Laboratory Medicine, 100 E 77th Street, New York, NY, 10075, United States
| | - Lisa Ferreira
- Northwell Health Lenox Hill Hospital, Department of Pathology and Laboratory Medicine, 100 E 77th Street, New York, NY, 10075, United States
| | - Eugene Santagada
- Northwell Health Lenox Hill Hospital, Department of Pathology and Laboratory Medicine, 100 E 77th Street, New York, NY, 10075, United States
| | - Samuel Wahl
- Northwell Health Lenox Hill Hospital, Department of Pathology and Laboratory Medicine, 100 E 77th Street, New York, NY, 10075, United States
| | - Sabina Hajiyeva
- Northwell Health Lenox Hill Hospital, Department of Pathology and Laboratory Medicine, 100 E 77th Street, New York, NY, 10075, United States.
| |
Collapse
|
31
|
Komforti M, Badve SS, Harmon B, Lo Y, Fineberg S. Tumour-infiltrating lymphocytes in ductal carcinoma in situ (DCIS)-assessment with three different methodologies and correlation with Oncotype DX DCIS Score. Histopathology 2020; 77:749-759. [PMID: 32557780 DOI: 10.1111/his.14181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/11/2020] [Indexed: 12/26/2022]
Abstract
AIMS Tumour-infiltrating lymphocytes (TILs) are prognostic in invasive breast cancer; however, their prognostic significance in ductal carcinoma in situ (DCIS) has not been established. The Oncotype DX (ODX) Breast DCIS Score test is a genomic assay used to predict the local recurrence risk. The aims of this study were to quantify TILs in DCIS by the use of three methodologies, and correlate them with the ODX DCIS Score. METHODS AND RESULTS We studied 97 DCIS cases, all with an ODX DCIS Score. Cases with a low ODX DCIS Score were considered as one group, and those with an intermediate/high ODX Score were considered together. TILs were quantified on haematoxylin and eosin-stained slides. The methodologies used to quantify TILS included assessment of stromal TILs, assessment of touching TILs, and assessment of circumferential TILS. In cases with >5% stromal TILS, the percentage of stromal TILS was considered to be high. In cases with a mean number of more than five touching TILs per DCIS duct, TILs were considered to be present. The ODX DCIS Score was intermediate/high in 27 (28%) cases and low in 70 (72%) cases. There were >5% stromal TILs in 33 (34%) cases, and more than five touching TILs per DCIS duct in 15 (15%) cases; circumferential TILs were present in nine (9%) cases. In univariate analysis, a low ODX DCIS Score showed significant associations with absent touching TILS (P = 0.027), stromal TILs < 5% (P = 0.031), and absent circumferential TILs (P = 0.002). In logistic regression analysis adjusted for necrosis and nuclear grade, touching TILs and circumferential TILs showed significant associations with the ODX DCIS Score, whereas stromal TILs did not. CONCLUSIONS Our results suggest that both the presence of TILs and the spatial arrangement of TILs or close proximity of TILs to DCIS, and TILs touching or encircling DCIS, may be predictive of recurrence.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Breast Neoplasms/genetics
- Breast Neoplasms/immunology
- Breast Neoplasms/pathology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/immunology
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Female
- Genetic Techniques
- Humans
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Middle Aged
Collapse
Affiliation(s)
- Miglena Komforti
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - Sunil S Badve
- Department of Pathology, Indiana University, Indianapolis, IN, USA
| | - Bryan Harmon
- Department of Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - Yungtai Lo
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Susan Fineberg
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
32
|
Sadeghalvad M, Mohammadi-Motlagh HR, Rezaei N. Immune microenvironment in different molecular subtypes of ductal breast carcinoma. Breast Cancer Res Treat 2020; 185:261-279. [PMID: 33011829 DOI: 10.1007/s10549-020-05954-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Ductal breast carcinoma as a heterogeneous disease has different molecular subtypes associated with clinical prognosis and patients' survival. The role of immune system as a consistent part of the tumor microenvironment (TME) has been documented in progression of ductal breast carcinoma. Here, we aimed to describe the important immune cells and the immune system-associated molecules in Ductal Carcinoma In situ (DCIS) and Invasive Ductal Carcinoma (IDC) with special emphasis on their associations with different molecular subtypes and patients' prognosis. RESULTS The immune cells have a dual role in breast cancer (BC) microenvironment depending on the molecular subtype or tumor grade. These cells with different frequencies are present in the TME of DCIS and IDC. The presence of regulatory cells including Tregs, MDSC, Th2, Th17, M2 macrophages, HLADR- T cells, and Tγδ cells is related to more immunosuppressive microenvironment, especially in ER- and TN subtypes. In contrast, NK cells, CTL, Th, and Tfh cells are associated to the anti-tumor activity. These cells are higher in ER+ BC, although in other subtypes such as TN or HER2+ are associated with a favorable prognosis. CONCLUSION Determining the specific immune response in each subtype could be helpful in estimating the possible behavior of the tumor cells in TME. It is important to realize that different frequencies of immune cells in BC environment likely determine the patients' prognosis and their survival in each subtype. Therefore, elucidation of the distinct immune players in TME would be helpful toward developing targeted therapies in each subtype.
Collapse
Affiliation(s)
- Mona Sadeghalvad
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hamid-Reza Mohammadi-Motlagh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran. .,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran. .,Children's Medical Center Hospital, Dr Qarib St, Keshavarz Blvd, 14194, Tehran, Iran.
| |
Collapse
|
33
|
Immune response and stromal changes in ductal carcinoma in situ of the breast are subtype dependent. Mod Pathol 2020; 33:1773-1782. [PMID: 32341499 DOI: 10.1038/s41379-020-0553-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 11/08/2022]
Abstract
Ductal carcinoma in situ (DCIS) associated stromal changes and influx of immune cells might be mediators of progression to invasive breast cancer. We studied the interaction between DCIS-associated stromal changes, and immune cell distribution and composition in a well-characterized patient cohort. We included 472 patients with DCIS. The presence of stromal changes, signs of regression, and DCIS-associated immune cell position were determined on hematoxylin and eosin-stained slides. Immune cell composition was characterized by immunohistochemistry (CD4, CD8, CD20, CD68, and FOXP3). The number of intraductal immune cells was quantified per mm2. The interaction between stromal changes, signs of DCIS regression, immune cell composition and location was explored. Stromal changes and signs of DCIS regression were identified in 30 and 7% of the patients, respectively. Intraductal immune cells mainly comprised CD68+ macrophages and CD8+ T cells. Patients with stromal changes had significantly less influx of immune cells within the duct. DCIS regression was associated with an increased number of intraductal FOXP3+ T cells. The highest number of intraductal CD8+ T cells was seen in the ER+ HER2+ subtype. We suggest that DCIS-associated stromal changes prevent the interaction between immune cells and DCIS cells. However, in case of DCIS regression, we surmise a direct interaction between DCIS cells and immune cells, in particular FOXP3+ cells. Furthermore, the increased number of intraductal CD8+ T cells in the ER+ HER2+ DCIS subtype suggests a subtype-specific immune response, which is likely to play a role in the distinct biological behavior of different DCIS subtypes.
Collapse
|
34
|
Mitchell E, Jindal S, Chan T, Narasimhan J, Sivagnanam S, Gray E, Chang YH, Weinmann S, Schedin P. Loss of myoepithelial calponin-1 characterizes high-risk ductal carcinoma in situ cases, which are further stratified by T cell composition. Mol Carcinog 2020; 59:701-712. [PMID: 32134153 PMCID: PMC7317523 DOI: 10.1002/mc.23171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 12/15/2022]
Abstract
A hallmark of ductal carcinoma in situ (DCIS) progression is a loss of the surrounding ductal myoepithelium. However, whether compromise in myoepithelial differentiation, rather than overt cellular loss, can be used to predict the risk of DCIS progression is unknown. Here we address this question utilizing pure and mixed DCIS cases (N = 30) as surrogates for DCIS at low and high risk for progression, respectively. We used multiplex immunohistochemical staining to evaluate the relationship between myoepithelial cell differentiation and lymphoid immune cell types associated with poor prognostic DCIS. Our results show that myoepithelial calponin-1 discriminates between pure and mixed DCIS lesions better than histological subtype, presence of necrosis, or nuclear grade. Additionally, focal loss of myoepithelial cells associated with increased PD-1+CD8+ T cells, which suggests a link between the myoepithelium and immune surveillance. To identify associations between calponin-1 expression and immune response, we performed unsupervised hierarchical clustering of myoepithelial and immune cell biomarkers on 219 DCIS lesions from 30 cases. Notably, the majority of pure (low-risk) DCIS lesions clustered in a high calponin-1, T cell low group, whereas the majority of mixed (high-risk) DCIS lesions clustered in a low calponin-1, T cell high group, specifically with CD8+ and PD-1+CD8+ T cells. However, a subset of pure DCIS lesions had a similar calponin-1 and immune signature as the majority of mixed DCIS lesions, which have low calponin-1 and T cell enrichment-raising the possibility that these pure DCIS lesions might be at a high risk for progression.
Collapse
Affiliation(s)
- Elizabeth Mitchell
- Department of Cell, Developmental, and Cancer BiologyOregon Health and Science UniversityPortlandOregon
| | - Sonali Jindal
- Department of Cell, Developmental, and Cancer BiologyOregon Health and Science UniversityPortlandOregon
- Cancer Prevention and Control, Knight Cancer InstituteOregon Health and Science UniversityPortlandOregon
| | - Tiffany Chan
- Department of Cell, Developmental, and Cancer BiologyOregon Health and Science UniversityPortlandOregon
| | - Jayasri Narasimhan
- Department of Cell, Developmental, and Cancer BiologyOregon Health and Science UniversityPortlandOregon
| | - Shamilene Sivagnanam
- Computational Biology Program, Department of Cell, Developmental, and Cancer BiologyOregon Health and Science UniversityPortlandOregon
| | - Elliot Gray
- Department of Biomedical Engineering, Oregon Center for Spatial Systems BiomedicineOregon Health and Science UniversityPortlandOregon
| | - Young Hwan Chang
- Department of Biomedical Engineering, Oregon Center for Spatial Systems BiomedicineOregon Health and Science UniversityPortlandOregon
| | - Sheila Weinmann
- Center for Health ResearchKaiser Permanente NorthwestPortlandOregon
| | - Pepper Schedin
- Department of Cell, Developmental, and Cancer BiologyOregon Health and Science UniversityPortlandOregon
- Cancer Prevention and Control, Knight Cancer InstituteOregon Health and Science UniversityPortlandOregon
| |
Collapse
|
35
|
Toss MS, Abidi A, Lesche D, Joseph C, Mahale S, Saunders H, Kader T, Miligy IM, Green AR, Gorringe KL, Rakha EA. The prognostic significance of immune microenvironment in breast ductal carcinoma in situ. Br J Cancer 2020; 122:1496-1506. [PMID: 32203210 PMCID: PMC7217899 DOI: 10.1038/s41416-020-0797-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/07/2020] [Accepted: 02/26/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The role of different subtypes of tumour infiltrating lymphocytes (TILs) in breast ductal carcinoma in situ (DCIS) is still poorly defined. This study aimed to assess the prognostic significance of B and T lymphocytes and immune checkpoint proteins expression in DCIS. METHODS A well characterised DCIS cohort (n = 700) with long-term follow-up comprising pure DCIS (n = 508) and DCIS mixed with invasive carcinoma (IBC; n = 192) were stained immunohistochemically for CD20, CD3, CD4, CD8, FOXP3, PD1 and PDL1. Copy number variation and TP53 mutation status were assessed in a subset of cases (n = 58). RESULTS CD3+ lymphocytes were the predominant cell subtype in the pure DCIS cohort, while FOXP3 showed the lowest levels. PDL1 expression was mainly seen in the stromal TILs. Higher abundance of TILs subtypes was associated with higher tumour grade, hormone receptor negativity and HER2 positivity. Mutant TP53 variants were associated with higher levels of stromal CD3+, CD4+ and FOXP3+ cells. DCIS coexisting with invasive carcinoma harboured denser stromal infiltrates of all immune cells and checkpoint proteins apart from CD4+ cells. Stromal PD1 was the most differentially expressed protein between DCIS and invasive carcinoma (Z = 5.8, p < 0.0001). Dense TILs, stromal FOXP3 and PDL1 were poor prognostic factors for DCIS recurrence, while dense TILs were independently associated with poor outcome for all recurrences (HR = 7.0; p = 0.024), and invasive recurrence (HR = 2.1; p = 0.029). CONCLUSIONS Immunosuppressive proteins are potential markers for high risk DCIS and disease progression. Different stromal and intratumoural lymphocyte composition between pure DCIS, DCIS associated with IBC and invasive carcinoma play a potential role in their prognostic significance and related to the underlying genomic instability. Assessment of overall TILs provides a promising tool for evaluation of the DCIS immune microenvironment.
Collapse
MESH Headings
- B-Lymphocytes/immunology
- B7-H1 Antigen/genetics
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- CD4-Positive T-Lymphocytes/immunology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/immunology
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Cell Lineage/genetics
- Cell Lineage/immunology
- DNA Copy Number Variations/genetics
- Female
- Forkhead Transcription Factors/genetics
- Humans
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Prognosis
- Receptor, ErbB-2/genetics
- T-Lymphocytes/immunology
- Tumor Microenvironment/immunology
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Michael S Toss
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham City Hospital, Nottingham, UK.
- Histopathology Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt.
| | - Asima Abidi
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham City Hospital, Nottingham, UK
| | - Dorothea Lesche
- Cancer Genomics Program, Peter MacCallum Cancer Centre, Melbourne, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Chitra Joseph
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham City Hospital, Nottingham, UK
| | - Sakshi Mahale
- Cancer Genomics Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Hugo Saunders
- Cancer Genomics Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Tanjina Kader
- Cancer Genomics Program, Peter MacCallum Cancer Centre, Melbourne, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Islam M Miligy
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham City Hospital, Nottingham, UK
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham City Hospital, Nottingham, UK
| | - Kylie L Gorringe
- Cancer Genomics Program, Peter MacCallum Cancer Centre, Melbourne, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham City Hospital, Nottingham, UK
| |
Collapse
|
36
|
Kim M, Chung YR, Kim HJ, Woo JW, Ahn S, Park SY. Immune microenvironment in ductal carcinoma in situ: a comparison with invasive carcinoma of the breast. Breast Cancer Res 2020; 22:32. [PMID: 32216826 PMCID: PMC7098119 DOI: 10.1186/s13058-020-01267-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
Background The immune microenvironment in ductal carcinoma in situ (DCIS) and its significance are not well established. This study was conducted to evaluate the immune microenvironment of DCIS including the composition of tumor-infiltrating lymphocyte (TIL) subsets and PD-L1+ immune cells and to compare it with that of invasive breast cancer. Materials and methods A total of 671 cases including three different disease groups of pure DCIS, DCIS with microinvasion (DCIS-M), and invasive carcinoma were included in this study. CD4+, CD8+, and FOXP3+ TIL subsets and PD-L1+ immune cells were detected with immunohistochemistry using tissue microarrays and were analyzed in relation to clinicopathologic characteristics and different disease groups. Results In pure DCIS, high infiltrations of CD4+, CD8+, and FOXP3+ T cells and the presence of PD-L1+ immune cells were associated with high nuclear grade, comedo-type necrosis, hormone receptor (HR) negativity, and high Ki-67 proliferation index. All immune cell infiltrations were higher in invasive carcinoma than in pure DCIS regardless of the HR status. While CD4+ T cells were more abundant than CD8+ T cells in pure DCIS, CD8+ T cells were dominant in invasive carcinoma, especially in HR-negative tumors. Within individual cases of invasive carcinoma with DCIS component, all immune cell subset infiltration was higher in the invasive component than in the DCIS component; however, CD4+ TIL infiltration did not differ between the two components in HR-negative tumors. Comparing pure DCIS, DCIS-M, and DCIS associated with invasive carcinoma (DCIS-INV), CD4+ TIL infiltration revealed a gradual increase from pure DCIS to DCIS-M and DCIS-INV in the HR-negative group, whereas FOXP3+ TIL infiltration was significantly increased in DCIS-INV than in pure DCIS in the HR-positive group. The high infiltration of FOXP3+ TIL and the presence of PD-L1+ immune cells were associated with tumor recurrence in patients with pure DCIS. Conclusions Our study showed that the immune microenvironment differs significantly not only between DCIS and invasive carcinoma but also between pure DCIS, DCIS-M, and DCIS-INV depending on the HR status.
Collapse
Affiliation(s)
- Milim Kim
- Department of Pathology, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, Gyeonggi, 13620, Republic of Korea.,Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yul Ri Chung
- Department of Pathology, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, Gyeonggi, 13620, Republic of Korea.,Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Jeong Kim
- Department of Pathology, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, Gyeonggi, 13620, Republic of Korea
| | - Ji Won Woo
- Department of Pathology, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, Gyeonggi, 13620, Republic of Korea.,Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soomin Ahn
- Department of Pathology, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, Gyeonggi, 13620, Republic of Korea
| | - So Yeon Park
- Department of Pathology, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, Gyeonggi, 13620, Republic of Korea. .,Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
37
|
Agahozo MC, van Bockstal MR, Groenendijk FH, van den Bosch TPP, Westenend PJ, van Deurzen CHM. Ductal carcinoma in situ of the breast: immune cell composition according to subtype. Mod Pathol 2020; 33:196-205. [PMID: 31375764 DOI: 10.1038/s41379-019-0331-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 11/09/2022]
Abstract
Ductal carcinoma in situ of the breast includes several subtypes with a divergent biological behavior. Data regarding the composition of ductal carcinoma in situ-associated immune cells and their potential role in progression is limited. We studied ductal carcinoma in situ-associated immune response by characterizing immune cell subsets according to ductal carcinoma in situ subtypes. Ductal carcinoma in situ-associated tumor infiltrating lymphocyte (TIL) density was evaluated based on hematoxylin and eosin (H&E)-stained sections from 473 patients. Cases were subtyped based on ER, PR, and HER2. Patients were categorized as TIL-high or low. Ductal carcinoma in situ-associated immune cells of TIL-high cases were immunostained on whole slides with CD4, CD8, CD20, CD68, FOXP3, and PD-L1 (SP142 and SP263). In total, 131/473 patients (28.0%) were considered as TIL-high. The percentage of TIL-high cases was significantly higher in HER2+ and triple-negative ductal carcinoma in situ (P < 0.0001). Overall, no statistical difference in immune cell composition according to subtypes was found. However, individual subtype comparison showed that ER+ HER2+ cases had a significantly higher proportion of CD8+ T cells compared with triple-negative cases (P = 0.047). In TIL-high cases, PD-L1-SP142 expression on tumor cells was associated with subtype (P = 0.037); the lowest number of positive cases was observed in the HER2+ subtype (independent of ER). However, in TIL-high ductal carcinoma in situ, PD-L1 expression by both clones was limited. In conclusion, high numbers of TILs are predominantly observed in HER+ and triple negative ductal carcinoma in situ. The ER+ HER2+ subtype seems to attract a higher proportion of CD8+ T cells compared with the triple negative subtype. Among TIL-high cases, the HER2+ subgroup had the lowest PD-L1-SP142 expression on tumor cells. This suggests a more pronounced antitumor immunity in HER2+ ductal carcinoma in situ, which could play a role in its biological behavior.
Collapse
Affiliation(s)
| | - Mieke R van Bockstal
- Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Floris H Groenendijk
- Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
38
|
Baxevanis CN, Fortis SP, Perez SA. The balance between breast cancer and the immune system: Challenges for prognosis and clinical benefit from immunotherapies. Semin Cancer Biol 2019; 72:76-89. [PMID: 31881337 DOI: 10.1016/j.semcancer.2019.12.018] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023]
Abstract
Cancer evolution is a complex process influenced by genetic factors and extracellular stimuli that trigger signaling pathways to coordinate the continuous and dynamic interaction between tumor cells and the elements of the immune system. For over 20 years now, the immune mechanisms controlling cancer progression have been the focus of intensive research. It is well established that the immune system conveys protective antitumor immunity by destroying immunogenic tumor variants, but also facilitates tumor progression by shaping tumor immunogenicity in a process called "immunoediting". It is also clear that immune-guided tumor editing is associated with tumor evasion from immune surveillance and therefore reinforcing the endogenous antitumor immunity is a desired goal in the context of cancer therapies. The tumor microenvironment (TME) is a complex network which consists of various cell types and factors having important roles regarding tumor development and progression. Tumor infiltrating lymphocytes (TILs) and other tumor infiltrating immune cells (TIICs) are key to our understanding of tumor immune surveillance based on tumor immunogenicity, whereby the densities and location of TILs and TIICs in the tumor regions, as well as their functional programs (comprising the "immunoscore") have a prominent role for prognosis and prediction for several cancers. The presence of tertiary lymphoid structures (TLS) in the TME or in peritumoral areas has an influence on the locally produced antitumor immune response, and therefore also has a significant prognostic impact. The cross-talk between elements of the immune system with tumor cells in the TME is greatly influenced by hypoxia, the gut and/or the local microbiota, and several metabolic elements, which, in a dynamic interplay, have a crucial role for tumor cell heterogeneity and reprogramming of immune cells along their activation and differentiation pathways. Taking into consideration the recent clinical success with the application immunotherapies for the treatment of several cancer types, increasing endeavors have been made to gain better insights into the mechanisms underlying phenotypic and metabolic profiles in the context of tumor progression and immunotherapy. In this review we will address (i) the role of TILs, TIICs and TLS in breast cancer (BCa); (ii) the different metabolic-based pathways used by immune and breast cancer cells; and (iii) implications for immunotherapy-based strategies in BCa.
Collapse
Affiliation(s)
- Constantin N Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras Ave., 11522, Athens, Greece.
| | - Sotirios P Fortis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras Ave., 11522, Athens, Greece
| | - Sonia A Perez
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras Ave., 11522, Athens, Greece
| |
Collapse
|
39
|
The Role of Tumor-Infiltrating B Cells in Tumor Immunity. JOURNAL OF ONCOLOGY 2019; 2019:2592419. [PMID: 31662750 PMCID: PMC6778893 DOI: 10.1155/2019/2592419] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/09/2019] [Indexed: 12/16/2022]
Abstract
Earlier studies on elucidating the role of lymphocytes in tumor immunity predominantly focused on T cells. However, the role of B cells in tumor immunity has increasingly received better attention in recent studies. The B cells that infiltrate tumor tissues are called tumor-infiltrating B cells (TIBs). It is found that TIBs play a multifaceted dual role in regulating tumor immunity rather than just tumor inhibition or promotion. In this article, latest research advances focusing on the relationship between TIBs and tumor complexity are reviewed, and light is shed on some novel ideas for exploiting TIBs as a possible tumor biomarker and potential therapeutic target against tumors.
Collapse
|
40
|
Garaud S, Buisseret L, Solinas C, Gu-Trantien C, de Wind A, Van den Eynden G, Naveaux C, Lodewyckx JN, Boisson A, Duvillier H, Craciun L, Ameye L, Veys I, Paesmans M, Larsimont D, Piccart-Gebhart M, Willard-Gallo K. Tumor infiltrating B-cells signal functional humoral immune responses in breast cancer. JCI Insight 2019; 5:129641. [PMID: 31408436 DOI: 10.1172/jci.insight.129641] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Tumor-infiltrating B-cells (TIL-B) in breast cancer (BC) have previously been associated with improved clinical outcomes; however, their role(s) in tumor immunity is not currently well known. This study confirms and extends the correlation between higher TIL-B densities and positive outcomes through an analysis of HER2-positive and triple-negative BC patients from the BIG 02-98 clinical trial (10yr mean follow-up). Fresh tissue analyses identify an increase in TIL-B density in untreated primary BC compared to normal breast tissues, which is associated with global, CD4+ and CD8+ TIL, higher tumor grades, higher proliferation and hormone receptor negativity. All B-cell differentiation stages are detectable but significant increases in memory TIL-B are consistently present. BC with higher infiltrates are specifically characterized by germinal center TIL-B, which in turn are correlated with TFH TIL and antibody-secreting TIL-B principally located in tertiary lymphoid structures. Some TIL-B also interact directly with tumor cells. Functional analyses reveal TIL-B are responsive to BCR stimulation ex vivo, express activation markers and produce cytokines and immunoglobulins despite reduced expression of the antigen-presenting molecules HLA-DR and CD40. Overall, these data support the concept that ongoing humoral immune responses are generated by TIL-B and help to generate effective anti-tumor immunity at the tumor site.
Collapse
Affiliation(s)
| | | | | | | | - Alexandre de Wind
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Gert Van den Eynden
- Department of Pathology, GZA Ziekenhuizen, Sint-Augustinus campus, Wilrijk, Belgium
| | | | | | | | | | - Ligia Craciun
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | - Denis Larsimont
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Martine Piccart-Gebhart
- Department of Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | | |
Collapse
|
41
|
Prognostic role of immune infiltrates in breast ductal carcinoma in situ. Breast Cancer Res Treat 2019; 177:17-27. [PMID: 31134489 DOI: 10.1007/s10549-019-05272-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 05/06/2019] [Indexed: 01/13/2023]
Abstract
PURPOSE Ductal carcinoma in situ (DCIS) of the breast is often regarded as a non-obligate precursor to invasive breast carcinoma but current diagnostic tools are unable to accurately predict the invasive potential of DCIS. Infiltration of immune cells into the tumour and its microenvironment is often an early event at the site of tumourigenesis. These immune infiltrates may be potential predictive and/or prognostic biomarkers for DCIS. This review aims to discuss recent findings pertaining to the potential prognostic significance of immune infiltrates as well as their evaluation in DCIS. METHODS A literature search on PubMed was conducted up to 28th January 2019. Search terms used were "DCIS", "ductal carcinoma in situ", "immune", "immunology", "TIL", "TIL assessment", and "tumour-infiltrating lymphocyte". Search filters for "Most Recent" and "English" were applied. Information from published papers related to the research topic were synthesised and summarised for this review. RESULTS Studies have revealed that immune infiltrates play a role in the biology and microenvironment of DCIS, as well as treatment response. There is currently no consensus on the evaluation of TILs in DCIS for clinical application. CONCLUSIONS This review highlights the recent findings on the potential influence and prognostic value of immunological processes on DCIS progression, as well as the evaluation of TILs in DCIS. Further characterisation of the immune milieu of DCIS is recommended to better understand the immune response in DCIS progression and recurrence.
Collapse
|
42
|
Garaud S, Zayakin P, Buisseret L, Rulle U, Silina K, de Wind A, Van den Eyden G, Larsimont D, Willard-Gallo K, Linē A. Antigen Specificity and Clinical Significance of IgG and IgA Autoantibodies Produced in situ by Tumor-Infiltrating B Cells in Breast Cancer. Front Immunol 2018; 9:2660. [PMID: 30515157 PMCID: PMC6255822 DOI: 10.3389/fimmu.2018.02660] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 10/29/2018] [Indexed: 12/16/2022] Open
Abstract
An important role for tumor infiltrating B lymphocytes (TIL-B) in the immune response to cancer is emerging; however, very little is known about the antigen specificity of antibodies produced in situ. The presence of IgA antibodies in the tumor microenvironment has been noted although their biological functions and clinical significance are unknown. This study used a 91-antigen microarray to examine the IgG and IgA autoantibody repertoires in breast cancer (BC). Tumor and adjacent breast tissue supernatants and plasma from BC patients together with normal breast tissue supernatants and plasma from healthy controls (patients undergoing mammary reduction and healthy blood donors) were analyzed to investigate relationships between autoantibodies and the clinical, histological and immunological features of tumors. Our data show that >84% of the BC samples tested contain autoantibodies to one or more antigens on the array, with ANKRD30BL, COPS4, and CTAG1B being most frequently reactive. Ex vivo TIL-B responses were uncoupled from systemic humoral responses in the majority of cases. A comparison of autoantibody frequencies in supernatants and plasma from patients and controls identified eight antigens that elicit BC-associated autoantibody responses. The overall prevalence of IgG and IgA autoantibodies was similar and while IgG and IgA responses were not linked they did correlate with distinct clinical, pathological and immunological features. Higher levels of ex vivo IgG responses to BC-associated antigens were associated with shorter recurrence-free survival (RFS), HER2 overexpression and lower tumor-infiltrating CD8+ T cell counts. Higher IgA levels were associated with estrogen and progesterone receptor-negative cancers but were not significantly associated with RFS. Furthermore, ex vivo IgA but not IgG autoantibodies reactive to BC-associated antigens were linked with germinal center and early memory B cell maturation and the presence of tertiary lymphoid structures suggesting that these TIL-B are activated in the tumor microenvironment. Overall, our results extend the current understanding of the antigen specificity, the biological and the clinical significance of IgG and IgA autoantibodies produced by BC TIL-B in situ.
Collapse
Affiliation(s)
- Soizic Garaud
- Molecular Immunology Unit, Institut Jules Bordet, Universite Libre de Bruxelles, Brussels, Belgium
| | - Pawel Zayakin
- Cancer Biomarker and Immunotherapy Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Laurence Buisseret
- Molecular Immunology Unit, Institut Jules Bordet, Universite Libre de Bruxelles, Brussels, Belgium
| | - Undine Rulle
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Karina Silina
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Alexandre de Wind
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Gert Van den Eyden
- Translational Cancer Research Unit Antwerp, Oncology Centre, General Hospital Sint Augustinus, Wilrijk, Belgium
| | - Denis Larsimont
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Karen Willard-Gallo
- Molecular Immunology Unit, Institut Jules Bordet, Universite Libre de Bruxelles, Brussels, Belgium
| | - Aija Linē
- Cancer Biomarker and Immunotherapy Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
- Faculty of Biology, University of Latvia, Riga, Latvia
| |
Collapse
|
43
|
Sjöberg E, Frödin M, Lövrot J, Mezheyeuski A, Johansson M, Harmenberg U, Egevad L, Sandström P, Östman A. A minority-group of renal cell cancer patients with high infiltration of CD20+B-cells is associated with poor prognosis. Br J Cancer 2018; 119:840-846. [PMID: 30293996 PMCID: PMC6189087 DOI: 10.1038/s41416-018-0266-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/15/2018] [Accepted: 08/31/2018] [Indexed: 12/15/2022] Open
Abstract
Background The role of B-lymphocytes in solid tumours is unclear. Tumour biology studies have implied both anti- and pro-tumoural effects and prognostic studies have mainly linked B-cells to increased survival. This study aimed to analyse the clinical relevance of B-lymphocytes in renal cell cancer (RCC), where information on the prognostic impact is lacking. Methods Following immunohistochemistry (IHC) stainings with a CD20 antibody, density of CD20+ B-cells was quantified in an RCC discovery- and validation cohort. Associations of B-cell infiltration, determined by CD20 expression or a B-cell gene-signature, and survival was also analysed in 14 publicly available gene expression datasets of cancer, including the kidney clear cell carcinoma (KIRC) dataset. Results IHC analyses of the discovery cohort identified a previously unrecognised subgroup of RCC patients with high infiltration of CD20+ B-cells. The B-cell-high subgroup displayed significantly shorter survival according to uni- and multi-variable analyses. The association between poor prognosis and high density of CD20+ B-cells was confirmed in the validation cohort. Analyses of the KIRC gene expression dataset using the B-cell signature confirmed findings from IHC analyses. Analyses of other gene expression datasets, representing 13 different tumour types, indicated that the poor survival-association of B-cells occurred selectively in RCC. Conclusion This exploratory study identifies a previously unrecognised poor-prognosis subset of RCC with high density of CD20-defined B-cells.
Collapse
Affiliation(s)
- Elin Sjöberg
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Frödin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - John Lövrot
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Artur Mezheyeuski
- Department of Immunology, genetics and pathology, Uppsala University, Uppsala, Sweden
| | - Martin Johansson
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Ulrika Harmenberg
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Egevad
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Per Sandström
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Arne Östman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
44
|
Roguljic A, Spagnoli G, Juretic A, Sarcevic B, Banovic M, Beketic Oreskovic L. Possible predictive role of cancer/testis antigens in breast ductal carcinoma in situ. Oncol Lett 2018; 16:7245-7255. [PMID: 30546463 PMCID: PMC6256292 DOI: 10.3892/ol.2018.9544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 09/27/2018] [Indexed: 01/10/2023] Open
Abstract
Cancer/testis antigens (CTAs) are a large family of tumor-associated antigens expressed in human tumors of different histological origin, but not in normal tissues, with the exception of the testes and placenta. Numerous immunohistochemical studies have reported associations between CTA expression and a negative estrogen receptor (ER) status in breast tumors, and demonstrated that CTAs are frequently expressed in tumors with higher nuclear grade. The expression of CTAs has not been studied as extensively in ductal carcinoma in situ (DCIS) as it has been in invasive breast cancer. The present retrospective study included archived paraffin-embedded specimens from 83 patients diagnosed with DCIS in the period between January 2007 and December 2014. The follow-up time for local recurrence ranged between 1 and 8 years (mean, 5.02 years). Antigens from the melanoma-associated antigen gene (MAGE) family, namely multi-MAGE-A, MAGE-A1, MAGE-A10 and New York esophageal squamous cell carcinoma 1 (NY-ESO-1) antigen, were evaluated by immunostaining and their subcellular location was investigated. Presence of tumor-infiltrating lymphocytes (TILs) was evaluated on all sections, together with the histopathological variables of DCIS. Specific tested antigens exhibited associations with histopathological parameters for DCIS and all demonstrated statistically significant associations with nuclear staining, simultaneous cytoplasmic and nuclear staining, and local recurrence. Antigen MAGE-A10 demonstrated a significant association with higher expression of ER (P=0.005) and higher tumor nuclear grade (P=0.001), cytoplasmic staining (P=0.029) and antigen NY-ESO-1 with higher tumor size (P=0.001), expression of TILs (P=0.001) and R1 resection (P=0.001). A χ2 test revealed significant associations between simultaneous cytoplasmic and nuclear staining and local recurrence (P=0.005), central necrosis (P=0.016), and the expression of ER (P=0.003) and progesterone receptor (PR) (P=0.010). Additional analysis revealed an association between antigen MAGE-A10 and TILs (P=0.05). Additional analysis of TILs indicated that they were significantly associated with tumor grade (P=0.023), central necrosis (P<0.001), ER (P=0.003) and PR (P=0.029). Overall, CTAs from the MAGE family (MAGE-A1, multi-MAGE-A and MAGE-A10) and NY-ESO-1 associate with histopathological predictive variables of DCIS. The expression of antigens NY-ESO-1 and MAGE-A10 could serve an important role in the treatment of patients with negative histopathological predictive variables, but further analysis is required. Simultaneous cytoplasmic and nuclear protein expression of MAGE-A family and NY-ESO-1 CTAs may represent an independent marker for local recurrence. Taken together, the present data suggest that CTAs are not perfect indicators of invasiveness for DCIS, but could inform treatment strategies for patients when taken in combination with other histopathological predictive variables. However, this was a small study and further larger studies will be necessary to confirm the current findings.
Collapse
Affiliation(s)
- Ana Roguljic
- Department of Radiation and Medical Oncology, Sisters of Mercy University Hospital Center, University Hospital for Tumors, 10000 Zagreb, Croatia
| | - Gulio Spagnoli
- Department of Biomedicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Antonio Juretic
- Department of Oncology, Clinical Hospital Center Zagreb, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Bozena Sarcevic
- Department of Oncology-Pathology, University of Zagreb School of Medicine, Sisters of Mercy University Hospital Center, University Hospital for Tumors, 10000 Zagreb, Croatia
| | - Marija Banovic
- University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Lidija Beketic Oreskovic
- Department of Oncology, University of Zagreb School of Medicine, Sisters of Mercy University Hospital Center, University Hospital for Tumors, 10000 Zagreb, Croatia
| |
Collapse
|
45
|
Prognostic significance of tumor-infiltrating lymphocytes in ductal carcinoma in situ of the breast. Mod Pathol 2018; 31:1226-1236. [PMID: 29559742 DOI: 10.1038/s41379-018-0040-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/31/2018] [Accepted: 01/31/2018] [Indexed: 01/17/2023]
Abstract
Tumor-infiltrating lymphocytes (TILs) provide prognostic value in invasive breast cancer and guidelines for their assessment have been published. This study aims to evaluate: (a) methods of TILs assessment, and (b) their prognostic significance in breast ductal carcinoma in situ (DCIS). Hematoxylin and eosin sections from two clinically annotated DCIS cohorts; a training set (n = 150 pure DCIS) and a validation set (n = 666 comprising 534 pure DCIS and 132 cases wherein DCIS and invasive breast carcinoma were co-existent) were assessed. Seven different scoring methods were applied to the training set to identify the most optimal reproducible method associated with strongest prognostic value. Among different methods, TILs touching ducts' basement membrane or away from it by one lymphocyte cell thickness provided the strongest significant association with outcome and highest concordance rate [inter-cluster correlation coefficient = 0.95]. Assessment of periductal TILs at increasing distances from DCIS (0.2 , 0.5 , and 1 mm) as well as percent of stromal TILs were practically challenging and showed lower concordance rates than touching TILs. TILs hotspots and lymphoid follicles did not show prognostic significance. Within the pure DCIS validation set, dense TILs were associated with younger age, symptomatic presentation, larger size, higher nuclear grade, comedo necrosis and estrogen receptor negativity as well as shorter recurrence-free interval (p = 0.002). In multivariate survival analysis, dense TILs were independent predictor of shorter recurrence-free interval (p = 0.002) in patients treated with breast conservation. DCIS associated with invasive carcinoma showed denser TILs than pure DCIS (p = 9.0 × 10-13). Dense TILs is an independent prognostic variable in DCIS. Touching TILs provides a reproducible method for their assessment that can potentially be used to guide management.
Collapse
|
46
|
Tumor-infiltrating lymphocytes and ductal carcinoma in situ of the breast: friends or foes? Mod Pathol 2018; 31:1012-1025. [PMID: 29463884 DOI: 10.1038/s41379-018-0030-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/05/2018] [Accepted: 01/07/2018] [Indexed: 12/11/2022]
Abstract
In the past three decades, the detection rate of ductal carcinoma in situ of the breast has dramatically increased due to breast screening programs. As a consequence, about 20% of all breast cancer cases are detected in this early in situ stage. Some ductal carcinoma in situ cases will progress to invasive breast cancer, while other cases are likely to have an indolent biological behavior. The presence of tumor-infiltrating lymphocytes is seen as a promising prognostic and predictive marker in invasive breast cancer, mainly in HER2-positive and triple-negative subtypes. Here, we summarize the current understanding regarding immune infiltrates in invasive breast cancer and highlight recent observations regarding the presence and potential clinical significance of such immune infiltrates in patients with ductal carcinoma in situ. The presence of tumor-infiltrating lymphocytes, their numbers, composition, and potential relationship with genomic status will be discussed. Finally, we propose that a combination of genetic and immune markers may better stratify ductal carcinoma in situ subtypes with respect to tumor evolution.
Collapse
|
47
|
Yeong J, Lim JCT, Lee B, Li H, Chia N, Ong CCH, Lye WK, Putti TC, Dent R, Lim E, Thike AA, Tan PH, Iqbal J. High Densities of Tumor-Associated Plasma Cells Predict Improved Prognosis in Triple Negative Breast Cancer. Front Immunol 2018; 9:1209. [PMID: 29899747 PMCID: PMC5988856 DOI: 10.3389/fimmu.2018.01209] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/15/2018] [Indexed: 12/30/2022] Open
Abstract
Breast cancer is the most common malignancy affecting women, but the heterogeneity of the condition is a significant obstacle to effective treatment. Triple negative breast cancers (TNBCs) do not express HER2 or the receptors for estrogen or progesterone, and so often have a poor prognosis. Tumor-infiltrating T cells have been well-characterized in TNBC, and increased numbers are associated with better outcomes; however, the potential roles of B cells and plasma cells have been large. Here, we conducted a retrospective correlative study on the expression of B cell/plasma cell-related genes, and the abundance and localization of B cells and plasma cells within TNBCs, and clinical outcome. We analyzed 269 TNBC samples and used immunohistochemistry to quantify tumor-infiltrating B cells and plasma cells, coupled with NanoString measurement of expression of immunoglobulin metagenes. Multivariate analysis revealed that patients bearing TNBCs with above-median densities of CD38+ plasma cells had significantly better disease-free survival (DFS) (HR = 0.44; 95% CI 0.26–0.77; p = 0.004) but not overall survival (OS), after adjusting for the effects of known prognostic factors. In contrast, TNBCs with higher immunoglobulin gene expression exhibited improved prognosis (OS p = 0.029 and DFS p = 0.005). The presence of B cells and plasma cells was positively correlated (p < 0.0001, R = 0.558), while immunoglobulin gene IGKC, IGHM, and IGHG1 mRNA expression correlated specifically with the density of CD38+ plasma cells (IGKC p < 0.0001, R = 0.647; IGHM p < 0.0001, R = 0.580; IGHG1 p < 0.0001, R = 0.655). Interestingly, after adjusting the multivariate analysis for the effect of intratumoral CD38+ plasma cell density, the expression levels of all three genes lost significant prognostic value, suggesting a biologically important role of plasma cells. Last but not least, the addition of intratumoral CD38+ plasma cell density to clinicopathological features significantly increased the prognostic value for both DFS (ΔLRχ2 = 17.28, p = 1.71E−08) and OS (ΔLRχ2 = 10.03, p = 6.32E−08), compared to clinicopathological features alone. The best combination was achieved by integrating intratumoral CD38+ plasma cell density and IGHG1 which conferred the best added prognostic value for DFS (ΔLRχ2 = 27.38, p = 5.22E−10) and OS (ΔLRχ2 = 21.29, p = 1.03E−08). Our results demonstrate that the role of plasma cells in TNBC warrants further study to elucidate the relationship between their infiltration of tumors and disease recurrence.
Collapse
Affiliation(s)
- Joe Yeong
- Division of Pathology, Singapore General Hospital, Singapore, Singapore.,Singapore Immunology Network (SIgN), Agency of Science, Technology and Research (ASTAR), Singapore, Singapore
| | | | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency of Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Huihua Li
- Division of Medicine, Singapore General Hospital, Singapore, Singapore
| | - Noel Chia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | | | - Weng Kit Lye
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore
| | - Thomas Choudary Putti
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Elaine Lim
- National Cancer Center, Singapore, Singapore
| | - Aye Aye Thike
- Division of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Puay Hoon Tan
- Division of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Jabed Iqbal
- Division of Pathology, Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
48
|
Shen M, Wang J, Ren X. New Insights into Tumor-Infiltrating B Lymphocytes in Breast Cancer: Clinical Impacts and Regulatory Mechanisms. Front Immunol 2018; 9:470. [PMID: 29568299 PMCID: PMC5852074 DOI: 10.3389/fimmu.2018.00470] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/21/2018] [Indexed: 01/05/2023] Open
Abstract
Currently, tumor-infiltrating B lymphocytes have been recognized as a new hallmark of breast cancer (BC). The function seems to be controversial, either with positive, negative, or no significance in BC’s prediction and prognosis. Moreover, B-cell infiltrates regulate tumor process through productions of antibodies and interleukin-10. The interactions with other lymphocytes and programmed death-1/PD-1 ligand axis are also documented. The regulatory mechanisms will eventually be incorporated into diagnostic and therapeutic algorithms, thus give guide to clinical treatment. In this review, we give new insights into clinical impacts and regulatory mechanisms of tumor-infiltrating B cells, which heralds a new era in immuno-oncology in BC treatment.
Collapse
Affiliation(s)
- Meng Shen
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Jian Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
49
|
Gorringe KL, Fox SB. Ductal Carcinoma In Situ Biology, Biomarkers, and Diagnosis. Front Oncol 2017; 7:248. [PMID: 29109942 PMCID: PMC5660056 DOI: 10.3389/fonc.2017.00248] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/02/2017] [Indexed: 12/21/2022] Open
Abstract
Ductal carcinoma in situ (DCIS) is an often-diagnosed breast disease and a known, non-obligate, precursor to invasive breast carcinoma. In this review, we explore the clinical and pathological features of DCIS, fundamental elements of DCIS biology including gene expression and genetic events, the relationship of DCIS with recurrence and invasive breast cancer, and the interaction of DCIS with the microenvironment. We also survey how these various elements are being used to solve the clinical conundrum of how to optimally treat a disease that has potential to progress, and yet is also likely over-treated in a significant proportion of cases.
Collapse
Affiliation(s)
- Kylie L. Gorringe
- Cancer Genomics Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Stephen B. Fox
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| |
Collapse
|