1
|
Agwa MM, Marzouk RE, Sabra SA. Advances in active targeting of ligand-directed polymeric nanomicelles via exploiting overexpressed cellular receptors for precise nanomedicine. RSC Adv 2024; 14:23520-23542. [PMID: 39071479 PMCID: PMC11273262 DOI: 10.1039/d4ra04069d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Many of the utilized drugs which already exist in the pharmaceutical sector are hydrophobic in nature. These drugs are characterized by being poorly absorbed and difficult to formulate in aqueous environments with low bioavailability, which could result in consuming high and frequent doses in order to fulfil the required therapeutic effect. As a result, there is a decisive demand to find modern alternatives to overcome all these drawbacks. Self-assembling polymeric nanomicelles (PMs) with their unique structure appear to be a fascinating choice as a pharmaceutical carrier system for improving the solubility & bioavailability of many drugs. PMs as drug carriers have many advantages including suitable size, high stability, prolonged circulation time, elevated cargo capacity and controlled therapeutic release. Otherwise, the pathological features of some diseased cells, like cancer, allow PMs with particle size <200 nm to be passively uptaken via enhanced permeability and retention phenomenon (EPR). However, the passive targeting approach was proven to be insufficient in many cases. Consequently, the therapeutic efficiency of these PMs can be further reinforced by enhancing their cellular internalization via incorporating targeting ligands. These targeting ligands can enhance the assemblage of loaded cargos in the intended tissues via receptor-mediated endocytosis through exploiting receptors robustly expressed on the exterior of the intended tissue while minimizing their toxic effects. In this review, the up-to-date approaches of harnessing active targeting ligands to exploit certain overexpressed receptors will be summarized concerning the functionalization of the exterior of PMs for ameliorating their targeting potential in the scope of nanomedicine.
Collapse
Affiliation(s)
- Mona M Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre 33 El-Behooth St, Dokki Giza 12622 Egypt +202 33370931 +202 33371635
| | - Rehab Elsayed Marzouk
- Medical Biochemistry Department, Faculty of Medicine, Helwan University Helwan Cairo Egypt
| | - Sally A Sabra
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University Alexandria 21526 Egypt
| |
Collapse
|
2
|
Waglewska E, Kulbacka J, Bazylinska U. Superior Drug Delivery Performance of Multifunctional Bilosomes: Innovative Strategy to Kill Skin Cancer Cells for Nanomedicine Application. Int J Nanomedicine 2024; 19:4701-4717. [PMID: 38808148 PMCID: PMC11131132 DOI: 10.2147/ijn.s450181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/19/2024] [Indexed: 05/30/2024] Open
Abstract
Purpose Numerous failures in melanoma treatment as a highly aggressive form of skin cancer with an unfavorable prognosis and excessive resistance to conventional therapies are prompting an urgent search for more effective therapeutic tools. Consequently, to increase the treatment efficiency and to reduce the side effects of traditional administration ways, herein, it has become crucial to combine photodynamic therapy as a promising therapeutic approach with the selectivity and biocompatibility of a novel colloidal transdermal nanoplatform for effective delivery of hybrid cargo with synergistic effects on melanoma cells. Methods The self-assembled bilosomes, co-stabilized with L-α-phosphatidylcholine, sodium cholate, Pluronic® P123, and cholesterol, were designated, and the stability of colloidal vesicles was studied using dynamic and electrophoretic light scattering, also provided in cell culture medium (Dulbecco's Modified Eagle's Medium). The hybrid compounds - a classical photosensitizer (Methylene Blue) along with a complementary natural polyphenolic agent (curcumin), were successfully co-loaded, as confirmed by UV-Vis, ATR-FTIR, and fluorescent spectroscopies. The biocompatibility and usefulness of the polymer functionalized bilosome with loaded double cargo were demonstrated in vitro cyto- and phototoxicity experiments using normal keratinocytes and melanoma cancer cells. Results The in vitro bioimaging and immunofluorescence study upon human skin epithelial (A375) and malignant (Me45) melanoma cell lines established the protective effect of the PEGylated bilosome surface. This effect was confirmed in cytotoxicity experiments, also determined on human cutaneous (HaCaT) keratinocytes. The flow cytometry experiments indicated the enhanced uptake of the encapsulated hybrid cargo compared to the non-loaded MB and CUR molecules, as well as a selectivity of the obtained nanocarriers upon tumor cell lines. The phyto-photodynamic action provided 24h-post irradiation revealed a more significant influence of the nanoplatform on Me45 cells in contrast to the A375 cell line, causing the cell viability rate below 20% of the control. Conclusion As a result, we established an innovative and effective strategy for potential metastatic melanoma treatment through the synergism of phyto-photodynamic therapy and novel bilosomal-origin nanophotosensitizers.
Collapse
Affiliation(s)
- Ewelina Waglewska
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
| | - Urszula Bazylinska
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| |
Collapse
|
3
|
Lee Y, Kim S, Seo J, Kim HK, Han YP, Park EJ, Park JO, Yang CS, Kim JW. Fibroblast-targeting polymeric nanovehicles to enhance topical wound healing through promotion of PAR-2 receptor-mediated endocytosis. Biomater Sci 2023; 11:450-460. [PMID: 36448995 DOI: 10.1039/d2bm01357f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The level of collagen production critically determines skin wound contraction. If an intelligent skin drug delivery technology that enables collagen production in a specific wound skin area is developed, a breakthrough in wound healing treatment would be expected. However, such an intelligent drug delivery technology has not yet been developed as much as in the field of anticancer therapy. In this study, we propose a smart drug delivery system using polymeric nanovehicles (PNVs), in which the periphery is conjugated with a fibroblast-targeting collagen-derived peptide, KTTKS (Lys-Thr-Thr-Lys-Ser). We showed that surface engineering of PNVs with simultaneous PEGylation and peptide patching improved the dispersibility of PNVs, while promoting selective cellular uptake to fibroblasts via PAR-2 receptor-mediated endocytosis. In vitro collagen production and in vivo wound healing assays revealed that curcumin-loaded fibroblast-targeting PNVs significantly enhanced collagen production and wound healing activities, thus promising effective skin tissue regeneration.
Collapse
Affiliation(s)
- Yousong Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16149, Republic of Korea.
| | - Seulgi Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16149, Republic of Korea.
| | - Jihye Seo
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16149, Republic of Korea.
| | - Hyo Keun Kim
- Department of Molecular & Life Science and Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea.
| | - Yeong Pin Han
- Department of Molecular & Life Science and Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea.
| | - Eun Ju Park
- Deabong Life Science Co., Incheon 21697, Republic of Korea
| | - Jin Oh Park
- Deabong Life Science Co., Incheon 21697, Republic of Korea
| | - Chul-Su Yang
- Department of Molecular & Life Science and Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea.
| | - Jin Woong Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16149, Republic of Korea.
| |
Collapse
|
4
|
Rinaldi F, Hanieh PN, Maurizi L, Longhi C, Uccelletti D, Schifano E, Del Favero E, Cantù L, Ricci C, Ammendolia MG, Paolino D, Froiio F, Marianecci C, Carafa M. Neem Oil or Almond Oil Nanoemulsions for Vitamin E Delivery: From Structural Evaluation to in vivo Assessment of Antioxidant and Anti-Inflammatory Activity. Int J Nanomedicine 2022; 17:6447-6465. [PMID: 36573206 PMCID: PMC9789705 DOI: 10.2147/ijn.s376750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 11/12/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose Vitamin E (VitE) may be classified in "the first line of defense" against the formation of reactive oxygen species. Its inclusion in nanoemulsions (NEs) is a promising alternative to increase its bioavailability. The aim of this study was to compare O/W NEs including VitE based on Almond or Neem oil, showing themselves antioxidant properties. The potential synergy of the antioxidant activities of oils and vitamin E, co-formulated in NEs, was explored. Patients and Methods NEs have been prepared by sonication and deeply characterized evaluating size, ζ-potential, morphology (TEM and SAXS analyses), oil nanodroplet feature, and stability. Antioxidant activity has been evaluated in vitro, in non-tumorigenic HaCaT keratinocytes, and in vivo through fluorescence analysis of C. elegans transgenic strain. Moreover, on healthy human volunteers, skin tolerability and anti-inflammatory activity were evaluated by measuring the reduction of the skin erythema induced by the application of a skin chemical irritant (methyl-nicotinate). Results Results confirm that Vitamin E can be formulated in highly stable NEs showing good antioxidant activity on keratinocyte and on C. elegans. Interestingly, only Neem oil NEs showed some anti-inflammatory activity on healthy volunteers. Conclusion From the obtained results, Neem over Almond oil is a more appropriate candidate for further studies on this application.
Collapse
Affiliation(s)
- Federica Rinaldi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
| | - Patrizia Nadia Hanieh
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
| | - Linda Maurizi
- Dipartimento di Sanità pubblica e Malattie infettive, Sapienza Università di Roma, Rome, Italy
| | - Catia Longhi
- Dipartimento di Sanità pubblica e Malattie infettive, Sapienza Università di Roma, Rome, Italy
| | - Daniela Uccelletti
- Dipartimento di Biologia e Biotecnologie Charles Darwin, Sapienza Università di Roma, Rome, Italy
| | - Emily Schifano
- Dipartimento di Biologia e Biotecnologie Charles Darwin, Sapienza Università di Roma, Rome, Italy
| | - Elena Del Favero
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, Milan, Italy
| | - Laura Cantù
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, Milan, Italy
| | - Caterina Ricci
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, Milan, Italy
| | - Maria Grazia Ammendolia
- Centro Nazionale Tecnologie Innovative in Sanità Pubblica, Istituto Superiore di Sanità, Rome, Italy
| | - Donatella Paolino
- Dipartimento di Medicina Sperimentale e Clinica, Università Magna Graecia di Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Francesca Froiio
- Dipartimento di Medicina Sperimentale e Clinica, Università Magna Graecia di Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Carlotta Marianecci
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
| | - Maria Carafa
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy,Correspondence: Maria Carafa; Carlotta Marianecci, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, Roma, 00185, Italy, Tel +390649913603; +390649913970, Fax +39064913133, Email ;
| |
Collapse
|
5
|
Salvioni L, Morelli L, Ochoa E, Labra M, Fiandra L, Palugan L, Prosperi D, Colombo M. The emerging role of nanotechnology in skincare. Adv Colloid Interface Sci 2021; 293:102437. [PMID: 34023566 DOI: 10.1016/j.cis.2021.102437] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
The role of cosmetic products is rapidly evolving in our society, with their use increasingly seen as an essential contribution to personal wellness. This suggests the necessity of a detailed elucidation of the use of nanoparticles (NPs) in cosmetics. The aim of the present work is to offer a critical and comprehensive review discussing the impact of exploiting nanomaterials in advanced cosmetic formulations, emphasizing the beneficial effects of their extensive use in next-generation products despite a persisting prejudice around the application of nanotechnology in cosmetics. The discussion here includes an interpretation of the data underlying generic information reported on the product labels of formulations already available in the marketplace, information that often lacks details identifying specific components of the product, especially when nanomaterials are employed. The emphasis of this review is mainly focused on skincare because it is believed to be the cosmetics market sector in which the impact of nanotechnology is being seen most significantly. To date, nanotechnology has been demonstrated to improve the performance of cosmetics in a number of different ways: 1) increasing both the entrapment efficiency and dermal penetration of the active ingredient, 2) controlling drug release, 3) enhancing physical stability, 4) improving moisturizing power, and 5) providing better UV protection. Specific attention is paid to the effect of nanoparticles contained in semisolid formulations on skin penetration issues. In light of the emerging concerns about nanoparticle toxicity, an entire section has been devoted to listing detailed examples of nanocosmetic products for which safety has been investigated.
Collapse
|
6
|
Cho JH, Kang JY, Kim S, Baek HR, Kim J, Jang KS, Kim JW. Skin protein-derived peptide-conjugated vesicular nanocargos for selected skin cell targeting and consequent activation. J Mater Chem B 2021; 9:4956-4962. [PMID: 34109337 DOI: 10.1039/d1tb00935d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Several studies have reported that a drug nanocarrier conjugated with ligands having cell binding ability improves drug delivery performance, but multiple cell-targeting and the resultant activation in designated cells has not been investigated yet. This study reports a skin cell multi-targeting vesicular nanocargo system. We selectively conjugated several skin protein-derived cell-targeting peptides (CTPs), including KTTKS, NAP-amide, and Lam332, to amphiphilic polymer-reinforced lipid nanovesicles (PLNVs) to specifically target fibroblasts, melanocytes, and keratinocytes, respectively, through effective association with the corresponding cell membrane receptors. We then showed that CTP-conjugated PLNVs specifically bind to the designated skin cells, even in a mixture of different types of skin cells, eventually leading to skin cell multi-targeting and consequent activation. These results highlight that this CTP-conjugated PLNV system has significant potential for developing an intelligent cellular drug delivery technology for dermatological applications.
Collapse
Affiliation(s)
- Jung Hyeon Cho
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
7
|
Hyaluronan-Based Nanohydrogels as Effective Carriers for Transdermal Delivery of Lipophilic Agents: Towards Transdermal Drug Administration in Neurological Disorders. NANOMATERIALS 2017; 7:nano7120427. [PMID: 29207551 PMCID: PMC5746917 DOI: 10.3390/nano7120427] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/26/2017] [Accepted: 11/30/2017] [Indexed: 02/04/2023]
Abstract
We suggest a convenient nanoemulsion fabrication method to create hyaluronan (HA)-based nanohydrogels for effective transdermal delivery. First, hyaluronan-conjugated dodecylamine (HA-Do) HA-based polymers to load the lipophilic agents were synthesized with hyaluronan (HA) and dodecylamine (Do) by varying the substitution ratio of Do to HA. The synthetic yield of HA-Do was more than 80% (HA-Do (A): 82.7 ± 4.7%, HA-Do (B): 87.1 ± 3.9% and HA-Do (C): 81.4 ± 4.5%). Subsequently, nanohydrogels were fabricated using the nanoemulsion method. Indocyanine green (ICG) simultaneously self-assembled with HA-Do, and the size depended on the substitution ratio of Do in HA-Do (nanohydrogel (A): 118.0 ± 2.2 nm, nanohydrogel (B): 121.9 ± 11.4 nm, and nanohydrogel (C): 142.2 ± 3.8 nm). The nanohydrogels were delivered into cells, and had excellent biocompatibility. Especially, nanohydrogel (A) could deliver and permeate ICG into the deep skin layer, the dermis. This suggests that nanohydrogels can be potent transdermal delivery systems.
Collapse
|
8
|
Akhtar N, Khan RA. Liposomal systems as viable drug delivery technology for skin cancer sites with an outlook on lipid-based delivery vehicles and diagnostic imaging inputs for skin conditions'. Prog Lipid Res 2016; 64:192-230. [DOI: 10.1016/j.plipres.2016.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/15/2016] [Accepted: 08/09/2016] [Indexed: 12/19/2022]
|
9
|
Talegaonkar S, Negi LM. Nanoemulsion in Drug Targeting. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1007/978-3-319-11355-5_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Kwon SS, Kong BJ, Cho WG, Park SN. Formation of stable hydrocarbon oil-in-water nanoemulsions by phase inversion composition method at elevated temperature. KOREAN J CHEM ENG 2014. [DOI: 10.1007/s11814-014-0234-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Dicephalic ionic surfactants in fabrication of biocompatible nanoemulsions: Factors influencing droplet size and stability. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2013.12.042] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Atrux-Tallau N, Lasselin J, Han SH, Delmas T, Bibette J. Quantitative analysis of ligand effects on bioefficacy of nanoemulsion encapsulating depigmenting active. Colloids Surf B Biointerfaces 2014; 122:390-395. [PMID: 25087020 DOI: 10.1016/j.colsurfb.2014.07.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/09/2014] [Accepted: 07/14/2014] [Indexed: 12/11/2022]
Abstract
Efficient skin delivery of active molecules is the main challenge to overcome in order to achieve significant therapeutic efficiency of cosmetics or dermo-pharmaceutical products. Nanocarriers such as nanoemulsions have been envisaged to overcome main challenges of active solubilization, protection and transport to their site of biological action. Nonetheless, their skin permeation is still limited and a new approach is required to significantly improve bioavailability. We here explored the possibility of increasing the whitening activity of a model active, licorice, by implementing a targeting approach of nanoemulsions to melanocyte cells. Targeting requires particle surface modification with specific molecules favoring nanoemulsion/cells contact through ligand-receptor interactions. The uniqueness of our strategy is that unlike classical covalent chemical grafting, we propose a self-assembled strategy based on a selection of amphiphilic ligands able to localize at nanoemulsion droplets interface. Four ligand candidates were thus assayed in terms of formulation and in vitro biological evaluation: a palmitoyl-peptide (palmitoyl-GQPR), a lipidized hyaluronic acid (caproyl-HA) and two amphiphilic actives (polydatin and isopilosine). A functional analysis based on a cellular assay of melanin inhibition was realized. The intrinsic properties of ligand candidates were first evaluated. Then, nanoemulsions encapsulating a drug model, licorice, and targeted with the different ligand candidates were assayed. The use of caproyl-HA significantly improved bioefficacy of the encapsulated licorice, suggesting a better interaction with the cells. The improved value observed was not attributed to a synergetic action as caproyl-HA did not evidence intrinsic melanogenesis modulation activity. In this study, we demonstrated the feasibility of targeting nanoemulsion droplets without chemical covalent modification of nanoemulsion droplets to increase bioefficacy of encapsulated drugs in vitro.
Collapse
Affiliation(s)
- Nicolas Atrux-Tallau
- Laboratoire Colloïdes et Matériaux Divisés, UMR CNRS CBI 8231, 10, rue Vauquelin, F-75231 Paris Cedex 05, France.
| | - Juliette Lasselin
- Laboratoire Colloïdes et Matériaux Divisés, UMR CNRS CBI 8231, 10, rue Vauquelin, F-75231 Paris Cedex 05, France.
| | - Sang-Hoon Han
- Amore-Pacific Co. R&D Center, 314-1, Bora-dong, Giheung-gu, Yongin-si, Gyeonggi-do 449-729, South Korea
| | - Thomas Delmas
- Capsum, Heliopolis, 3 allée des Maraîchers, F-13013 Marseille, France.
| | - Jérôme Bibette
- Laboratoire Colloïdes et Matériaux Divisés, UMR CNRS CBI 8231, 10, rue Vauquelin, F-75231 Paris Cedex 05, France.
| |
Collapse
|
13
|
Choi S, Kim JW, Lee YJ, Delmas T, Kim C, Park S, Lee H. Evaluation of transdermal delivery of nanoemulsions in ex vivo porcine skin using two-photon microscopy and confocal laser-scanning microscopy. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:106006. [PMID: 25321398 DOI: 10.1117/1.jbo.19.10.106006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/11/2014] [Indexed: 06/04/2023]
Abstract
This study experimentally evaluates the self-targeting ability of asiaticoside-loaded nanoemulsions compared with nontargeted nanoemulsions in ex vivo experiments with porcine skin samples. Homebuilt two-photon and confocal laser-scanning microscopes were employed to noninvasively examine the transdermal delivery of two distinct nanoemulsions. Prior to the application of nanoemulsions, we noninvasively observed the morphology of porcine skin using two-photon microscopy. We have successfully visualized the distributions of the targeted and nontargeted nanoemulsions absorbed into the porcine skin samples. Asiaticoside-loaded nanoemulsions showed an improved ex vivo transdermal delivery through the stratum corneum compared with nonloaded nanoemulsions. As a secondary measure, nanoemulsions-applied samples were sliced in the depth direction with a surgical knife in order to obtain the complete depth-direction distribution profile of Nile red fluorescence. XZ images demonstrated that asiaticoside-loaded nanoemulsion penetrated deeper into the skin compared with nontargeted nanoemulsions. The basal layer boundary is clearly visible in the case of the asiaticoside-loaded skin sample. These results reaffirm the feasibility of using self-targeting ligands to improve permeation through the skin barrier for cosmetics and topical drug applications.
Collapse
Affiliation(s)
- Sanghoon Choi
- Kyungpook National University, College of Engineering, School of Mechanical Engineering, 80 Daehak-ro Buk-gu, Daegu 702-701, Republic of Korea
| | - Jin Woong Kim
- Hanyang University, Department of Applied Chemistry, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, Republic of KoreacHanyang University, Department of Bionano Technology, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, 426-791, Republic of Korea
| | - Yong Joong Lee
- Kyungpook National University, College of Engineering, School of Mechanical Engineering, 80 Daehak-ro Buk-gu, Daegu 702-701, Republic of Korea
| | - Thomas Delmas
- Capsum SAS, Heliopolis Batiment C, 3 allée des Maraichers, 13013 Marseille, France
| | - Changhwan Kim
- Kyungpook National University, College of Engineering, School of Mechanical Engineering, 80 Daehak-ro Buk-gu, Daegu 702-701, Republic of Korea
| | - Soyeun Park
- Keimyung University, College of Pharmacy, 1095 Dalgubeol-daero Dalseo-gu, Daegu 704-701, Republic of Korea
| | - Ho Lee
- Kyungpook National University, College of Engineering, School of Mechanical Engineering, 80 Daehak-ro Buk-gu, Daegu 702-701, Republic of Korea
| |
Collapse
|