1
|
Sayour NV, Paál ÁM, Ameri P, Meijers WC, Minotti G, Andreadou I, Lombardo A, Camilli M, Drexel H, Grove EL, Dan GA, Ivanescu A, Semb AG, Savarese G, Dobrev D, Crea F, Kaski JC, de Boer RA, Ferdinandy P, Varga ZV. Heart failure pharmacotherapy and cancer: pathways and pre-clinical/clinical evidence. Eur Heart J 2024; 45:1224-1240. [PMID: 38441940 PMCID: PMC11023004 DOI: 10.1093/eurheartj/ehae105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/08/2024] [Accepted: 02/07/2024] [Indexed: 04/08/2024] Open
Abstract
Heart failure (HF) patients have a significantly higher risk of new-onset cancer and cancer-associated mortality, compared to subjects free of HF. While both the prevention and treatment of new-onset HF in patients with cancer have been investigated extensively, less is known about the prevention and treatment of new-onset cancer in patients with HF, and whether and how guideline-directed medical therapy (GDMT) for HF should be modified when cancer is diagnosed in HF patients. The purpose of this review is to elaborate and discuss the effects of pillar HF pharmacotherapies, as well as digoxin and diuretics on cancer, and to identify areas for further research and novel therapeutic strategies. To this end, in this review, (i) proposed effects and mechanisms of action of guideline-directed HF drugs on cancer derived from pre-clinical data will be described, (ii) the evidence from both observational studies and randomized controlled trials on the effects of guideline-directed medical therapy on cancer incidence and cancer-related outcomes, as synthetized by meta-analyses will be reviewed, and (iii) considerations for future pre-clinical and clinical investigations will be provided.
Collapse
Affiliation(s)
- Nabil V Sayour
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1085 Budapest, Üllői út 26, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, H-1089 Budapest, Nagyvárad tér 4, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, H-1089 Budapest, Nagyvárad tér 4, Hungary
| | - Ágnes M Paál
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1085 Budapest, Üllői út 26, Hungary
| | - Pietro Ameri
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Italian IRCCS Cardiology Network, Genova, Italy
- Department of Internal Medicine, University of Genova, Genova, Italy
| | - Wouter C Meijers
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Giorgio Minotti
- University Campus Bio-Medico, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Ioanna Andreadou
- Laboratory of Pharmacology, School of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonella Lombardo
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Massimiliano Camilli
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Heinz Drexel
- Vorarlberg Institute for Vascular Investigation & Treatment (VIVIT), Carinagasse 47, A-6800 Feldkirch, Austria
| | - Erik Lerkevang Grove
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Gheorghe Andrei Dan
- Carol Davila University of Medicine and Pharmacy, Colentina University Hospital, Bucharest, Romania
- Cardiology Department, Colentina Clinical Hospital, Bucharest, Romania
| | - Andreea Ivanescu
- Carol Davila University of Medicine and Pharmacy, Colentina University Hospital, Bucharest, Romania
- Cardiology Department, Colentina Clinical Hospital, Bucharest, Romania
| | - Anne Grete Semb
- Division of Research and Innovation, REMEDY-Centre for Treatment of Rheumatic and Musculoskeletal Diseases, Diakonhjemmet Hospital, Oslo, Norway
| | - Gianluigi Savarese
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Heart and Vascular and Neuro Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, QC, Canada
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Filippo Crea
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Juan-Carlos Kaski
- Molecular and Clinical Sciences Research Institute, St. George’s University of London, London, United Kingdom
| | - Rudolf A de Boer
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1085 Budapest, Üllői út 26, Hungary
- Pharmahungary Group, Szeged, Hungary
- MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1085 Budapest, Üllői út 26, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, H-1089 Budapest, Nagyvárad tér 4, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, H-1089 Budapest, Nagyvárad tér 4, Hungary
| |
Collapse
|
2
|
Burgermeister E. Mitogen-Activated Protein Kinase and Nuclear Hormone Receptor Crosstalk in Cancer Immunotherapy. Int J Mol Sci 2023; 24:13661. [PMID: 37686465 PMCID: PMC10488039 DOI: 10.3390/ijms241713661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
The three major MAP-kinase (MAPK) pathways, ERK1/2, p38 and JNK/SAPK, are upstream regulators of the nuclear "hormone" receptor superfamily (NHRSF), with a prime example given by the estrogen receptor in breast cancer. These ligand-activated transcription factors exert non-genomic and genomic functions, where they are either post-translationally modified by phosphorylation or directly interact with components of the MAPK pathways, events that govern their transcriptional activity towards target genes involved in cell differentiation, proliferation, metabolism and host immunity. This molecular crosstalk takes place not only in normal epithelial or tumor cells, but also in a plethora of immune cells from the adaptive and innate immune system in the tumor-stroma tissue microenvironment. Thus, the drugability of both the MAPK and the NHRSF pathways suggests potential for intervention therapies, especially for cancer immunotherapy. This review summarizes the existing literature covering the expression and function of NHRSF subclasses in human tumors, both solid and leukemias, and their effects in combination with current clinically approved therapeutics against immune checkpoint molecules (e.g., PD1).
Collapse
Affiliation(s)
- Elke Burgermeister
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| |
Collapse
|
3
|
Hackl LM, Fenn A, Louadi Z, Baumbach J, Kacprowski T, List M, Tsoy O. Alternative splicing impacts microRNA regulation within coding regions. NAR Genom Bioinform 2023; 5:lqad081. [PMID: 37705830 PMCID: PMC10495541 DOI: 10.1093/nargab/lqad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/04/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that bind to target sites in different gene regions and regulate post-transcriptional gene expression. Approximately 95% of human multi-exon genes can be spliced alternatively, which enables the production of functionally diverse transcripts and proteins from a single gene. Through alternative splicing, transcripts might lose the exon with the miRNA target site and become unresponsive to miRNA regulation. To check this hypothesis, we studied the role of miRNA target sites in both coding and non-coding regions using six cancer data sets from The Cancer Genome Atlas (TCGA) and Parkinson's disease data from PPMI. First, we predicted miRNA target sites on mRNAs from their sequence using TarPmiR. To check whether alternative splicing interferes with this regulation, we trained linear regression models to predict miRNA expression from transcript expression. Using nested models, we compared the predictive power of transcripts with miRNA target sites in the coding regions to that of transcripts without target sites. Models containing transcripts with target sites perform significantly better. We conclude that alternative splicing does interfere with miRNA regulation by skipping exons with miRNA target sites within the coding region.
Collapse
Affiliation(s)
- Lena Maria Hackl
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607 Hamburg, Germany
| | - Amit Fenn
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607 Hamburg, Germany
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 3, 85354 Freising, Germany
| | - Zakaria Louadi
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607 Hamburg, Germany
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 3, 85354 Freising, Germany
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607 Hamburg, Germany
- Computational BioMedicine Lab, University of Southern Denmark, Campusvej 50, 5230 Odense, Denmark
| | - Tim Kacprowski
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, Rebenring 56, 38106 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Markus List
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 3, 85354 Freising, Germany
| | - Olga Tsoy
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607 Hamburg, Germany
| |
Collapse
|
4
|
Nuevo-Tapioles C, Philips MR. The role of KRAS splice variants in cancer biology. Front Cell Dev Biol 2022; 10:1033348. [PMID: 36393833 PMCID: PMC9663995 DOI: 10.3389/fcell.2022.1033348] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022] Open
Abstract
The three mammalian RAS genes (HRAS, NRAS and KRAS) encode four proteins that play central roles in cancer biology. Among them, KRAS is mutated more frequently in human cancer than any other oncogene. The pre-mRNA of KRAS is alternatively spliced to give rise to two products, KRAS4A and KRAS4B, which differ in the membrane targeting sequences at their respective C-termini. Notably, both KRAS4A and KRAS4B are oncogenic when KRAS is constitutively activated by mutation in exon 2 or 3. Whereas KRAS4B is the most studied oncoprotein, KRAS4A is understudied and until recently considered relatively unimportant. Emerging work has confirmed expression of KRAS4A in cancer and found non-overlapping functions of the splice variants. The most clearly demonstrated of these is direct regulation of hexokinase 1 by KRAS4A, suggesting that the metabolic vulnerabilities of KRAS-mutant tumors may be determined in part by the relative expression of the splice variants. The aim of this review is to address the most relevant characteristics and differential functions of the KRAS splice variants as they relate to cancer onset and progression.
Collapse
|
5
|
Aran V. K-RAS4A: Lead or Supporting Role in Cancer Biology? Front Mol Biosci 2021; 8:729830. [PMID: 34604308 PMCID: PMC8479197 DOI: 10.3389/fmolb.2021.729830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/01/2021] [Indexed: 11/19/2022] Open
Abstract
The RAS oncogene is one of the most frequently mutated genes in human cancer, with K-RAS having a leading role in tumorigenesis. K-RAS undergoes alternative splicing, and as a result its transcript generates two gene products K-RAS4A and K-RAS4B, which are affected by the same oncogenic mutations, are highly homologous, and are expressed in a variety of human tissues at different levels. In addition, both isoforms localise to the plasma membrane by distinct targeting motifs. While some evidence suggests nonredundant functions for both splice variants, most work to date has focused on K-RAS4B, or even just K-RAS (i.e., without differentiating between the splice variants). This review aims to address the most relevant evidence published regarding K-RAS4A and to discuss if this “minor” isoform could also play a leading role in cancer, concluding that a significant body of evidence supports a leading role rather than a supporting (or secondary) role for K-RAS4A in cancer biology.
Collapse
Affiliation(s)
- Veronica Aran
- Laboratorio de Biomedicina Do Cérebro, Instituto Estadual Do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Mahadik N, Bhattacharya D, Padmanabhan A, Sakhare K, Narayan KP, Banerjee R. Targeting steroid hormone receptors for anti-cancer therapy-A review on small molecules and nanotherapeutic approaches. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1755. [PMID: 34541822 DOI: 10.1002/wnan.1755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022]
Abstract
The steroid hormone receptors (SHRs) among nuclear hormone receptors (NHRs) are steroid ligand-dependent transcription factors that play important roles in the regulation of transcription of genes promoted via hormone responsive elements in our genome. Aberrant expression patterns and context-specific regulation of these receptors in cancer, have been routinely reported by multiple research groups. These gave an window of opportunity to target those receptors in the context of developing novel, targeted anticancer therapeutics. Besides the development of a plethora of SHR-targeting synthetic ligands and the availability of their natural, hormonal ligands, development of many SHR-targeted, anticancer nano-delivery systems and theranostics, especially based on small molecules, have been reported. It is intriguing to realize that these cytoplasmic receptors have become a hot target for cancer selective delivery. This is in spite of the fact that these receptors do not fall in the category of conventional, targetable cell surface bound or transmembrane receptors that enjoy over-expression status. Glucocorticoid receptor (GR) is one such exciting SHR that in spite of it being expressed ubiquitously in all cells, we discovered it to behave differently in cancer cells, thus making it a truly druggable target for treating cancer. This review selectively accumulates the knowledge generated in the field of SHR-targeting as a major focus for cancer treatment with various anticancer small molecules and nanotherapeutics on progesterone receptor, mineralocorticoid receptor, and androgen receptor while selectively emphasizing on GR and estrogen receptor. This review also briefly highlights lipid-modification strategy to convert ligands into SHR-targeted cancer nanotherapeutics. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Biology-Inspired Nanomaterials > Lipid-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Namita Mahadik
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Dwaipayan Bhattacharya
- Department of Biological Sciences, Birla Institute of Technology Pilani, Hyderabad, India
| | - Akshaya Padmanabhan
- Department of Biological Sciences, Birla Institute of Technology Pilani, Hyderabad, India
| | - Kalyani Sakhare
- Department of Biological Sciences, Birla Institute of Technology Pilani, Hyderabad, India
| | - Kumar Pranav Narayan
- Department of Biological Sciences, Birla Institute of Technology Pilani, Hyderabad, India
| | - Rajkumar Banerjee
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
7
|
Primary Aldosteronism Associated with Multiple Adrenocortical Micronodules in a Patient with Renal Cell Carcinoma. Case Rep Endocrinol 2020; 2020:2808101. [PMID: 32158565 PMCID: PMC7060454 DOI: 10.1155/2020/2808101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/16/2020] [Indexed: 12/21/2022] Open
Abstract
A 47-year-old woman with a history of diabetes mellitus (DM) and obesity was admitted to our hospital for glucose control. She was detected to have hypertension (HT) and diagnosed with primary aldosteronism (PA) based on the high level of aldosterone to renin ratio and the results of the upright furosemide-loading test according to the criteria of the Japanese Society of Hypertension (JSH) guidelines. Computed tomography revealed left renal tumor and adrenocortical adenoma. She underwent left nephrectomy and adrenalectomy. The pathological findings were clear-cell renal cell carcinoma (RCC) and nonfunctional adrenocortical adenoma. Her nonneoplastic adrenal tissue histologically revealed CYP11B2-positive multiple adrenocortical micronodules (MNs) and concomitant paradoxical hyperplasia of the zona glomerulosa. Therefore, MNs were thought to be responsible for PA in this patient. After surgery, HT was improved, and the result of upright furosemide-loading test after 12 months of surgery did not fulfill the criteria of PA according to the JSH guidelines. However, the adrenocorticotrophic hormone stimulation test was positive; considering the possibility of slight aldosterone overproduction from the right adrenal gland, the administration of spironolactone was started. Herein, we report a rare case of RCC in conjunction with PA histologically associated with MNs.
Collapse
|
8
|
Youssef I, Ricort JM. Deciphering the Role of Protein Kinase D1 (PKD1) in Cellular Proliferation. Mol Cancer Res 2019; 17:1961-1974. [PMID: 31311827 DOI: 10.1158/1541-7786.mcr-19-0125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/05/2019] [Accepted: 07/11/2019] [Indexed: 11/16/2022]
Abstract
Protein kinase D1 (PKD1) is a serine/threonine kinase that belongs to the calcium/calmodulin-dependent kinase family, and is involved in multiple mechanisms implicated in tumor progression such as cell motility, invasion, proliferation, protein transport, and apoptosis. While it is expressed in most tissues in the normal state, PKD1 expression may increase or decrease during tumorigenesis, and its role in proliferation is context-dependent and poorly understood. In this review, we present and discuss the current landscape of studies investigating the role of PKD1 in the proliferation of both cancerous and normal cells. Indeed, as a potential therapeutic target, deciphering whether PKD1 exerts a pro- or antiproliferative effect, and under what conditions, is of paramount importance.
Collapse
Affiliation(s)
- Ilige Youssef
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France.,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| | - Jean-Marc Ricort
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France. .,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France.,Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| |
Collapse
|
9
|
Nagata Y, Goto T, Miyamoto H. The Role of Mineralocorticoid Receptor Signaling in Genitourinary Cancers. NUCLEAR RECEPTOR RESEARCH 2019. [DOI: 10.32527/2019/101410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Yujiro Nagata
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Urology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Fukuoka 807-8555, Japan
| | - Takuro Goto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hiroshi Miyamoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
10
|
Abstract
Objective The association of primary aldosteronism (PA) with thyroid disease has already been suggested. The aim of this study was to examine the presence of PA in patients with papillary thyroid carcinoma (PC) and to characterize such PC patients with PA. Methods We examined the presence of PA in 81 consecutive patients with PC, whose random sitting blood pressure (BP) was ≥140/90 mmHg in the office (n= 68), who had an incidental adrenal tumor or adrenal enlargement (n=9), or who showed hypokalemia (n=4). Thirty-one of these 81 patients had been treated with anti-hypertensive drugs. The plasma aldosterone concentration (PAC) and plasma renin activity (PRA) were first measured before operation in 16 patients and after operation in 65 patients. PA was diagnosed according to the guidelines of the Japan Endocrine Society. Results Forty patients with PC with a random PAC/PRA ratio of over 200 were subjected to a further study (12 of these patients had been treated with anti-hypertensive drugs). Ultimately, 15 patients with PC were diagnosed with PA. Adrenal venous sampling was done in 9 out of 15 patients with PC associated with PA. No patients were diagnosed as having unilateral lesions. Among the 15 patients, white-coat hypertension was observed in 5 patients, and normotension was observed in 1 patient. Conclusion These findings suggest that the prevalence of PA may be high among patients with PC. An active examination is needed to detect PA, as its signs and symptoms may be mild in patients with PC associated with hypertension.
Collapse
Affiliation(s)
- Shigenori Nakamura
- Thyroid and Diabetic Division, Department of Internal Medicine, Japanese Red Cross Gifu Hospital, Japan
| | - Masatoshi Ishimori
- Thyroid and Diabetic Division, Department of Internal Medicine, Japanese Red Cross Gifu Hospital, Japan
| | | |
Collapse
|
11
|
Murayama H, Eguchi A, Nakamura M, Kawashima M, Nagahara R, Mizukami S, Kimura M, Makino E, Takahashi N, Ohtsuka R, Koyanagi M, Hayashi SM, Maronpot RR, Shibutani M, Yoshida T. Spironolactone in Combination with α-glycosyl Isoquercitrin Prevents Steatosis-related Early Hepatocarcinogenesis in Rats through the Observed NADPH Oxidase Modulation. Toxicol Pathol 2018; 46:530-539. [PMID: 29843569 DOI: 10.1177/0192623318778508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Administration of the diuretic, spironolactone (SR), can inhibit chronic liver diseases. We determined the effects of SR alone or in combination with the antioxidant α-glycosyl isoquercitrin (AGIQ) on hyperlipidemia- and steatosis-related precancerous lesions in high-fat diet (HFD)-fed rats subjected to a two-stage hepatocarcinogenesis model. Rats were fed with control basal diet or HFD, which was administered with SR alone or in combination with an antioxidant AGIQ in drinking water. An HFD increased body weight, intra-abdominal fat (adipose) tissue weight, and plasma lipids, which were reduced by coadministration of SR and AGIQ. SR and AGIQ coadministration also reduced hepatic steatosis and preneoplastic glutathione S-transferase placental form-positive foci, in association with decrease in NADPH oxidase (NOX) subunit p22phox-positive cells and an increase in active-caspase-3-positive cells in the foci. Hepatic gene expression analysis revealed that the coadministration of SR and AGIQ altered mRNA levels of lipogenic enzymes ( Scd1 and Fasn), antioxidant-related enzymes ( Catalase), NOX component ( P67phox), and anti-inflammatory transcriptional factor ( Pparg). Our results indicated that SR in combination with AGIQ had the potential of suppressing hyperlipidemia- and steatosis-related early hepatocarcinogenesis through the reduced expression of NOX subunits.
Collapse
Affiliation(s)
- Hirotada Murayama
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Ayumi Eguchi
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Misato Nakamura
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Masahi Kawashima
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Rei Nagahara
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Sayaka Mizukami
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,2 Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu, Japan
| | - Masayuki Kimura
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,2 Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu, Japan
| | - Emi Makino
- 3 Institute of Environmental Toxicology, Joso-shi, Ibaraki, Japan
| | | | - Ryoichi Ohtsuka
- 3 Institute of Environmental Toxicology, Joso-shi, Ibaraki, Japan
| | - Mihoko Koyanagi
- 4 Global Scientific and Regulatory Affairs, San-Ei Gen F. F. I., Inc., Toyonaka, Osaka, Japan
| | - Shim-Mo Hayashi
- 4 Global Scientific and Regulatory Affairs, San-Ei Gen F. F. I., Inc., Toyonaka, Osaka, Japan
| | | | - Makoto Shibutani
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Toshinori Yoshida
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| |
Collapse
|
12
|
Role of epigenetic factors in the selection of the alternative splicing isoforms of human KRAS in colorectal cancer cell lines. Oncotarget 2018; 9:20578-20589. [PMID: 29755673 PMCID: PMC5945503 DOI: 10.18632/oncotarget.25016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/17/2018] [Indexed: 01/10/2023] Open
Abstract
Mutation-driven activation of KRAS is crucial to cancer development. The human gene yields four mRNA splicing isoforms, 4A and 4B being translated to protein. Their different properties and oncogenic potential have been studied, but the mechanisms deciding the ratio 4A/4B are not known. To address this issue, the expression of the four KRAS isoforms was determined in 9 human colorectal cancer cell lines. HCT116 and SW48 were further selected because they present the highest difference in the ratio 4A/4B (twice as much in HCT116 than in SW48). Chromatin structure was analysed at the exon 4A, characteristic of isoform 4A, at its intronic borders and at the two flanking exons. The low nucleosome occupancy at exon 4A in both cell lines may result in a fast transcriptional rate, which would explain the general lower abundance of isoform 4A, also found in cells and tissues by other authors, but due to its similarity between both cell lines, chromatin structure does not influence alternative splicing. DNA methylation downstream exon 4A significantly differs in HCT116 and SW48 cells, but the CCCTC-binding factor, which affects the processivity of RNA polymerase and the alternative splicing, does not bind the differentially methylated sequences. Quantitative epigenetic analysis at mononucleosomal level revealed significant differences between both cell lines in H3K4me3, H3K27me3, H3K36me3, H3K9ac, H3K27ac and H4K20me1, and the inhibition of some histone-modifying enzymes alters the ratio 4A/4B. It can be concluded that the epigenetic modification of histones has an influence on the selection of isoforms 4A and 4B.
Collapse
|
13
|
Carone L, Oxberry SG, Twycross R, Charlesworth S, Mihalyo M, Wilcock A. Spironolactone. J Pain Symptom Manage 2017; 53:288-292. [PMID: 28024992 DOI: 10.1016/j.jpainsymman.2016.12.320] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 11/18/2016] [Indexed: 01/28/2023]
Abstract
Therapeutic Reviews aim to provide essential independent information for health professionals about drugs used in palliative and hospice care. Additional content is available on www.palliativedrugs.com. Country-specific books (Hospice and Palliative Care Formulary USA, and Palliative Care Formulary, British and Canadian editions) are also available and can be ordered from www.palliativedrugs.com. The series editors welcome feedback on the articles (hq@palliativedrugs.com).
Collapse
Affiliation(s)
- Laura Carone
- University of Nottingham, Nottingham, United Kingdom
| | | | | | | | - Mary Mihalyo
- Mylan School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
14
|
|
15
|
GPER is involved in the stimulatory effects of aldosterone in breast cancer cells and breast tumor-derived endothelial cells. Oncotarget 2016; 7:94-111. [PMID: 26646587 PMCID: PMC4807985 DOI: 10.18632/oncotarget.6475] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/22/2015] [Indexed: 12/16/2022] Open
Abstract
Aldosterone induces relevant effects binding to the mineralcorticoid receptor (MR), which acts as a ligand-gated transcription factor. Alternate mechanisms can mediate the action of aldosterone such as the activation of epidermal growth factor receptor (EGFR), MAPK/ERK, transcription factors and ion channels. The G-protein estrogen receptor (GPER) has been involved in the stimulatory effects of estrogenic signalling in breast cancer. GPER has been also shown to contribute to certain responses to aldosterone, however the role played by GPER and the molecular mechanisms implicated remain to be fully understood. Here, we evaluated the involvement of GPER in the stimulatory action exerted by aldosterone in breast cancer cells and breast tumor derived endothelial cells (B-TEC). Competition assays, gene expression and silencing studies, immunoblotting and immunofluorescence experiments, cell proliferation and migration were performed in order to provide novel insights into the role of GPER in the aldosterone-activated signalling. Our results demonstrate that aldosterone triggers the EGFR/ERK transduction pathway in a MR- and GPER-dependent manner. Aldosterone does not bind to GPER, it however induces the direct interaction between MR and GPER as well as between GPER and EGFR. Next, we ascertain that the up-regulation of the Na+/H+ exchanger-1 (NHE-1) induced by aldosterone involves MR and GPER. Biologically, both MR and GPER contribute to the proliferation and migration of breast and endothelial cancer cells mediated by NHE-1 upon aldosterone exposure. Our data further extend the current knowledge on the molecular mechanisms through which GPER may contribute to the stimulatory action elicited by aldosterone in breast cancer.
Collapse
|
16
|
Nriagu J, Darroudi F, Shomar B. Health effects of desalinated water: Role of electrolyte disturbance in cancer development. ENVIRONMENTAL RESEARCH 2016; 150:191-204. [PMID: 27295409 DOI: 10.1016/j.envres.2016.05.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 06/06/2023]
Abstract
This review contends that "healthy" water in terms of electrolyte balance is as important as "pure" water in promoting public health. It considers the growing use of desalination (demineralization) technologies in drinking water treatment which often results in tap water with very low concentrations of sodium, potassium, magnesium and calcium. Ingestion of such water can lead to electrolyte abnormalities marked by hyponatremia, hypokalemia, hypomagnesemia and hypocalcemia which are among the most common and recognizable features in cancer patients. The causal relationships between exposure to demineralized water and malignancies are poorly understood. This review highlights some of the epidemiological and in vivo evidence that link dysregulated electrolyte metabolism with carcinogenesis and the development of cancer hallmarks. It discusses how ingestion of demineralized water can have a procarcinogenic effect through mediating some of the critical pathways and processes in the cancer microenvironment such as angiogenesis, genomic instability, resistance to programmed cell death, sustained proliferative signaling, cell immortalization and tumorigenic inflammation. Evidence that hypoosmotic stress-response processes can upregulate a number of potential oncogenes is well supported by a number studies. In view of the rising production and consumption of demineralized water in most parts of the world, there is a strong need for further research on the biological importance and protean roles of electrolyte abnormalities in promoting, antagonizing or otherwise enabling the development of cancer. The countries of the Gulf Cooperative Council (GCC) where most people consume desalinated water would be a logical place to start this research.
Collapse
Affiliation(s)
- Jerome Nriagu
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Firouz Darroudi
- Centre of Human Safety and Environmental Research, Department of Health Sciences, College of North Atlantic, Doha, Qatar; Centre of Human Safety & Health and Diagnostic Genome Analysis, Red Crescent Hospital, Dubai, United Arab Emirates
| | - Basem Shomar
- Qatar Environmental and Energy Research Institute (QEERI), Qatar Foundation, Doha, Qatar
| |
Collapse
|
17
|
Czarnecka AM, Matak D, Szymanski L, Czarnecka KH, Lewicki S, Zdanowski R, Brzezianska-Lasota E, Szczylik C. Triiodothyronine regulates cell growth and survival in renal cell cancer. Int J Oncol 2016; 49:1666-78. [PMID: 27632932 DOI: 10.3892/ijo.2016.3668] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/25/2016] [Indexed: 11/05/2022] Open
Abstract
Triiodothyronine plays an important role in the regulation of kidney cell growth, differentiation and metabolism. Patients with renal cell cancer who develop hypothyreosis during tyrosine kinase inhibitor (TKI) treatment have statistically longer survival. In this study, we developed cell based model of triiodothyronine (T3) analysis in RCC and we show the different effects of T3 on renal cell cancer (RCC) cell growth response and expression of the thyroid hormone receptor in human renal cell cancer cell lines from primary and metastatic tumors along with human kidney cancer stem cells. Wild-type thyroid hormone receptor is ubiquitously expressed in human renal cancer cell lines, but normalized against healthy renal proximal tube cell expression its level is upregulated in Caki-2, RCC6, SKRC-42, SKRC-45 cell lines. On the contrary the mRNA level in the 769-P, ACHN, HKCSC, and HEK293 cells is significantly decreased. The TRβ protein was abundant in the cytoplasm of the 786-O, Caki-2, RCC6, and SKRC-45 cells and in the nucleus of SKRC-42, ACHN, 769-P and cancer stem cells. T3 has promoting effect on the cell proliferation of HKCSC, Caki-2, ASE, ACHN, SK-RC-42, SMKT-R2, Caki-1, 786-0, and SK-RC-45 cells. Tyrosine kinase inhibitor, sunitinib, directly inhibits proliferation of RCC cells, while thyroid hormone receptor antagonist 1-850 (CAS 251310‑57-3) has less significant inhibitory impact. T3 stimulation does not abrogate inhibitory effect of sunitinib. Renal cancer tumor cells hypostimulated with T3 may be more responsive to tyrosine kinase inhibition. Moreover, some tumors may be considered as T3-independent and present aggressive phenotype with thyroid hormone receptor activated independently from the ligand. On the contrary proliferation induced by deregulated VHL and or c-Met pathways may transgress normal T3 mediated regulation of the cell cycle.
Collapse
Affiliation(s)
- Anna M Czarnecka
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Warsaw, Poland
| | - Damian Matak
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Warsaw, Poland
| | - Lukasz Szymanski
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Warsaw, Poland
| | - Karolina H Czarnecka
- Department of Molecular Bases of Medicine, Medical University of Lodz, Lodz, Poland
| | - Slawomir Lewicki
- Department of Regenerative Medicine, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Robert Zdanowski
- Department of Regenerative Medicine, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | | | - Cezary Szczylik
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Warsaw, Poland
| |
Collapse
|
18
|
Lang K, Weber K, Quinkler M, Dietz AS, Wallaschofski H, Hannemann A, Friedrichs N, Rump LC, Heinze B, Fuss CT, Quack I, Willenberg HS, Reincke M, Allolio B, Hahner S. Prevalence of Malignancies in Patients With Primary Aldosteronism. J Clin Endocrinol Metab 2016; 101:1656-63. [PMID: 26844843 DOI: 10.1210/jc.2015-3405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CONTEXT Primary aldosteronism (PA) is the most common cause of secondary hypertension. Aldosterone excess can cause DNA damage in vitro and in vivo. Single case reports have indicated a coincidence of PA with renal cell carcinoma and other tumors. However, the prevalence of benign and malignant neoplasms in patients with PA has not yet been studied. PATIENTS AND DESIGN In the multicenter MEPHISTO study, the prevalence of benign and malignant tumors was investigated in 335 patients with confirmed PA. Matched hypertensive subjects from the population-based Study of Health in Pomerania cohort served as controls. RESULTS Of the 335 PA patients, 119 (35.5%) had been diagnosed with a tumor at any time, and 30 had two or more neoplasms. Lifetime malignancy occurrence was reported in 9.6% of PA patients compared to 6.0% of hypertensive controls (P = .08). PA patients with a history of malignancy had higher baseline aldosterone levels at diagnosis of PA (P = .009), and a strong association between aldosterone levels and the prevalence of malignancies was observed (P = .03). In total, 157 neoplasms were identified in the PA patients; they were benign in 61% and malignant in 25% of the cases (14% of unknown dignity). Renal cell carcinoma was diagnosed in five patients (13% of all malignancies) and was not reported in controls CONCLUSION Compared to hypertensive controls, the prevalence of malignancies was positively correlated with aldosterone levels, tended to be higher in PA patients, but did not differ significantly.
Collapse
Affiliation(s)
- K Lang
- Department of Internal Medicine I (K.L., K.W., B.H., B.A., S.H.), University Hospital Würzburg, 97080 Würzburg, Germany; Clinical Endocrinology (M.Q.), Charité Campus Mitte, Charité University Medicine Berlin, 10117 Berlin, Germany; Medizinische Klinik und Poliklinik IV (A.S.D., M.R.), University Hospital Munich, 80336 Munich, Germany; Institute of Clinical Chemistry and Laboratory Medicine (H.W., A.H., N.F.), University Medicine Greifswald, 17489 Greifswald, Germany; Private Practice Endocrinology (H.W.), 99084 Erfurt, Germany; Department of Nephrology, Medical Faculty (L.C.R., I.Q.), Heinrich-Heine University Düesseldorf, 40225 Düsseldorf, Germany; and Department of Endocrinology and Metabolism (H.S.W.), Rostock University Medical Center, 18147 Rostock, Germany; Comprehensive Cancer Center Mainfranken & Department of Medicine I (C.T.F.), University of Wuerzburg, 97080 Wuerzburg, Germany
| | - K Weber
- Department of Internal Medicine I (K.L., K.W., B.H., B.A., S.H.), University Hospital Würzburg, 97080 Würzburg, Germany; Clinical Endocrinology (M.Q.), Charité Campus Mitte, Charité University Medicine Berlin, 10117 Berlin, Germany; Medizinische Klinik und Poliklinik IV (A.S.D., M.R.), University Hospital Munich, 80336 Munich, Germany; Institute of Clinical Chemistry and Laboratory Medicine (H.W., A.H., N.F.), University Medicine Greifswald, 17489 Greifswald, Germany; Private Practice Endocrinology (H.W.), 99084 Erfurt, Germany; Department of Nephrology, Medical Faculty (L.C.R., I.Q.), Heinrich-Heine University Düesseldorf, 40225 Düsseldorf, Germany; and Department of Endocrinology and Metabolism (H.S.W.), Rostock University Medical Center, 18147 Rostock, Germany; Comprehensive Cancer Center Mainfranken & Department of Medicine I (C.T.F.), University of Wuerzburg, 97080 Wuerzburg, Germany
| | - M Quinkler
- Department of Internal Medicine I (K.L., K.W., B.H., B.A., S.H.), University Hospital Würzburg, 97080 Würzburg, Germany; Clinical Endocrinology (M.Q.), Charité Campus Mitte, Charité University Medicine Berlin, 10117 Berlin, Germany; Medizinische Klinik und Poliklinik IV (A.S.D., M.R.), University Hospital Munich, 80336 Munich, Germany; Institute of Clinical Chemistry and Laboratory Medicine (H.W., A.H., N.F.), University Medicine Greifswald, 17489 Greifswald, Germany; Private Practice Endocrinology (H.W.), 99084 Erfurt, Germany; Department of Nephrology, Medical Faculty (L.C.R., I.Q.), Heinrich-Heine University Düesseldorf, 40225 Düsseldorf, Germany; and Department of Endocrinology and Metabolism (H.S.W.), Rostock University Medical Center, 18147 Rostock, Germany; Comprehensive Cancer Center Mainfranken & Department of Medicine I (C.T.F.), University of Wuerzburg, 97080 Wuerzburg, Germany
| | - A S Dietz
- Department of Internal Medicine I (K.L., K.W., B.H., B.A., S.H.), University Hospital Würzburg, 97080 Würzburg, Germany; Clinical Endocrinology (M.Q.), Charité Campus Mitte, Charité University Medicine Berlin, 10117 Berlin, Germany; Medizinische Klinik und Poliklinik IV (A.S.D., M.R.), University Hospital Munich, 80336 Munich, Germany; Institute of Clinical Chemistry and Laboratory Medicine (H.W., A.H., N.F.), University Medicine Greifswald, 17489 Greifswald, Germany; Private Practice Endocrinology (H.W.), 99084 Erfurt, Germany; Department of Nephrology, Medical Faculty (L.C.R., I.Q.), Heinrich-Heine University Düesseldorf, 40225 Düsseldorf, Germany; and Department of Endocrinology and Metabolism (H.S.W.), Rostock University Medical Center, 18147 Rostock, Germany; Comprehensive Cancer Center Mainfranken & Department of Medicine I (C.T.F.), University of Wuerzburg, 97080 Wuerzburg, Germany
| | - H Wallaschofski
- Department of Internal Medicine I (K.L., K.W., B.H., B.A., S.H.), University Hospital Würzburg, 97080 Würzburg, Germany; Clinical Endocrinology (M.Q.), Charité Campus Mitte, Charité University Medicine Berlin, 10117 Berlin, Germany; Medizinische Klinik und Poliklinik IV (A.S.D., M.R.), University Hospital Munich, 80336 Munich, Germany; Institute of Clinical Chemistry and Laboratory Medicine (H.W., A.H., N.F.), University Medicine Greifswald, 17489 Greifswald, Germany; Private Practice Endocrinology (H.W.), 99084 Erfurt, Germany; Department of Nephrology, Medical Faculty (L.C.R., I.Q.), Heinrich-Heine University Düesseldorf, 40225 Düsseldorf, Germany; and Department of Endocrinology and Metabolism (H.S.W.), Rostock University Medical Center, 18147 Rostock, Germany; Comprehensive Cancer Center Mainfranken & Department of Medicine I (C.T.F.), University of Wuerzburg, 97080 Wuerzburg, Germany
| | - A Hannemann
- Department of Internal Medicine I (K.L., K.W., B.H., B.A., S.H.), University Hospital Würzburg, 97080 Würzburg, Germany; Clinical Endocrinology (M.Q.), Charité Campus Mitte, Charité University Medicine Berlin, 10117 Berlin, Germany; Medizinische Klinik und Poliklinik IV (A.S.D., M.R.), University Hospital Munich, 80336 Munich, Germany; Institute of Clinical Chemistry and Laboratory Medicine (H.W., A.H., N.F.), University Medicine Greifswald, 17489 Greifswald, Germany; Private Practice Endocrinology (H.W.), 99084 Erfurt, Germany; Department of Nephrology, Medical Faculty (L.C.R., I.Q.), Heinrich-Heine University Düesseldorf, 40225 Düsseldorf, Germany; and Department of Endocrinology and Metabolism (H.S.W.), Rostock University Medical Center, 18147 Rostock, Germany; Comprehensive Cancer Center Mainfranken & Department of Medicine I (C.T.F.), University of Wuerzburg, 97080 Wuerzburg, Germany
| | - N Friedrichs
- Department of Internal Medicine I (K.L., K.W., B.H., B.A., S.H.), University Hospital Würzburg, 97080 Würzburg, Germany; Clinical Endocrinology (M.Q.), Charité Campus Mitte, Charité University Medicine Berlin, 10117 Berlin, Germany; Medizinische Klinik und Poliklinik IV (A.S.D., M.R.), University Hospital Munich, 80336 Munich, Germany; Institute of Clinical Chemistry and Laboratory Medicine (H.W., A.H., N.F.), University Medicine Greifswald, 17489 Greifswald, Germany; Private Practice Endocrinology (H.W.), 99084 Erfurt, Germany; Department of Nephrology, Medical Faculty (L.C.R., I.Q.), Heinrich-Heine University Düesseldorf, 40225 Düsseldorf, Germany; and Department of Endocrinology and Metabolism (H.S.W.), Rostock University Medical Center, 18147 Rostock, Germany; Comprehensive Cancer Center Mainfranken & Department of Medicine I (C.T.F.), University of Wuerzburg, 97080 Wuerzburg, Germany
| | - L C Rump
- Department of Internal Medicine I (K.L., K.W., B.H., B.A., S.H.), University Hospital Würzburg, 97080 Würzburg, Germany; Clinical Endocrinology (M.Q.), Charité Campus Mitte, Charité University Medicine Berlin, 10117 Berlin, Germany; Medizinische Klinik und Poliklinik IV (A.S.D., M.R.), University Hospital Munich, 80336 Munich, Germany; Institute of Clinical Chemistry and Laboratory Medicine (H.W., A.H., N.F.), University Medicine Greifswald, 17489 Greifswald, Germany; Private Practice Endocrinology (H.W.), 99084 Erfurt, Germany; Department of Nephrology, Medical Faculty (L.C.R., I.Q.), Heinrich-Heine University Düesseldorf, 40225 Düsseldorf, Germany; and Department of Endocrinology and Metabolism (H.S.W.), Rostock University Medical Center, 18147 Rostock, Germany; Comprehensive Cancer Center Mainfranken & Department of Medicine I (C.T.F.), University of Wuerzburg, 97080 Wuerzburg, Germany
| | - B Heinze
- Department of Internal Medicine I (K.L., K.W., B.H., B.A., S.H.), University Hospital Würzburg, 97080 Würzburg, Germany; Clinical Endocrinology (M.Q.), Charité Campus Mitte, Charité University Medicine Berlin, 10117 Berlin, Germany; Medizinische Klinik und Poliklinik IV (A.S.D., M.R.), University Hospital Munich, 80336 Munich, Germany; Institute of Clinical Chemistry and Laboratory Medicine (H.W., A.H., N.F.), University Medicine Greifswald, 17489 Greifswald, Germany; Private Practice Endocrinology (H.W.), 99084 Erfurt, Germany; Department of Nephrology, Medical Faculty (L.C.R., I.Q.), Heinrich-Heine University Düesseldorf, 40225 Düsseldorf, Germany; and Department of Endocrinology and Metabolism (H.S.W.), Rostock University Medical Center, 18147 Rostock, Germany; Comprehensive Cancer Center Mainfranken & Department of Medicine I (C.T.F.), University of Wuerzburg, 97080 Wuerzburg, Germany
| | - C T Fuss
- Department of Internal Medicine I (K.L., K.W., B.H., B.A., S.H.), University Hospital Würzburg, 97080 Würzburg, Germany; Clinical Endocrinology (M.Q.), Charité Campus Mitte, Charité University Medicine Berlin, 10117 Berlin, Germany; Medizinische Klinik und Poliklinik IV (A.S.D., M.R.), University Hospital Munich, 80336 Munich, Germany; Institute of Clinical Chemistry and Laboratory Medicine (H.W., A.H., N.F.), University Medicine Greifswald, 17489 Greifswald, Germany; Private Practice Endocrinology (H.W.), 99084 Erfurt, Germany; Department of Nephrology, Medical Faculty (L.C.R., I.Q.), Heinrich-Heine University Düesseldorf, 40225 Düsseldorf, Germany; and Department of Endocrinology and Metabolism (H.S.W.), Rostock University Medical Center, 18147 Rostock, Germany; Comprehensive Cancer Center Mainfranken & Department of Medicine I (C.T.F.), University of Wuerzburg, 97080 Wuerzburg, Germany
| | - I Quack
- Department of Internal Medicine I (K.L., K.W., B.H., B.A., S.H.), University Hospital Würzburg, 97080 Würzburg, Germany; Clinical Endocrinology (M.Q.), Charité Campus Mitte, Charité University Medicine Berlin, 10117 Berlin, Germany; Medizinische Klinik und Poliklinik IV (A.S.D., M.R.), University Hospital Munich, 80336 Munich, Germany; Institute of Clinical Chemistry and Laboratory Medicine (H.W., A.H., N.F.), University Medicine Greifswald, 17489 Greifswald, Germany; Private Practice Endocrinology (H.W.), 99084 Erfurt, Germany; Department of Nephrology, Medical Faculty (L.C.R., I.Q.), Heinrich-Heine University Düesseldorf, 40225 Düsseldorf, Germany; and Department of Endocrinology and Metabolism (H.S.W.), Rostock University Medical Center, 18147 Rostock, Germany; Comprehensive Cancer Center Mainfranken & Department of Medicine I (C.T.F.), University of Wuerzburg, 97080 Wuerzburg, Germany
| | - H S Willenberg
- Department of Internal Medicine I (K.L., K.W., B.H., B.A., S.H.), University Hospital Würzburg, 97080 Würzburg, Germany; Clinical Endocrinology (M.Q.), Charité Campus Mitte, Charité University Medicine Berlin, 10117 Berlin, Germany; Medizinische Klinik und Poliklinik IV (A.S.D., M.R.), University Hospital Munich, 80336 Munich, Germany; Institute of Clinical Chemistry and Laboratory Medicine (H.W., A.H., N.F.), University Medicine Greifswald, 17489 Greifswald, Germany; Private Practice Endocrinology (H.W.), 99084 Erfurt, Germany; Department of Nephrology, Medical Faculty (L.C.R., I.Q.), Heinrich-Heine University Düesseldorf, 40225 Düsseldorf, Germany; and Department of Endocrinology and Metabolism (H.S.W.), Rostock University Medical Center, 18147 Rostock, Germany; Comprehensive Cancer Center Mainfranken & Department of Medicine I (C.T.F.), University of Wuerzburg, 97080 Wuerzburg, Germany
| | - M Reincke
- Department of Internal Medicine I (K.L., K.W., B.H., B.A., S.H.), University Hospital Würzburg, 97080 Würzburg, Germany; Clinical Endocrinology (M.Q.), Charité Campus Mitte, Charité University Medicine Berlin, 10117 Berlin, Germany; Medizinische Klinik und Poliklinik IV (A.S.D., M.R.), University Hospital Munich, 80336 Munich, Germany; Institute of Clinical Chemistry and Laboratory Medicine (H.W., A.H., N.F.), University Medicine Greifswald, 17489 Greifswald, Germany; Private Practice Endocrinology (H.W.), 99084 Erfurt, Germany; Department of Nephrology, Medical Faculty (L.C.R., I.Q.), Heinrich-Heine University Düesseldorf, 40225 Düsseldorf, Germany; and Department of Endocrinology and Metabolism (H.S.W.), Rostock University Medical Center, 18147 Rostock, Germany; Comprehensive Cancer Center Mainfranken & Department of Medicine I (C.T.F.), University of Wuerzburg, 97080 Wuerzburg, Germany
| | - B Allolio
- Department of Internal Medicine I (K.L., K.W., B.H., B.A., S.H.), University Hospital Würzburg, 97080 Würzburg, Germany; Clinical Endocrinology (M.Q.), Charité Campus Mitte, Charité University Medicine Berlin, 10117 Berlin, Germany; Medizinische Klinik und Poliklinik IV (A.S.D., M.R.), University Hospital Munich, 80336 Munich, Germany; Institute of Clinical Chemistry and Laboratory Medicine (H.W., A.H., N.F.), University Medicine Greifswald, 17489 Greifswald, Germany; Private Practice Endocrinology (H.W.), 99084 Erfurt, Germany; Department of Nephrology, Medical Faculty (L.C.R., I.Q.), Heinrich-Heine University Düesseldorf, 40225 Düsseldorf, Germany; and Department of Endocrinology and Metabolism (H.S.W.), Rostock University Medical Center, 18147 Rostock, Germany; Comprehensive Cancer Center Mainfranken & Department of Medicine I (C.T.F.), University of Wuerzburg, 97080 Wuerzburg, Germany
| | - S Hahner
- Department of Internal Medicine I (K.L., K.W., B.H., B.A., S.H.), University Hospital Würzburg, 97080 Würzburg, Germany; Clinical Endocrinology (M.Q.), Charité Campus Mitte, Charité University Medicine Berlin, 10117 Berlin, Germany; Medizinische Klinik und Poliklinik IV (A.S.D., M.R.), University Hospital Munich, 80336 Munich, Germany; Institute of Clinical Chemistry and Laboratory Medicine (H.W., A.H., N.F.), University Medicine Greifswald, 17489 Greifswald, Germany; Private Practice Endocrinology (H.W.), 99084 Erfurt, Germany; Department of Nephrology, Medical Faculty (L.C.R., I.Q.), Heinrich-Heine University Düesseldorf, 40225 Düsseldorf, Germany; and Department of Endocrinology and Metabolism (H.S.W.), Rostock University Medical Center, 18147 Rostock, Germany; Comprehensive Cancer Center Mainfranken & Department of Medicine I (C.T.F.), University of Wuerzburg, 97080 Wuerzburg, Germany
| |
Collapse
|
19
|
CZARNECKA ANNAM, NIEDZWIEDZKA MAGDALENA, PORTA CAMILLO, SZCZYLIK CEZARY. Hormone signaling pathways as treatment targets in renal cell cancer (Review). Int J Oncol 2016; 48:2221-35. [DOI: 10.3892/ijo.2016.3460] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/14/2016] [Indexed: 11/06/2022] Open
|
20
|
Sarin H. Pressuromodulation at the cell membrane as the basis for small molecule hormone and peptide regulation of cellular and nuclear function. J Transl Med 2015; 13:372. [PMID: 26610602 PMCID: PMC4660824 DOI: 10.1186/s12967-015-0707-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 10/21/2015] [Indexed: 12/15/2022] Open
Abstract
Building on recent knowledge that the specificity of the biological interactions of small molecule hydrophiles and lipophiles across microvascular and epithelial barriers, and with cells, can be predicted on the basis of their conserved biophysical properties, and the knowledge that biological peptides are cell membrane impermeant, it has been further discussed herein that cellular, and thus, nuclear function, are primarily regulated by small molecule hormone and peptide/factor interactions at the cell membrane (CM) receptors. The means of regulating cellular, and thus, nuclear function, are the various forms of CM Pressuromodulation that exist, which include Direct CM Receptor-Mediated Stabilizing Pressuromodulation, sub-classified as Direct CM Receptor-Mediated Stabilizing Shift Pressuromodulation (Single, Dual or Tri) or Direct CM Receptor-Mediated Stabilizing Shift Pressuromodulation (Single, Dual or Tri) cum External Cationomodulation (≥3+ → 1+); which are with respect to acute CM receptor-stabilizing effects of small biomolecule hormones, growth factors or cytokines, and also include Indirect CM- or CM Receptor-Mediated Pressuromodulation, sub-classified as Indirect 1ary CM-Mediated Shift Pressuromodulation (Perturbomodulation), Indirect 2ary CM Receptor-Mediated Shift Pressuromodulation (Tri or Quad Receptor Internal Pseudo-Cationomodulation: SS 1+), Indirect 3ary CM Receptor-Mediated Shift Pressuromodulation (Single or Dual Receptor Endocytic External Cationomodulation: 2+) or Indirect (Pseudo) 3ary CM Receptor-Mediated Shift Pressuromodulation (Receptor Endocytic Hydroxylocarbonyloetheroylomodulation: 0), which are with respect to sub-acute CM receptor-stabilizing effects of small biomolecules, growth factors or cytokines. As a generalization, all forms of CM pressuromodulation decrease CM and nuclear membrane (NM) compliance (whole cell compliance), due to pressuromodulation of the intracellular microtubule network and increases the exocytosis of pre-synthesized vesicular endogolgi peptides and small molecules as well as nuclear-to-rough endoplasmic reticulum membrane proteins to the CM, with the potential to simultaneously increase the NM-associated chromatin DNA transcription of higher molecular weight protein forms, secretory and CM-destined, mitochondrial and nuclear, including the highest molecular weight nuclear proteins, Ki67 (359 kDa) and Separase (230 kDa), with the latter leading to mitogenesis and cell division; while, in the case of growth factors or cytokines with external cationomodulation capability, CM Receptor External Cationomodulation of CM receptors (≥3+ → 1+) results in cationic extracellular interaction (≥3+) with extracellular matrix heparan sulfates (≥3+ → 1+) concomitant with lamellopodesis and cell migration. It can be surmised that the modulation of cellular, and nuclear, function is mostly a reactive process, governed, primarily, by small molecule hormone and peptide interactions at the cell membrane, with CM receptors and the CM itself. These insights taken together, provide valuable translationally applicable knowledge.
Collapse
Affiliation(s)
- Hemant Sarin
- Freelance Investigator in Translational Science and Medicine, Charleston, WV, USA.
| |
Collapse
|