1
|
Jani A, Reigler AN, Leal SM, McCarty TP. Updates in Cryptococcosis. Infect Dis Clin North Am 2024:S0891-5520(24)00086-2. [PMID: 39710555 DOI: 10.1016/j.idc.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Cryptococcosis is an invasive fungal infection caused by yeasts of the genus Cryptococcus that causes a significant global burden of disease in both immunocompromised and immunocompetent individuals. Over the past several decades, diagnosis and management of cryptococcal disease have moved to focus on rapid, reliable, and cost-effective care delivery, with the advent of new antigen detection assays and novel antifungal treatment strategies.
Collapse
Affiliation(s)
- Aditi Jani
- Division of Infectious Diseases, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ashleigh N Reigler
- Division of Lab Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sixto M Leal
- Division of Lab Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Todd P McCarty
- Division of Infectious Diseases, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
2
|
Liang F, Li R, Yao M, Wang J, Li Y, Lei L, Guo J, Chang X. Deciphering prognostic indicators in non-HIV cryptococcal meningitis: Constructing and validating a predictive Nomogram model. Med Mycol 2024; 62:myae092. [PMID: 39237465 DOI: 10.1093/mmy/myae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/07/2024] Open
Abstract
Cryptococcal meningitis (CM) is a well-recognized fungal infection, with substantial mortality in individuals infected with the human immunodeficiency virus (HIV). However, the incidence, risk factors, and outcomes in non-HIV adults remain poorly understood. This study aims to investigate the characteristics and prognostic indicators of CM in non-HIV adult patients, integrating a novel predictive model to guide clinical decision-making. A retrospective cohort of 64 non-HIV adult CM patients, including 51 patients from previous studies and 13 from the First Hospital of Shanxi Medical University, was analyzed. We assessed demographic features, underlying diseases, intracranial pressure, cerebrospinal fluid characteristics, and brain imaging. Using the least absolute shrinkage and selection operator (LASSO) method, and multivariate logistic regression, we identified significant variables and constructed a Nomogram prediction model. The model's calibration, discrimination, and clinical value were evaluated using the Bootstrap method, calibration curve, C index, goodness-of-fit test, receiver operating characteristic (ROC) analysis, and decision curve analysis. Age, brain imaging showing parenchymal involvement, meningeal and ventricular involvement, and previous use of immunosuppressive agents were identified as significant variables. The Nomogram prediction model displayed satisfactory performance with an akaike information criterion (AIC) value of 72.326, C index of 0.723 (0.592-0.854), and area under the curve (AUC) of 0.723, goodness-of-fit test P = 0.995. This study summarizes the clinical and imaging features of adult non-HIV CM and introduces a tailored Nomogram prediction model to aid in patient management. The identification of predictive factors and the development of the nomogram enhance our understanding and capacity to treat this patient population. The insights derived have potential clinical implications, contributing to personalized care and improved patient outcomes.
Collapse
Affiliation(s)
- Feng Liang
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Runyang Li
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Make Yao
- Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jing Wang
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yunhong Li
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Lijian Lei
- Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Junhong Guo
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xueli Chang
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| |
Collapse
|
3
|
Hargarten JC, Ssebambulidde K, Anjum SH, Vaughan MJ, Xu J, Song B, Ganguly A, Park YD, Scott T, Hammoud DA, Olszewski MA, Williamson PR. JAK/STAT Signaling Predominates in Human and Murine Fungal Post-infectious Inflammatory Response Syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.18.24301483. [PMID: 38293201 PMCID: PMC10827263 DOI: 10.1101/2024.01.18.24301483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Post-infection inflammatory syndromes have been increasingly recognized as a cause of host damage in a variety of infectious diseases including tuberculosis, bacterial meningitis, and COVID-19. Recently, a post-infectious inflammatory response syndrome (PIIRS) was described in non-HIV-infected cryptococcal fungal meningoencephalitis (CM) as a major cause of mortality. Inflammatory syndromes are particularly severe in neurological infections due to the skull's rigid structure which limits unchecked tissue expansion from inflammatory-induced edema. In the present studies, neurologic transcriptional pathway analysis utilizing a murine PIIRS model demonstrated a predominance of Janus kinase/signal transducer and activator of transcription (JAK/STAT) activation. JAK/STAT inhibitor treatment resulted in improvements in CNS damage markers, reductions in intrathecal CD44hiCD62lo CD4+ effector CD4+ T-cells and MHC II+ inflammatory myeloid cells, and weight gains in mice, the latter after treatment with antifungals. Based on these data, pathway-driven steroid-sparing human treatment for steroid-refractory PIIRS was initiated using short courses of the JAK/STAT inhibitor ruxolitinib. These were well tolerated and reduced activated HLA-DR+ CD4+ and CD8+ cells and inflammatory monocytes as well as improved brain imaging. Together, these findings support the role of JAK/STAT in PIIRS as well as further study of JAK/STAT inhibitors as potential adjunctive therapy for PIRS and other neural inflammatory syndromes.
Collapse
Affiliation(s)
- Jessica C. Hargarten
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kenneth Ssebambulidde
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Seher H. Anjum
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Malcolm J. Vaughan
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jintao Xu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
- Research Service, Ann Arbor VA Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| | - Brian Song
- Research Service, Ann Arbor VA Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| | - Anutosh Ganguly
- Research Service, Ann Arbor VA Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| | - Yoon-dong Park
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Terri Scott
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Dima A. Hammoud
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Michal A. Olszewski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
- Research Service, Ann Arbor VA Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, USA
| | - Peter R. Williamson
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
4
|
Hargarten JC, Anjum SH, Ssebambulidde K, Park YD, Vaughan MJ, Scott TL, Hammoud DA, Billioux BJ, Williamson PR. Tocilizumab as a Potential Adjunctive Therapy to Corticosteroids in Cryptococcal Post-infectious Inflammatory Response Syndrome (PIIRS): a Report of Two Cases. J Clin Immunol 2023; 43:2146-2155. [PMID: 37814084 DOI: 10.1007/s10875-023-01592-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023]
Abstract
PURPOSE Non-HIV cryptococcal meningoencephalitis (CM) in previously healthy individuals is often complicated by a post-infectious inflammatory response syndrome (c-PIIRS) characterized by neurologic deterioration after appropriate antifungal therapy with sterilization of CSF fungal cultures. c-PIIRS results from an excessive inflammatory response to fungal antigens released during fungal lysis, mediated by IFN-γ, IL-6, and activated T-helper cells, leading to immune-mediated host damage that responds to pulse-corticosteroid taper therapy (PCT). Typically, oral steroids may take up to a year to taper, and occasionally, patients will be refractory to steroid therapy or may demonstrate high-risk lesions such as those involving intracranial arteries. Also, patients can have problematic side effects from prolonged corticosteroids. Hence, appropriate adjunctive agents are needed to reduce corticosteroid doses in the treatment of c-PIIRS. Due to a possible role of IL-6 in pathogenesis, IL-6 receptor blockade by tocilizumab may be useful in the treatment of c-PIIRS. METHODS Two previously healthy patients with non-HIV cPIIRS were seen at the NIH. Due to concerns for intracranial vascular rupture in an area of inflammation (Patient 1) and intractable symptoms on high-dose oral corticosteroids (Patient 2) with evidence of persistent CSF inflammation, patients were treated with 4-8 mg/kg tocilizumab every 2 weeks while maintained on a constant dose of prednisone. RESULTS Two patients exhibited rapid immunological improvement following treatment with tocilizumab. Patient 1 remained vascularly stable, and Patient 2 had near resolution of headaches with improvement in mental status as evidenced by improved MOCA score. The two had improved CSF inflammatory parameters and no significant side effects. Both CSF cultures remained negative throughout treatment. CONCLUSIONS Tocilizumab may be a safe adjunctive treatment for CM-related PIIRS suggesting further study.
Collapse
Affiliation(s)
- Jessica C Hargarten
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bldg 10, Rm 11C208, Bethesda, MD, 20892, USA
| | - Seher H Anjum
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bldg 10, Rm 11C208, Bethesda, MD, 20892, USA
| | - Kenneth Ssebambulidde
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bldg 10, Rm 11C208, Bethesda, MD, 20892, USA
| | - Yoon-Dong Park
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bldg 10, Rm 11C208, Bethesda, MD, 20892, USA
| | - Malcolm J Vaughan
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bldg 10, Rm 11C208, Bethesda, MD, 20892, USA
| | - Terri L Scott
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bldg 10, Rm 11C208, Bethesda, MD, 20892, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Bridgette Jeanne Billioux
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Peter R Williamson
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bldg 10, Rm 11C208, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Song X, Duan R, Duan L, Wei L. Current knowledge of the immune reconstitution inflammatory syndrome in Whipple disease: a review. Front Immunol 2023; 14:1265414. [PMID: 37901208 PMCID: PMC10611461 DOI: 10.3389/fimmu.2023.1265414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Immune reconstitution inflammatory syndrome (IRIS) is characterized by exaggerated and dysregulated inflammatory responses that occur as a result of reconstitution of adaptive or innate immunity. A wide range of microorganisms have been found to be associated with IRIS, such as human immunodeficiency virus (HIV), Mycobacterium and actinobacteria. Whipple disease (WD) is an infectious disorder caused by the Gram-positive bacterium Tropheryma whipplei (T. whipplei) and IRIS also serves as a complication during its treament. Although many of these pathological mechanisms are shared with related inflammatory disorders, IRIS in WD exhibits distinct features and is poorly described in the medical literature. Novel investigations of the intestinal mucosal immune system have provided new insights into the pathogenesis of IRIS, elucidating the interplay between systemic and local immune responses. These insights may be used to identify monitoring tools for disease prevention and to develop treatment strategies. Therefore, this review synthesizes these new concepts in WD IRIS to approach the feasibility of manipulating host immunity and immune reconstitution of inflammatory syndromes from a newer, more comprehensive perspective and study hypothetical options for the management of WD IRIS.
Collapse
Affiliation(s)
| | | | | | - Lijuan Wei
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| |
Collapse
|
6
|
Yeh TK, Lin KP, Chuang YC, Wang LA, Chen CJ, Lee DY, Huang YT, Liu PY. Clinical metagenomics-assisted diagnosis of relapsed HIV-associated cryptococcal meningitis. Int J STD AIDS 2023; 34:740-744. [PMID: 37147923 DOI: 10.1177/09564624231174179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
To date, the identification of crypotococcal relapse remains clinically challenging as it often has similar manifestation with paradoxical immune reconstitution inflammatory syndrome. This study reports on the use of metagenomics assisted next generation sequencing to aid in diagnosing recurrent cryptococcal meningitis in an person living with HIV experiencing recurring symptoms, despite negative culture results for Cryptococcus neoformans in the cerebrospinal fluid. Although fungal culture was negative, when reads from metagenomic and metatranscriptomic sequencing performed on the Day 308 cerebrospinal fluid sample were mapped onto the genome from the Day 4 isolate, 589 specific reads were identified. NCBI BLAST search also revealed Cryptococcus-specific 18S/25S/28S ribosomal RNA, indicating a relapse of the disease.
Collapse
Affiliation(s)
- Ting Kuang Yeh
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Genomic Center for Infectious Diseases, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Kuan Pei Lin
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yu Chuan Chuang
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Li An Wang
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chih Jun Chen
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ding Yu Lee
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Yao Ting Huang
- Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi, Taiwan
| | - Po Yu Liu
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Genomic Center for Infectious Diseases, Taichung Veterans General Hospital, Taichung, Taiwan
- Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
7
|
Qi T, Chen F, Ma S, Zhang R, Liu L, Wang Z, Tang Y, Song W, Sun J, Yang J, Xu S, Zhao B, Shen Y, Chen J. Thalidomide for Recurrence of Symptoms following HIV-Associated Cryptococcal Meningitis. Infect Dis Ther 2023:10.1007/s40121-023-00817-x. [PMID: 37286922 DOI: 10.1007/s40121-023-00817-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023] Open
Abstract
INTRODUCTION Cryptococcal meningitis (CM) is a serious and fatal fungal infection that affects individuals infected with human immunodeficiency virus (HIV). Despite treatment, recurrence of symptoms is common and could lead to poor outcomes. Corticosteroids are not always useful in treating symptom recurrence following HIV/CM; thus, alternative therapy is needed. Thalidomide has been reported to be effective in treating symptom recurrence in several patients with HIV/CM. This retrospective study aimed to investigate the efficacy and safety of thalidomide in the treatment of symptom recurrence following HIV/CM. METHODS Patients who were treated with thalidomide for symptom recurrence following HIV/CM were retrospectively included. Clinical outcomes and adverse events were recorded and analyzed. RESULTS Sixteen patients admitted between July 2018 and September 2020 were included in the analysis. During a median follow-up period of 295 (166, 419) days, all patients achieved clinical improvement in a median of 7 (4, 20) days. Among them, nine (56%) achieved complete resolution of symptoms at a median of 187 (131, 253) days, including 40% (2/5) of immune reconstitution inflammatory syndrome (IRIS), 50% (3/6) of patients with elevated ICP only, and 80% (4/5) of patients with symptoms only. Seven (43%) patients experienced nine episodes of adverse events, but no severe adverse event attributable to thalidomide was observed. None of the patients withdrew from thalidomide due to adverse events. CONCLUSION Thalidomide appears to be effective and safe in treating different types of symptom recurrence in HIV/CM. This study provides preliminary evidence supporting future randomized clinical trials to further investigate the efficacy and safety of thalidomide in treating symptom recurrence in this population.
Collapse
Affiliation(s)
- Tangkai Qi
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, 2901 Caolang Road, Shanghai, 201508, China
| | - Fang Chen
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, 2901 Caolang Road, Shanghai, 201508, China
- Nanchang Ninth Hospital, Nanchang, 330002, Jiangxi, China
| | - Siyue Ma
- School of Nursing, Fudan University, Shanghai, China
| | - Renfang Zhang
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, 2901 Caolang Road, Shanghai, 201508, China
| | - Li Liu
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, 2901 Caolang Road, Shanghai, 201508, China
| | - Zhenyan Wang
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, 2901 Caolang Road, Shanghai, 201508, China
| | - Yang Tang
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, 2901 Caolang Road, Shanghai, 201508, China
| | - Wei Song
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, 2901 Caolang Road, Shanghai, 201508, China
| | - Jianjun Sun
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, 2901 Caolang Road, Shanghai, 201508, China
| | - Junyang Yang
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, 2901 Caolang Road, Shanghai, 201508, China
| | - Shuibao Xu
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, 2901 Caolang Road, Shanghai, 201508, China
| | - Bihe Zhao
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, 2901 Caolang Road, Shanghai, 201508, China
| | - Yinzhong Shen
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, 2901 Caolang Road, Shanghai, 201508, China
| | - Jun Chen
- Department of Infection and Immunology, Shanghai Public Health Clinical Center, 2901 Caolang Road, Shanghai, 201508, China.
| |
Collapse
|
8
|
Qin BE, Yuan D, Xu XF, Su Z, Gu M, Dai K, Peng FH, Jiang Y. Neurological worsening during treatment of HIV-negative cryptococcal meningitis in a patient with Evans syndrome. Future Microbiol 2023; 18:541-545. [PMID: 37314347 DOI: 10.2217/fmb-2022-0268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023] Open
Abstract
A 49-year-old woman with a rare autoimmune hematological disease, Evans syndrome, was admitted to the authors' hospital with immune reconstitution inflammatory syndrome-like reconstitution syndrome after effective antifungal therapy for cryptococcal meningitis. She initially improved after receiving corticosteroid treatment; after prednisone was tapered, her clinical presentation and brain imaging deteriorated but finally improved with the addition of thalidomide. Immune reconstitution inflammatory syndrome-like reconstitution syndrome is a rare complication in cryptococcal meningitis patients receiving immunosuppressive therapy. Thalidomide can be given in addition to corticosteroid therapy to effectively control the paradoxical inflammatory response and improve clinical outcomes.
Collapse
Affiliation(s)
- Bang-E Qin
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600# Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Dasen Yuan
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600# Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Xiao-Feng Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600# Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Zhihui Su
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600# Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Meifeng Gu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600# Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Kai Dai
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600# Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Fu-Hua Peng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600# Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Ying Jiang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600# Tianhe Road, Guangzhou, Guangdong, 510630, China
| |
Collapse
|
9
|
Wan Z, Tao R, Hui J, Liu X, Peng X, Guo Y, Zhu X, Huang Y, Zhu B. Efficacy and safety of lenalidomide in HIV-associated cryptococcal meningitis patients with persistent intracranial inflammation: an open-label, single-arm, prospective interventional study. J Neuroinflammation 2023; 20:38. [PMID: 36793113 PMCID: PMC9933282 DOI: 10.1186/s12974-023-02717-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Patients with human immunodeficiency virus-associated cryptococcal meningitis (HIV-CM) have persistent intracranial inflammation despite negative cerebrospinal fluid (CSF) fungal cultures after optimal treatment for CM, which could be devastating for the central nervous system. However, a definitive treatment strategy for persistent intracranial inflammation despite optimal antifungal therapies is undefined. METHODS We identified 14 HIV-CM patients with persistent intracranial inflammation and conducted a 24-week, prospective, interventional study. All participants received lenalidomide (25 mg, p.o.) on days 1 to 21 of a 28-day cycle. Follow-up lasted for 24 weeks with visits at baseline and weeks 4, 8, 12, and 24. The primary endpoint was the change in clinical manifestations, routine CSF parameters, and MRI findings after lenalidomide treatment. An exploratory analysis was made on changes in cytokine levels in CSF. Safety and efficacy analyses were undertaken in patients who received at least one dose of lenalidomide. RESULTS Of 14 participants, 11 patients completed the 24 weeks of follow-up. Rapid clinical remission following lenalidomide therapy was observed. Clinical manifestations (fever, headache, altered mentation) were reversed fully by week-4 and remained stable during follow-up. A significant reduction in white blood cell (WBC) count in CSF was noted occurred at week-4 (P = 0.009). The median protein concentration in CSF decreased from 1.4 (0.7-3.2) g/L at baseline to 0.9 (0.6-1.4) at week-4 (P = 0.004). The median albumin concentration in CSF decreased from 79.2 (48.4-149.8) mg/L at baseline to 55.3 (38.3-89.0) mg/L at week-4 (P = 0.011). The WBC count, protein level, and albumin level in CSF remained stable and approached a normal range through week-24. There was no significant change in immunoglobulin-G, intracranial pressure (ICP), or chloride-ion concentration at each visit. Brain MRI demonstrated multiple lesions to be absorbed post-therapy. Levels of tumor necrosis factor-α granulocyte colony stimulating factor, interleukin (IL)-6, and IL-17A decreased significantly during 24-week follow-up. Two (14.3%) patients had mild skin rash, which resolved spontaneously. Lenalidomide-related serious adverse events were not observed. CONCLUSION Lenalidomide could improve persistent intracranial inflammation in HIV-CM patients significantly and was well tolerated without serious adverse events observed. And the additional randomized controlled study is required to further validate the finding.
Collapse
Affiliation(s)
- Zhikai Wan
- grid.13402.340000 0004 1759 700XThe Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ran Tao
- grid.13402.340000 0004 1759 700XThe Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiangjin Hui
- grid.13402.340000 0004 1759 700XThe Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiang Liu
- grid.13402.340000 0004 1759 700XThe Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaorong Peng
- grid.13402.340000 0004 1759 700XThe Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongzheng Guo
- grid.13402.340000 0004 1759 700XThe Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xueling Zhu
- grid.13402.340000 0004 1759 700XThe Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Huang
- grid.13402.340000 0004 1759 700XThe Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Biao Zhu
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
10
|
Tao R, Peng X, Liu X, Su J, Lang G, Huang Y, Zhang Y, Zhu B. Lenalidomide Improves Cognitive Function and Reduces Immune Reconstitution Inflammatory Syndrome in HIV-1-Related Cryptococcal Meningitis. J Inflamm Res 2022; 15:2891-2899. [PMID: 35586751 PMCID: PMC9109900 DOI: 10.2147/jir.s353463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/27/2022] [Indexed: 11/26/2022] Open
Abstract
Cryptococcal meningitis (CM) is a common opportunistic infection in patients with acquired immune deficiency syndrome. Although there is a standardized treatment for CM, some patients still have CM-associated immune reconstitution inflammatory syndrome (IRIS) after anti-cryptococcal and antiretroviral therapy, which manifests as cognitive impairment. We report two cases of CM-associated IRIS in human immunodeficiency virus (HIV) patients that were treated with lenalidomide. The treatment yielded a rapid clinical remission and improved cognitive function in both patients; their Montreal Cognitive Assessment (MoCA) and International HIV Dementia Scale (IHDS) scores improved. Furthermore, we evaluated changes in 32 cytokines in the cerebrospinal fluid of two patients and found that both MoCA and IHDS were significantly negatively correlated with inflammation-related factors (growth-related oncogene, interleukin [IL]-10, IL-2, IL-8, macrophage inflammatory protein-1β, tumor necrosis factor [TNF]-α) and significantly positively correlated with dementia-related factors (αβ42 and total tau). Our study reveals the potential of lenalidomide in treating cognitive impairment caused by immune-mediated inflammation in patients with HIV-CM. Moreover, we speculate that lenalidomide improves cognitive function by regulating intracranial inflammation via multiple pathways, not only by TNF-α blocking.
Collapse
Affiliation(s)
- Ran Tao
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xiaorong Peng
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xiang Liu
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Junwei Su
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Guanjing Lang
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Ying Huang
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yafei Zhang
- PET Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Biao Zhu
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- Correspondence: Biao Zhu, Tel +0086-571-87236417, Fax +0086-571-87236416, Email
| |
Collapse
|
11
|
Han X, Liu H, Wang Y, Wang P, Wang X, Yi Y, Li X. A nomogram for predicting paradoxical immune reconstitution inflammatory syndrome associated with cryptococcal meningitis among HIV-infected individuals in China. AIDS Res Ther 2022; 19:20. [PMID: 35473805 PMCID: PMC9044738 DOI: 10.1186/s12981-022-00444-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/11/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Cryptococcal meningitis (CM) associated immune reconstitution inflammatory syndrome (CM-IRIS) is the second most common complication in HIV-infected individuals with cryptococcal meningitis, with a reported mortality rate ranging from 8 to 30%. Given the devastating consequences of CM-IRIS related intracranial neuroinflammation and its challenging in diagnosis, we conducted a study to explore the risk factors and the occurrence of paradoxical CM-IRIS in HIV-infected patients, which is of great value for prevention and clinical management. METHODS We conducted a retrospective cohort study to identify the indicators associated with paradoxical CM-IRIS among 86 HIV-infected patients with CM using univariate and multivariate cox analysis. A nomogram was constructed using selected variables to evaluate the occurrence of paradoxical CM-IRIS at 6 months and 12 months after ART initiation. The discrimination and calibration of the nomogram were assessed by concordance index (C-index) and calibration plots. Decision curves analysis (DCA) were used to evaluate clinical effectiveness of the nomogram. Subsequently, to help clinicians recognize patients at high risk faster, patients were divided into high-risk and low-risk groups according to the best cutoff point identified by X-tile. RESULTS Of 86 AIDS patients with CM, 22.1% experienced paradoxical CM-IRIS at a median of 32 days after antiretroviral therapy (ART) initiation. The occurrence of paradoxical CM-IRIS was associated with age, ART initiation within 4 weeks of antifungal treatment, a four-fold increase in CD4 T cell counts, C-reactive protein levels, and hemoglobin levels independently. These five variables were further used to construct a predictive nomogram. The C-index (0.876) showed the favorable discriminative ability of the nomogram. The calibration plot revealed a high consistency between the predicted and actual observations. DCA showed that the nomogram was clinically useful. Risk stratification based on the total score of the nomogram showed well-differentiated in the high-risk and low-risk groups. Clinicians should pay attention to patients with total points high than 273. CONCLUSIONS We identified the predictive factors of paradoxical CM-IRIS and constructed a nomogram to evaluate the occurrence of paradoxical CM-IRIS in 6 months and 12 months. The nomogram represents satisfactory performance and might be applied clinically to the screening and management of high-risk patients.
Collapse
Affiliation(s)
- Xiaoxu Han
- Department of Integrated Traditional Chinese and Western Medicine, Beijing Ditan Hospital, Capital Medical University, 8 Jingshundong Street, Chaoyang District, Beijing, 100015, People's Republic of China
| | - Hui Liu
- Department of Integrated Traditional Chinese and Western Medicine, Beijing Ditan Hospital, Capital Medical University, 8 Jingshundong Street, Chaoyang District, Beijing, 100015, People's Republic of China
| | - Yuqi Wang
- Department of Integrated Traditional Chinese and Western Medicine, Beijing Ditan Hospital, Capital Medical University, 8 Jingshundong Street, Chaoyang District, Beijing, 100015, People's Republic of China
| | - Peng Wang
- Department of Integrated Traditional Chinese and Western Medicine, Beijing Ditan Hospital, Capital Medical University, 8 Jingshundong Street, Chaoyang District, Beijing, 100015, People's Republic of China
| | - Xin Wang
- Department of Integrated Traditional Chinese and Western Medicine, Peking University Ditan Teaching Hospital, Beijing, 100015, People's Republic of China
| | - Yunyun Yi
- Department of Integrated Traditional Chinese and Western Medicine, Beijing Ditan Hospital, Capital Medical University, 8 Jingshundong Street, Chaoyang District, Beijing, 100015, People's Republic of China
| | - Xin Li
- Department of Integrated Traditional Chinese and Western Medicine, Beijing Ditan Hospital, Capital Medical University, 8 Jingshundong Street, Chaoyang District, Beijing, 100015, People's Republic of China.
- Department of Integrated Traditional Chinese and Western Medicine, Peking University Ditan Teaching Hospital, Beijing, 100015, People's Republic of China.
| |
Collapse
|
12
|
Dzobo K. What to Do for Increasing Cancer Burden on the African Continent? Accelerating Public Health Diagnostics Innovation for Prevention and Early Intervention on Cancers. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:567-579. [PMID: 34399067 DOI: 10.1089/omi.2021.0098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
No other place illustrates the increasing burden of cancer than in Africa and in particular, sub-Saharan Africa. Many of the individuals to be diagnosed with cancer will be in low-resource settings in the future due to, for example, an increase in populations and aging, and high co-morbidity with infections with viruses such as human immunodeficiency virus (HIV) and human papillomavirus (HPV), as well as the presence of infectious agents linked to cancer development. Due to lack of prevention and diagnostic innovation, patients present with advanced cancers, leading to poor survival and increased mortality. HIV infection-associated cancers such as B cell lymphomas, Kaposi's sarcoma, and HPV-associated cancers such as cervical cancer are particularly noteworthy in this context. Recent reports show that a host of other cancers are also associated with viral infection and these include lung, oral cavity, esophageal, and pharyngeal, hepatocellular carcinoma, and anal and vulvar cancers. This article examines the ways in which diagnostic innovation empowered by integrative biology and informed by public health priorities can improve cancer prevention or early intervention in Africa and beyond. In addition, I argue that because diagnostic biomarkers can often overlap with novel therapeutic targets, diagnostics research and development can have broader value for and impact on medical innovation.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
13
|
Abstract
Cryptococcosis is an invasive fungal infection of global significance caused by yeasts of the genus Cryptococcus. The prevalence of HIV in certain areas of the world and the expanding population of immunocompromised patients contribute to the ongoing global disease burden. Point-of-care serologic testing has allowed for more rapid diagnosis and implementation of screening programs in resource-limited settings. Management involves therapy aimed at reduction in fungal burden, maintenance of intracranial pressure, and optimization of host immunity. Despite diagnostic and therapeutic advances, cryptococcosis continues to be a disease with unacceptably high incidence and mortality, particularly in resource-limited settings.
Collapse
Affiliation(s)
- Alexis C Gushiken
- Division of Infectious Diseases, Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - Kapil K Saharia
- Division of Infectious Diseases, Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - John W Baddley
- Division of Infectious Diseases, Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA.
| |
Collapse
|
14
|
Anjum S, Dean O, Kosa P, Magone MT, King KA, Fitzgibbon E, Kim HJ, Zalewski C, Murphy E, Billioux BJ, Chisholm J, Brewer CC, Krieger C, Elsegeiny W, Scott TL, Wang J, Hunsberger S, Bennett JE, Nath A, Marr KA, Bielekova B, Wendler D, Hammoud DA, Williamson P. Outcomes in Previously Healthy Cryptococcal Meningoencephalitis Patients treated with Pulse - Taper Corticosteroids for Post-infectious Inflammatory Syndrome. Clin Infect Dis 2020; 73:e2789-e2798. [PMID: 33383587 DOI: 10.1093/cid/ciaa1901] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cryptococcal meningoencephalitis (CM) is a major cause of mortality in immunosuppressed patients and previously healthy individuals. In the latter, a post-infectious inflammatory response syndrome (PIIRS) is associated with poor clinical response despite antifungal therapy and negative CSF cultures. Data on effective treatment are limited. METHODS Between March 2015 and March 2020, 15 consecutive previously healthy patients with CM and PIIRS were treated with adjunctive pulse corticosteroid taper therapy (PCT) consisting of intravenous methylprednisolone 1 gm daily for 1 week followed by oral prednisone 1 mg/kg/d, tapered based on clinical and radiological response plus oral fluconazole. Montreal Cognitive Assessments (MOCA), Karnofsky Performance scores, MRI brain scanning, ophthalmic and audiologic exams, CSF parameters including cellular and soluble immune responses were compared at PIIRS diagnosis and after methylprednisolone completion. RESULTS The median time from antifungal treatment to steroid initiation was 6 weeks. The most common symptoms at PIIRS diagnosis were altered mental status and vision changes. All patients demonstrated significant improvements in MOCA and Karnofsky scores at 1 month (p<0.0003), which was accompanied by improvements in CSF glucose, WBC, protein, cellular and soluble inflammatory markers 1 week after receiving corticosteroids (CS) (p<0.003). All patients with papilledema and visual field deficits also exhibited improvement (p<0.0005). Five out of 7 patients who underwent audiological testing demonstrated hearing improvement. Brain MRI showed significant improvement of radiological findings (p=0.001). CSF cultures remained negative. CONCLUSIONS PCT in this small cohort of PIIRS was associated with improvements in CM-related complications with minimal toxicity in the acute setting.
Collapse
Affiliation(s)
- Seher Anjum
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Owen Dean
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Peter Kosa
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - M Teresa Magone
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kelly A King
- National Institute on Deafness and Other Communication Disorders, National Institute of Health, Bethesda, MD, USA
| | - Edmond Fitzgibbon
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - H Jeff Kim
- National Institute on Deafness and Other Communication Disorders, National Institute of Health, Bethesda, MD, USA
| | - Chris Zalewski
- National Institute on Deafness and Other Communication Disorders, National Institute of Health, Bethesda, MD, USA
| | - Elizabeth Murphy
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bridgette Jeanne Billioux
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer Chisholm
- National Institute on Deafness and Other Communication Disorders, National Institute of Health, Bethesda, MD, USA
| | - Carmen C Brewer
- National Institute on Deafness and Other Communication Disorders, National Institute of Health, Bethesda, MD, USA
| | - Chantal Krieger
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Waleed Elsegeiny
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Terri L Scott
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jing Wang
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | - John E Bennett
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Kieren A Marr
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Bibiana Bielekova
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Dima A Hammoud
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Peter Williamson
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
15
|
Hamashima R, Uchino J, Morimoto Y, Iwasaku M, Kaneko Y, Yamada T, Takayama K. Association of immune checkpoint inhibitors with respiratory infections: A review. Cancer Treat Rev 2020; 90:102109. [PMID: 33038863 DOI: 10.1016/j.ctrv.2020.102109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Treatment with immune-checkpoint inhibitors (ICIs) has shown efficacy against a variety of cancer types. The use of anti PD-1, anti PD-L1, and anti CTLA-4 antibodies is rapidly expanding. The side effects of ICIs are very different from conventional cytocidal anticancer and molecular target drugs, and may extend to the digestive organs, respiratory organs, thyroid gland, pituitary gland, skin, and others. Although the details of these adverse events are becoming increasingly apparent, much is unknown regarding the effects and adverse events related to infections. This review focuses specifically on the impact of ICIs on respiratory infections. The impact of ICIs on pathogens varies depending on the significance of the role of T-cell immunity in the immune response to the specific pathogen, as well as the different modes of infection (i.e., acute or chronic), although the impact of ICIs on the clinical outcome of infections in humans has not yet been well studied. Enhanced clearance of many pathogens has been shown because immune checkpoint inhibition activates T cells. In contrast, reactivation of tuberculosis associated with ICI use has been reported, and therefore caution is warranted. In COVID-19 pneumonia, ICI administration may lead to exacerbation; however, it is also possible that ICI may be used for the treatment of COVID-19. It has also been shown that ICI has potential in the treatment of intractable filamentous fungal infections. Therefore, expanded clinical applications are expected.
Collapse
Affiliation(s)
- Ryosuke Hamashima
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Junji Uchino
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Yoshie Morimoto
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Masahiro Iwasaku
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yoshiko Kaneko
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tadaaki Yamada
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Koichi Takayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
16
|
Abers MS, Lionakis MS, Kontoyiannis DP. Checkpoint Inhibition and Infectious Diseases: A Good Thing? Trends Mol Med 2019; 25:1080-1093. [PMID: 31494023 DOI: 10.1016/j.molmed.2019.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022]
Abstract
The mammalian immune system has evolved the capacity to detect and destroy tumor cells. Tumors utilize multiple strategies to evade host immune surveillance, including the induction of the checkpoint molecules cytotoxic T lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1) to suppress antitumor immunity. Pharmacologic blockade of these molecules with checkpoint inhibitors (CPIs) restores T cell function and prolongs survival in patients with various malignancies. Emerging evidence suggests that the same checkpoint pathways may play a crucial role during infections. Indeed, CPIs appear promising as immunotherapeutic agents in infectious diseases, although their efficacy varies depending on pathogen-, cell-, and organ-specific factors. More research will be necessary to clarify the effects and safety of CPIs on clinically relevant outcomes of human infection.
Collapse
Affiliation(s)
- Michael S Abers
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center (UT-MDACC), Houston, TX, USA
| |
Collapse
|
17
|
Abstract
Purpose of review To perform an extensive review of recent literature and provide an update on the current epidemiology, clinical features and management of cryptococcal disease with a focus on the differences between patients depending on their immune status. Recent findings Emerging literature has highlighted the inflammatory pathophysiology and varied manifestations of cryptococcal infections in patients who are apparently healthy but paradoxically have a more critical clinical course compared to their immunosuppressed counterparts. Summary Non-HIV cryptococcal meningitis has greater mortality compared to that seen in HIV patients. Basic science experiments closely analyzing the underlying pathophysiological response to this infection have demonstrated the predominant role of T cell-mediated inflammatory injury in causing worse clinical outcomes. Further studies are needed to define the need for immunosuppressive agents in the treatment of this illness.
Collapse
Affiliation(s)
- Seher Anjum
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Peter R Williamson
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|