1
|
de Morais H, Bôas SKFV, de Souza CO, Miksza DR, Moreira CCL, Kurauti MA, Silva FDF, Cassolla P, Silva FGD, Limiere LC, Grassiolli S, Bazotte RB, de Souza HM. Peripheral insulin resistance is early, progressive, and correlated with cachexia in Walker-256 tumor-bearing rats. Cell Biochem Funct 2023; 41:1252-1262. [PMID: 37787620 DOI: 10.1002/cbf.3859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/14/2023] [Accepted: 09/06/2023] [Indexed: 10/04/2023]
Abstract
Insulin (INS) resistance is often found in cancer-bearing, but its correlation with cachexia development is not completely established. This study investigated the temporal sequence of the development of INS resistance and cachexia to establish the relationship between these factors in Walker-256 tumor-bearing rats (TB rats). INS hepatic sensitivity and INS resistance-inducing factors, such as free fatty acids (FFA) and tumor necrosis factor-α (TNF-α), were also evaluated. Studies were carried out on Days 2, 5, 8, and/or 12 after inoculation of tumor cells in rats. The peripheral INS sensitivity was assessed by the INS tolerance test and the INS hepatic sensitivity in in situ liver perfusion. TB rats with 5, 8, and 12 days of tumor, but not 2 days, showed decreased peripheral INS sensitivity (INS resistance), retroperitoneal fat, and body weight, compared to healthy rats, which were more pronounced on Day 12. Gastrocnemius muscle wasting was observed only on Day 12 of tumor. The peripheral INS resistance was significantly correlated (r = -.81) with weight loss. Liver INS sensitivity of TB rats with 2 and 5 days of tumor was unchanged, compared to healthy rats. TB rats with 12 days of tumor showed increased plasma FFA and increased TNF-α in retroperitoneal fat and liver, but not in the gastrocnemius, compared to healthy rats. In conclusion, peripheral INS resistance is early, starts along with fat and weight loss and before muscle wasting, progressive, and correlated with cachexia, suggesting that it may play an important role in the pathogenesis of the cachectic process in TB rats. Therefore, early correction of INS resistance may be a therapeutic approach to prevent and treat cancer cachexia.
Collapse
Affiliation(s)
- Hely de Morais
- Department of Physiological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | | | - Camila O de Souza
- Department of Physiological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Daniele Romani Miksza
- Department of Physiological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Carolina C L Moreira
- Department of Physiological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Mirian Ayumi Kurauti
- Department of Physiological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Flaviane de F Silva
- Department of Physiological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Priscila Cassolla
- Department of Physiological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | | | | | - Sabrina Grassiolli
- Department of Physiological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Roberto B Bazotte
- Department of Physiological Sciences, State University of Maringa, Maringá, Paraná, Brazil
| | - Helenir M de Souza
- Department of Physiological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
2
|
Can E, Bastiaansen JAM, Couturier DL, Gruetter R, Yoshihara HAI, Comment A. [ 13C]bicarbonate labelled from hyperpolarized [1- 13C]pyruvate is an in vivo marker of hepatic gluconeogenesis in fasted state. Commun Biol 2022; 5:10. [PMID: 35013537 PMCID: PMC8748681 DOI: 10.1038/s42003-021-02978-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/07/2021] [Indexed: 01/07/2023] Open
Abstract
Hyperpolarized [1-13C]pyruvate enables direct in vivo assessment of real-time liver enzymatic activities by 13C magnetic resonance. However, the technique usually requires the injection of a highly supraphysiological dose of pyruvate. We herein demonstrate that liver metabolism can be measured in vivo with hyperpolarized [1-13C]pyruvate administered at two- to three-fold the basal plasma concentration. The flux through pyruvate dehydrogenase, assessed by 13C-labeling of bicarbonate in the fed condition, was found to be saturated or partially inhibited by supraphysiological doses of hyperpolarized [1-13C]pyruvate. The [13C]bicarbonate signal detected in the liver of fasted rats nearly vanished after treatment with a phosphoenolpyruvate carboxykinase (PEPCK) inhibitor, indicating that the signal originates from the flux through PEPCK. In addition, the normalized [13C]bicarbonate signal in fasted untreated animals is dose independent across a 10-fold range, highlighting that PEPCK and pyruvate carboxylase are not saturated and that hepatic gluconeogenesis can be directly probed in vivo with hyperpolarized [1-13C]pyruvate. Can et al. demonstrate the ability to use hyperpolarized [1-13C]pyruvate at nearphysiological concentrations to directly assess liver enzymatic activities by 13C magnetic resonance. While in the fed state, the normalized [13C]bicarbonate signal produced from hyperpolarized [1-13C]pyruvate derives from PDH activity, which is saturated at supraphysiological doses, it results from PEPCK in the fasted state and is dose-independent, allowing non-invasive in vivo detection of hepatic gluconeogenesis.”
Collapse
Affiliation(s)
- Emine Can
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Jessica A M Bastiaansen
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.,Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Rolf Gruetter
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Hikari A I Yoshihara
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Arnaud Comment
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, Cambridgeshire, CB2 0RE, UK. .,General Electric Healthcare, Chalfont St Giles, Buckinghamshire, HP8 4SP, UK.
| |
Collapse
|
3
|
Nagao K, Kimura T. Use of plasma-free amino acids as biomarkers for detecting and predicting disease risk. Nutr Rev 2020; 78:79-85. [DOI: 10.1093/nutrit/nuaa086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/14/2020] [Accepted: 07/01/2020] [Indexed: 12/25/2022] Open
Abstract
Abstract
This paper reviews developments regarding the use of plasma-free amino acid (PFAA) profiles as biomarkers for detecting and predicting disease risk. This work was initiated and first published in 2006 and was subsequently developed by Ajinomoto Co., Inc. After commercialization in 2011, PFAA-based tests were adopted in over 1500 clinics and hospitals in Japan, and numerous clinician-led studies have been performed to validate these tests. Evidence is accumulating that PFAA profiles can be used for diabetes prediction and evaluation of frailty; in particular, decreased plasma essential amino acids could contribute to the pathophysiology of severe frailty. Integration of PFAA evaluation as a biomarker and effective essential amino acid supplementation, which improves physical and mental functions in the elderly, could facilitate the development of precision nutrition, including personalized solutions. This present review provides the background for the technology as well as more recent clinical findings, and offers future possibilities regarding the implementation of precision nutrition.
Collapse
Affiliation(s)
- Kenji Nagao
- the Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | | |
Collapse
|
4
|
Lee MH, DeBerardinis RJ, Wen X, Corbin IR, Sherry AD, Malloy CR, Jin ES. Active pyruvate dehydrogenase and impaired gluconeogenesis in orthotopic hepatomas of rats. Metabolism 2019; 101:153993. [PMID: 31672442 PMCID: PMC6892165 DOI: 10.1016/j.metabol.2019.153993] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/27/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Therapies targeting altered activity of pyruvate dehydrogenase (PDH) and pyruvate carboxylase (PC) have been proposed for hepatomas. However, the activities of these pathways in hepatomas in vivo have not been distinguished. Here we examined pyruvate entry into the tricarboxylic acid (TCA) cycle through PDH versus PC in vivo using hepatoma-bearing rats. METHODS Hepatoma-bearing rats were generated by intrahepatic injection of H4IIE cells. Metabolism of 13C-labeled glycerol, a physiological substrate for both gluconeogenesis and energy production, was measured with 13C NMR analysis. The concentration of key metabolites and the expression of relevant enzymes were measured in hepatoma, surrounding liver, and normal liver. RESULTS In orthotopic hepatomas, pyruvate entry into the TCA cycle occurred exclusively through PDH and the excess PDH activity compared to normal liver was attributed to downregulated pyruvate dehydrogenase kinase (PDK) 2/4. However, pyruvate carboxylation via PC and gluconeogenesis were minimal, which was linked to downregulated forkhead box O1 (FoxO1) by Akt activity. In contrast to many studies of cancer metabolism, lactate production in hepatomas was not increased which corresponded to reduced expression of lactate dehydrogenase. The production of serine and glycine in hepatomas was enhanced, but glycine decarboxylase was downregulated. CONCLUSIONS The combination of [U-13C3]glycerol and NMR analysis enabled investigation of multiple biochemical processes in hepatomas and surrounding liver. We demonstrated active PDH and other related metabolic alterations in orthotopic hepatomas that differed substantially not only from the host organ but also from many earlier studies with cancer cells.
Collapse
Affiliation(s)
- Min Hee Lee
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, USA
| | - Xiaodong Wen
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ian R Corbin
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - A Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Radiology, University of Texas Southwestern Medical Center, USA; Department of Chemistry, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Craig R Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Radiology, University of Texas Southwestern Medical Center, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, USA; VA North Texas Health Care System, Dallas, TX 75216, USA
| | - Eunsook S Jin
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, USA.
| |
Collapse
|
5
|
Frasson-Uemura IG, Biazi GR, Miksza DR, Moreira CCL, Cassolla P, Bertolini GL, Bazotte RB, de Souza HM. Infusion of high concentration of lactate in perfused liver, simulating in vivo hyperlactatemia, prevents the reduction of gluconeogenesis in Walker-256 tumor-bearing rats. J Cell Biochem 2019; 120:11068-11080. [PMID: 30719751 DOI: 10.1002/jcb.28384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Gluconeogenesis (GN) is increased in patients with cancer cachexia, but is reduced in liver perfusion of Walker-256 tumor-bearing cachectic rats (TB rats). The causes of these differences are unknown. We investigated the influence of circulating concentrations of lactate (NADH generator) and NADH on GN in perfused livers of TB rats. Lactate, at concentrations similar to those found on days 5 (3.0 mM), 8 (5.5 mM), and 12 (8.0 mM) of the tumor, prevented the reduction of GN from 2.0 mM lactate (lactatemia of healthy rat) in TB rats. NADH, 50 or 75 μM, but not 25 μM, increased GN from 2.0 mM lactate in TB rats to higher values than healthy rats. High concentrations of pyruvate (no NADH generator, 5.0 and 8.0 mM) did not prevent the reduction of GN from 2.0 mM pyruvate in TB rats. However, 50 or 75 μM NADH, but not 25 μM, increased GN from 2.0 mM pyruvate in TB rats to similar or higher values than healthy rats. High concentration of glutamine (NADH generator, 2.5 mM) or 50 μM NADH prevented the reduction of GN from 1 mM glutamine in TB rats. Intraperitoneal administration of pyruvate (1.0 mg/kg) or glutamine (0.5 mg/kg) similarly increased the glycemia of healthy and TB rats. In conclusion, high lactate concentration, similar to hyperlactatemia, prevented the reduction of GN in perfused livers of TB rats, an effect probably caused by the increased redox potential (NADH/NAD+ ). Thus, the decreased GN in livers from TB rats is due, at least in part, to the absence of simulation of in vivo hyperlactatemia in liver perfusion studies.
Collapse
Affiliation(s)
| | - Giuliana Regina Biazi
- Department of Physiological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Daniele Romani Miksza
- Department of Physiological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | | | - Priscila Cassolla
- Department of Physiological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Gisele Lopes Bertolini
- Department of Physiological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Roberto Barbosa Bazotte
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Paraná, Brazil
| | - Helenir Medri de Souza
- Department of Physiological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
6
|
Biazi GR, Frasson IG, Miksza DR, de Morais H, de Fatima Silva F, Bertolini GL, de Souza HM. Decreased hepatic response to glucagon, adrenergic agonists, and cAMP in glycogenolysis, gluconeogenesis, and glycolysis in tumor-bearing rats. J Cell Biochem 2018; 119:7300-7309. [PMID: 29761924 DOI: 10.1002/jcb.27027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/06/2018] [Indexed: 12/17/2022]
Abstract
The response to glucagon and adrenaline in cancer cachexia is poorly known. The aim of this study was to investigate the response to glucagon, adrenergic agonists (α and β) and cyclic adenosine monophosphate (cAMP) on glycogenolysis, gluconeogenesis, and glycolysis in liver perfusion of Walker-256 tumor-bearing rats with advanced cachexia. Liver ATP content was also investigated. Rats without tumor (healthy) were used as controls. Agonists α (phenylephrine) and β (isoproterenol) adrenergic, instead of adrenaline, and cAMP, the second messenger of glucagon and isoproterenol, were used in an attempt to identify mechanisms involved in the responses. Glucagon (1 nM) stimulated glycogenolysis and gluconeogenesis and inhibited glycolysis in the liver of healthy and tumor-bearing rats, but their effects were lower in tumor-bearing rats. Isoproterenol (20 µM) stimulated glycogenolysis, gluconeogenesis, and glycolysis in healthy rats and had virtually no effect in tumor-bearing rats. cAMP (9 µM) also stimulated glycogenolysis and gluconeogenesis and inhibited glycolysis in healthy rats but had practically no effect in tumor-bearing rats. Phenylephrine (2 µM) stimulated glycogenolysis and gluconeogenesis and inhibited glycolysis and these effects were also lower in tumor-bearing rats than in healthy. Liver ATP content was lower in tumor-bearing rats. In conclusion, tumor-bearing rats with advanced cachexia showed a decreased hepatic response to glucagon, adrenergic agonists (α and β), and cAMP in glycogenolysis, gluconeogenesis, and glycolysis, which may be due to a reduced rate of regulatory enzyme phosphorylation caused by the low ATP levels in the liver.
Collapse
Affiliation(s)
- Giuliana R Biazi
- Department of Physiological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Isabele G Frasson
- Department of Physiological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Daniele R Miksza
- Department of Physiological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Hely de Morais
- Department of Physiological Sciences, State University of Londrina, Londrina, PR, Brazil
| | | | - Gisele L Bertolini
- Department of Physiological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Helenir M de Souza
- Department of Physiological Sciences, State University of Londrina, Londrina, PR, Brazil
| |
Collapse
|
7
|
de Fatima Silva F, Ortiz-Silva M, Galia WBDS, Cassolla P, da Silva FG, Graciano MFR, Carpinelli AR, de Souza HM. Effects of metformin on insulin resistance and metabolic disorders in tumor-bearing rats with advanced cachexia. Can J Physiol Pharmacol 2018; 96:498-505. [DOI: 10.1139/cjpp-2017-0171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metformin (MET) is widely used in the correction of insulin (INS) resistance and metabolic abnormalities in type 2 diabetes. However, its effect on INS resistance and metabolic disorders associated with cancer cachexia is not established. We investigated the MET effects, isolated or associated with INS, on INS resistance and metabolic changes induced by Walker-256 tumor in rats with advanced cachexia. MET (500 mg·kg−1, oral) and MET + INS (1.0 IU·kg−1, s.c.) were administered for 12 days, starting on the day of tumor cell inoculation. Tumor-bearing rats showed adipose and muscle mass wasting, body mass loss, anorexia, decreased Akt phosphorylation in retroperitoneal and mesenteric adipose tissue, peripheral INS resistance, hypoinsulinemia, reduced INS content and secretion from pancreatic islets, and also inhibition of glycolysis, gluconeogenesis, and glycogenolysis in liver. MET and MET + INS treatments did not prevent these changes. It can be concluded that treatments with MET and MET + INS did not prevent the adipose and muscle mass wasting and body mass loss of tumor-bearing rats possibly by not improving INS resistance. Therefore, MET, used for the treatment of INS resistance in type 2 diabetes, is not effective in improving INS resistance in the advanced stage of cancer cachexia, evidencing that the drug does not have the same beneficial effect in these 2 diseases.
Collapse
Affiliation(s)
- Flaviane de Fatima Silva
- Department of Physiological Sciences, State University of Londrina, 86051-990, Londrina, PR, Brazil
| | - Milene Ortiz-Silva
- Department of Physiological Sciences, State University of Londrina, 86051-990, Londrina, PR, Brazil
| | | | - Priscila Cassolla
- Department of Physiological Sciences, State University of Londrina, 86051-990, Londrina, PR, Brazil
| | | | | | - Angelo Rafael Carpinelli
- Department of Physiology and Biophysics, University of São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Helenir Medri de Souza
- Department of Physiological Sciences, State University of Londrina, 86051-990, Londrina, PR, Brazil
| |
Collapse
|
8
|
Chen Z, Ding L, Yang W, Wang J, Chen L, Chang Y, Geng B, Cui Q, Guan Y, Yang J. Hepatic Activation of the FAM3C-HSF1-CaM Pathway Attenuates Hyperglycemia of Obese Diabetic Mice. Diabetes 2017; 66:1185-1197. [PMID: 28246289 DOI: 10.2337/db16-0993] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/18/2017] [Indexed: 11/13/2022]
Abstract
FAM3C is a member of the family with sequence similarity 3 (FAM3) gene family, and this study determined its role and mechanism in regulation of hepatic glucose/lipid metabolism. In obese diabetic mice, FAM3C expression was reduced in the liver, and hepatic FAM3C restoration improved insulin resistance, hyperglycemia, and fatty liver. FAM3C overexpression increased the expression of heat shock factor 1 (HSF1), calmodulin (CaM), and phosphorylated protein kinase B (Akt) and reduced that of gluconeogenic and lipogenic genes in diabetic mouse livers with the suppression of gluconeogenesis and lipid deposition. In cultured hepatocytes, FAM3C overexpression upregulated HSF1 expression, which elevated CaM protein level by inducing CALM1 transcription to activate Akt in a Ca2+- and insulin-independent manner. Furthermore, FAM3C overexpression promoted nuclear exclusion of FOXO1 and repressed gluconeogenic gene expression and gluconeogenesis in a CaM-dependent manner in hepatocytes. Hepatic HSF1 overexpression activated the CaM-Akt pathway to repress gluconeogenic and lipogenic gene expression and improve hyperglycemia and fatty liver in obese diabetic mice. In conclusion, the FAM3C-HSF1-CaM-Akt pathway plays important roles in regulating glucose and lipid metabolism in hepatocytes independent of insulin and calcium. Restoring hepatic FAM3C expression is beneficial for the management of type 2 diabetes and fatty liver.
Collapse
Affiliation(s)
- Zhenzhen Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Liwei Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Weili Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Junpei Wang
- Department of Biomedical Informatics, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Liming Chen
- Department of Biophysics and Molecular Physiology, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science & Technology School of Life Science & Technology, Wuhan, China
| | - Yongsheng Chang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Geng
- Hypertension Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qinghua Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| |
Collapse
|