1
|
Melounková L, Syková M, Jirásko R, Jambor R, Havelek R, Peterová E, Honzíček J, Vinklárek J. Heterobimetallic platinum( ii) complexes with increased cytotoxicity against ovarian cancer cell lines. NEW J CHEM 2021. [DOI: 10.1039/d1nj03533a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two series of heterobimetallic compounds were prepared from the starting complex [cis-L2PtCl2] containing an aminophosphine ligand (L = 2,6-iPr2-C6H3-NHPPh2).
Collapse
Affiliation(s)
- Lucie Melounková
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University in Prague, Šimkova 870, 500 01 Hradec Králové, Czech Republic
| | - Miriam Syková
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
| | - Robert Jirásko
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
| | - Roman Jambor
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
| | - Radim Havelek
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University in Prague, Šimkova 870, 500 01 Hradec Králové, Czech Republic
| | - Eva Peterová
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University in Prague, Šimkova 870, 500 01 Hradec Králové, Czech Republic
| | - Jan Honzíček
- Institute of Chemistry and Technology of Macromolecular Materials, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
| | - Jaromír Vinklárek
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
| |
Collapse
|
2
|
Roychowdhury T, Chattopadhyay S. Chemical Decorations of "MARs" Residents in Orchestrating Eukaryotic Gene Regulation. Front Cell Dev Biol 2020; 8:602994. [PMID: 33409278 PMCID: PMC7779526 DOI: 10.3389/fcell.2020.602994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/19/2020] [Indexed: 01/19/2023] Open
Abstract
Genome organization plays a crucial role in gene regulation, orchestrating multiple cellular functions. A meshwork of proteins constituting a three-dimensional (3D) matrix helps in maintaining the genomic architecture. Sequences of DNA that are involved in tethering the chromatin to the matrix are called scaffold/matrix attachment regions (S/MARs), and the proteins that bind to these sequences and mediate tethering are termed S/MAR-binding proteins (S/MARBPs). The regulation of S/MARBPs is important for cellular functions and is altered under different conditions. Limited information is available presently to understand the structure–function relationship conclusively. Although all S/MARBPs bind to DNA, their context- and tissue-specific regulatory roles cannot be justified solely based on the available information on their structures. Conformational changes in a protein lead to changes in protein–protein interactions (PPIs) that essentially would regulate functional outcomes. A well-studied form of protein regulation is post-translational modification (PTM). It involves disulfide bond formation, cleavage of precursor proteins, and addition or removal of low-molecular-weight groups, leading to modifications like phosphorylation, methylation, SUMOylation, acetylation, PARylation, and ubiquitination. These chemical modifications lead to varied functional outcomes by mechanisms like modifying DNA–protein interactions and PPIs, altering protein function, stability, and crosstalk with other PTMs regulating subcellular localizations. S/MARBPs are reported to be regulated by PTMs, thereby contributing to gene regulation. In this review, we discuss the current understanding, scope, disease implications, and future perspectives of the diverse PTMs regulating functions of S/MARBPs.
Collapse
Affiliation(s)
- Tanaya Roychowdhury
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, India.,Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Samit Chattopadhyay
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, India.,Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
3
|
Therachiyil L, Haroon J, Sahir F, Siveen KS, Uddin S, Kulinski M, Buddenkotte J, Steinhoff M, Krishnankutty R. Dysregulated Phosphorylation of p53, Autophagy and Stemness Attributes the Mutant p53 Harboring Colon Cancer Cells Impaired Sensitivity to Oxaliplatin. Front Oncol 2020; 10:1744. [PMID: 32984059 PMCID: PMC7485421 DOI: 10.3389/fonc.2020.01744] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) forms one of the highest ranked cancer types in the world with its increasing incidence and mortality rates despite the advancement in cancer therapeutics. About 50% of human CRCs are reported to have defective p53 expression resultant of TP53 gene mutation often contributing to drug resistance. The current study was aimed to investigate the response of wild-type TP53 harboring HCT 116 and mutant TP53 harboring HT 29 colon cancer cells to chemotherapeutic drug oxaliplatin (OX) and to elucidate the underlying molecular mechanisms of sensitivity/resistance in correlation to their p53 status. OX inhibited growth of wild-type p53-harboring colon cancer cells via p53/p21-Bax mediated apoptosis. Our study revealed that dysregulated phosphorylation of p53, autophagy as well as cancer stemness attributes the mutant p53-harboring colon cancer cells impaired sensitivity to OX.
Collapse
Affiliation(s)
- Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Pharmaceutical Sciences, College of Pharmacy, Qatar University, Doha, Qatar
| | - Javeria Haroon
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Fairooz Sahir
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Kodappully S. Siveen
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Michal Kulinski
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, Doha, Qatar
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
- College of Medicine, Qatar University, Doha, Qatar
| | - Roopesh Krishnankutty
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
4
|
Copper-imidazo[1,2-a]pyridines induce intrinsic apoptosis and modulate the expression of mutated p53, haem-oxygenase-1 and apoptotic inhibitory proteins in HT-29 colorectal cancer cells. Apoptosis 2020; 24:623-643. [PMID: 31073781 DOI: 10.1007/s10495-019-01547-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metastatic colorectal cancer responds poorly to treatment and is a leading cause of cancer related deaths. Worldwide, chemotherapy of metastatic colorectal cancer remains plagued by poor efficacy, development of resistance and serious adverse effects. Copper-imidazo[1,2-a]pyridines were previously shown by our group to be selectively active against several cancer cell lines, with three complexes, JD46(27), JD47(29), and JD88(21), showing IC50 values between 0.8 and 1.8 μM against HT-29 cells. Here, we report that treatment with the copper complexes resulted in fragmented nuclei suggestive of apoptotic cell death, which was confirmed by increased annexin V binding and caspase-3/7 activity. The copper complexes caused a loss of mitochondrial membrane potential and increased caspase-9 activity. The absence of caspase-8 activity indicated activation of the intrinsic pathway. Proteomic analysis revealed that copper-imidazo[1,2-a]pyridines decreased the expression of phosphorylated forms of p53 [phospho-p53(S15), phospho-p53(S46) and phospho-p53(S392)]. The expression of inhibitor of apoptosis proteins, XIAP, cIAP1, livin, and the antiapoptotic proteins, Bcl-2 and Bcl-x, was decreased. HO/HMOX/HSP32, expression was notably increased, which suggested the accumulation of reactive oxygen species. Increased expression of TRAIL-R2/DR5 death receptor indicated the possible dual activation of both the extrinsic and intrinsic apoptotic pathways; however, caspase-8 activation could not be demonstrated. In conclusion, the copper-imidazo[1,2-a]pyridines were effective inducers of apoptotic cell death at low micromolar concentrations and changed the expression levels of proteins important for cell survival and cell death. These copper complexes may be useful tools to better understand the complexity of signalling networks in cancer cell death in response to cell stress.
Collapse
|
5
|
Chen W, Liang JL, Zhou K, Zeng QL, Ye JW, Huang MJ. Effect of CIP2A and its mechanism of action in the malignant biological behavior of colorectal cancer. Cell Commun Signal 2020; 18:67. [PMID: 32321509 PMCID: PMC7178757 DOI: 10.1186/s12964-020-00545-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
Background Increasing evidence has revealed a close correlation between cancerous inhibitor of protein phosphatase 2A (CIP2A) and cancer progression. CIP2A has been shown to participate in diverse biological processes, such as development, tumorigenic transformation and chemoresistance. However, the functions of CIP2A in colorectal cancer (CRC) and its underlying mechanisms of action are not yet completely understood. The purpose of this study was to explore its clinical significance, function and relevant pathways in CRC. Methods Quantitative RT-PCR (qRT-PCR), immunohistochemistry (IHC), western blotting and enzyme-linked immunosorbent assay (ELISA) were used to identify the expression of CIP2A in CRC tissues, sera and CRC cell lines. The association between the expressions of CIP2A and patient survival was analyzed using the Kaplan-Meier curves. Additionally, the functional role of CIP2A in the cell lines was identified through small interfering RNA (siRNA)-mediated depletion of the protein followed by analyses of proliferation and xenograft growth in vivo using short hairpin (sh) RNAs. Effects of the C-myc inhibitor 10,058-F4 on the expressions of C-myc, and CIP2A in CRC cell lines and its potential mechanisms of action were investigated. Finally, the potential molecular pathways associated with CIP2A were screened using the phosphokinase array and identified through western blotting. Results CIP2A mRNA and protein levels were upregulated in CRC tissues compared to those of the corresponding normal tissues. It can be used as an independent prognostic indicator to determine overall survival (OS) and disease-free survival (DFS). Depletion of CIP2A substantially suppressed the growth of CRC cells and colony formation in vitro, and inhibited the growth of xenograft tumors in vivo. Additionally, the levels of CIP2A in the sera of patients with CRC were higher than those of the control subjects. Multivariate analyses revealed that the levels of CIP2A in the sera were not independent prognostic indicators in patients with CRC. Moreover, 10,058-F4 could effectively inhibit the growth of CRC cells in vitro, which could be correlated with an inhibition in the expressions of C-myc, CIP2A and its downstream regulatory anti-apoptotic proteins. Furthermore, the Human Phosphokinase Antibody Array was used to gain insights into the CIP2A-dependent intermediary signaling pathways. The results revealed that several signaling pathways were affected and the protein levels of p-p53 (S392), p-STAT5a (Y694), Cyclin D1, p-ERK1/2 and p-AKT (T308) had decreased in CIP2A-shRNA group based on the results of the western blot analysis. Conclusions CIP2A could promote the development of CRC cells and predict poor prognosis in patients with CRC, suggesting that it may serve as a potential prognostic marker and therapeutic target against CRC. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Wei Chen
- Department of Colorectal Surgery, The Six Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.,Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China.,Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
| | - Jing-Lin Liang
- Department of Colorectal Surgery, The Six Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.,Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China.,Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
| | - Kai Zhou
- Jiangxi Provincial People's Hospital, Nanchang, 330006, Jiangxi, China
| | - Qing-Li Zeng
- Jiangxi Provincial People's Hospital, Nanchang, 330006, Jiangxi, China.,The 334 Hospital Affiliated of Nanchang University, Nanchang, 330024, Jiangxi, China
| | - Jun-Wen Ye
- Department of Colorectal Surgery, The Six Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.,Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China.,Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
| | - Mei-Jin Huang
- Department of Colorectal Surgery, The Six Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China. .,Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China. .,Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China.
| |
Collapse
|
6
|
Kallay L, Keskin H, Ross A, Rupji M, Moody OA, Wang X, Li G, Ahmed T, Rashid F, Stephen MR, Cottrill KA, Nuckols TA, Xu M, Martinson DE, Tranghese F, Pei Y, Cook JM, Kowalski J, Taylor MD, Jenkins A, Pomeranz Krummel DA, Sengupta S. Modulating native GABA A receptors in medulloblastoma with positive allosteric benzodiazepine-derivatives induces cell death. J Neurooncol 2019; 142:411-422. [PMID: 30725256 PMCID: PMC6478651 DOI: 10.1007/s11060-019-03115-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/31/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Pediatric brain cancer medulloblastoma (MB) standard-of-care results in numerous comorbidities. MB is comprised of distinct molecular subgroups. Group 3 molecular subgroup patients have the highest relapse rates and after standard-of-care have a 20% survival. Group 3 tumors have high expression of GABRA5, which codes for the α5 subunit of the γ-aminobutyric acid type A receptor (GABAAR). We are advancing a therapeutic approach for group 3 based on GABAAR modulation using benzodiazepine-derivatives. METHODS We performed analysis of GABR and MYC expression in MB tumors and used molecular, cell biological, and whole-cell electrophysiology approaches to establish presence of a functional 'druggable' GABAAR in group 3 cells. RESULTS Analysis of expression of 763 MB tumors reveals that group 3 tumors share high subgroup-specific and correlative expression of GABR genes, which code for GABAAR subunits α5, β3 and γ2 and 3. There are ~ 1000 functional α5-GABAARs per group 3 patient-derived cell that mediate a basal chloride-anion efflux of 2 × 109 ions/s. Benzodiazepines, designed to prefer α5-GABAAR, impair group 3 cell viability by enhancing chloride-anion efflux with subtle changes in their structure having significant impact on potency. A potent, non-toxic benzodiazepine ('KRM-II-08') binds to the α5-GABAAR (0.8 µM EC50) enhancing a chloride-anion efflux that induces mitochondrial membrane depolarization and in response, TP53 upregulation and p53, constitutively phosphorylated at S392, cytoplasmic localization. This correlates with pro-apoptotic Bcl-2-associated death promoter protein localization. CONCLUSION GABRA5 expression can serve as a diagnostic biomarker for group 3 tumors, while α5-GABAAR is a therapeutic target for benzodiazepine binding, enhancing an ion imbalance that induces apoptosis.
Collapse
Affiliation(s)
- Laura Kallay
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Havva Keskin
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexandra Ross
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Manali Rupji
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Olivia A Moody
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Xin Wang
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Guanguan Li
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Taukir Ahmed
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Farjana Rashid
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Michael Rajesh Stephen
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Kirsten A Cottrill
- Molecular and Systems Pharmacology Graduate Training Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA
| | - T Austin Nuckols
- Molecular and Systems Pharmacology Graduate Training Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA
| | - Maxwell Xu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Deborah E Martinson
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Frank Tranghese
- Electrical and Computer Engineering Department, Boston University, Boston, MA, USA
| | - Yanxin Pei
- Center for Cancer and Immunology Research, Brain Tumor Institute, Children's National Medical Center, Washington, DC, USA
| | - James M Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jeanne Kowalski
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biostatistics & Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, Canada
| | - Andrew Jenkins
- Departments of Anesthesiology & Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Daniel A Pomeranz Krummel
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University Hospital, 1365C Clifton Road, Suite C5086, Atlanta, GA, USA.
| | - Soma Sengupta
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University Hospital, 1365C Clifton Road, Suite C5086, Atlanta, GA, USA.
| |
Collapse
|
7
|
Giorgini E, Sabbatini S, Rocchetti R, Notarstefano V, Rubini C, Conti C, Orilisi G, Mitri E, Bedolla DE, Vaccari L. In vitro FTIR microspectroscopy analysis of primary oral squamous carcinoma cells treated with cisplatin and 5-fluorouracil: a new spectroscopic approach for studying the drug-cell interaction. Analyst 2019; 143:3317-3326. [PMID: 29931010 DOI: 10.1039/c8an00602d] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the present study, human primary oral squamous carcinoma cells treated with cisplatin and 5-fluorouracil were analyzed, for the first time, by in vitro FTIR Microspectroscopy (FTIRM), to improve the knowledge on the biochemical pathways activated by these two chemotherapy drugs. To date, most of the studies regarding FTIRM cellular analysis have been executed on fixed cells from immortalized cell lines. FTIRM analysis performed on primary tumor cells under controlled hydrated conditions provides more reliable information on the biochemical processes occurring in in vivo tumor cells. This spectroscopic analysis allows to get on the same sample and at the same time an overview of the composition and structure of the most remarkable cellular components. In vitro FTIRM analysis of primary oral squamous carcinoma cells evidenced a time-dependent drug-specific cellular response, also including apoptosis triggering. Furthermore, the univariate and multivariate analyses of IR data evidenced meaningful spectroscopic differences ascribable to alterations affecting cellular proteins, lipids and nucleic acids. These findings suggest for the two drugs different pathways and extents of cellular damage, not provided by conventional cell-based assays (MTT assay and image-based cytometry).
Collapse
Affiliation(s)
- Elisabetta Giorgini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kamińska I, Bar JK. The association between p53 protein phosphorylation at serine 15, serine 20 and sensitivity of cells isolated from patients with ovarian cancer and cell lines to chemotherapy in in vitro study. Pharmacol Rep 2017; 70:570-576. [PMID: 29684847 DOI: 10.1016/j.pharep.2017.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/06/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND The association between p53 protein phosphorylated at serine 15 (Ser15), serine 20 (Ser20) and ovarian tumor cell sensitivity after chemotherapy was analyzed in order to define the influence of p53 activation on tumor cell sensitivity to chemotherapy. METHODS The study was performed on ovarian cancer cell line (OvBH-1), colon adenocarcinoma metastasis to ovary (SW626) and on cells isolated from ascitic fluids from patients with ovarian cancer: with (p53+) or without (p53-) p53 nuclear protein accumulation. p53 protein, Ser15, Ser20, Bax, Noxa and PgP protein expression was evaluated by means of immunocytochemical staining before and after chemotherapy. Cell viability after treatment was estimated using MTT assay. RESULTS Cell lines and tumor cells p53+, p53- revealed a significant decrease in cell survival after camptothecin, paclitaxel, cisplatin treatment, compared to the control group (p < 0.01). In p53+ group, the expression of Ser20 significantly increased after camptothecin and paclitaxel (p < 0.05). Ser15, Ser20, Bax, Noxa expression correlated with MTT and depended on p53+, p53- tumor cell and the drug used (p < 0.05). Expression of Bax and Noxa were dependent on the type of tumor cells and drug used. The correlation between Ser15, Ser20 and Bax, Noxa expression was found in cell lines and tumor cells (p < 0.05). CONCLUSIONS Our study suggests that the relation between Ser15 or Ser20 and tumor cell viability might reflect their role in tumor sensitivity on chemotherapy in dependent p53 protein status. Revealed association between p53 protein phosphorylated at Ser15, Ser20 and Bax, Noxa protein expression determined the apoptotic activity of tumor cells.
Collapse
Affiliation(s)
- Iwona Kamińska
- Department of Immunopathology and Molecular Biology, Medical University, Wrocław, Poland.
| | - Julia K Bar
- Department of Immunopathology and Molecular Biology, Medical University, Wrocław, Poland.
| |
Collapse
|
9
|
Klameth L, Rath B, Hamilton G. In vitro Cytotoxic Activities of the Oral Platinum(IV) Prodrug Oxoplatin and HSP90 Inhibitor Ganetespib against a Panel of Gastric Cancer Cell Lines. J Cancer 2017; 8:1733-1743. [PMID: 28819369 PMCID: PMC5556635 DOI: 10.7150/jca.17816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 04/01/2017] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer exhibits a poor prognosis and is the third most common cause of cancer death worldwide. Chemotherapy of metastatic gastric cancer is based on combinations of platinum drugs and fluoropyrimidines, with added agents. Oxoplatin is a stable oral platinum(IV) prodrug which is converted to a highly active tetrachlorido(IV) complex under acidic conditions. In the present work, we studied the cytotoxic effects of oxoplatin against a panel of four gastric cancer cell lines in vitro. Furthermore, the role of HSP90 in chemoresistance of these lines was investigated using the specific inhibitor ganetespib. The KATO-III, MKN-1, MKN-28, MKN-45 lines were used in MTT chemosensitivity, cell cycle and apoptosis assays. KATO-III is a signet ring diffuse cell type, MKN-1 an adenosquamous primary, MKN-28 a well-differentiated intestinal type and the MKN-45 a poorly differentiated, diffuse type gastric carcinoma line. Cytotoxicity was tested in MTT assays and intracellular signal transduction with proteome profiler Western blot arrays. Interactions of platinum drugs and ganetespib were calculated with help of the Chou-Talalay method. The prodrug oxoplatin revealed low activity against the four gastric cancer cell lines, whereas the platinum tetrachlorido(IV) complex and cisplatin gave IC50 values of 1-3 µg/ml with increasing chemoresistance observed in the order of MKN-1, KATO-III, MKN-28 to MKN-45. With exception of KATO-III and MKN-28/oxoplatin, all other cell lines featured marked synergistic toxicity with clinically achievable concentrations of ganetespib. Oral administration of a platinum agent such as oxoplatin would be of great value for patients and care providers alike. These results suggest that the oncogene-stabilizing HSP90 chaperone represents an important mediator of chemoresistance in gastric cancer. Ganetespib reduced the phosphorylation of p53, Akt1/2/3 and PRAS40, as well as of WNK1, a kinase which regulates intracellular chloride concentrations. Intracellular chloride was reported to control proliferation of gastric cancer cell lines. Expression of MUC1 was not downregulated in contrast to the expression of CAIX, a prognostic marker in gastric cancer. In conclusion, the HSP90 inhibitor ganetespib synergizes with platinum anticancer drugs and modulates intracellular signal transduction in direction of a less proliferative and aggressive phenotype.
Collapse
Affiliation(s)
- Lukas Klameth
- Department for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Barbara Rath
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Gerhard Hamilton
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Yue X, Zhao Y, Xu Y, Zheng M, Feng Z, Hu W. Mutant p53 in Cancer: Accumulation, Gain-of-Function, and Therapy. J Mol Biol 2017; 429:1595-1606. [PMID: 28390900 PMCID: PMC5663274 DOI: 10.1016/j.jmb.2017.03.030] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 12/19/2022]
Abstract
Tumor suppressor p53 plays a central role in tumor suppression. p53 is the most frequently mutated gene in human cancer, and over half of human cancers contain p53 mutations. Majority of p53 mutations in cancer are missense mutations, leading to the expression of full-length mutant p53 (mutp53) protein. While the critical role of wild-type p53 in tumor suppression has been firmly established, mounting evidence has demonstrated that many tumor-associated mutp53 proteins not only lose the tumor-suppressive function of wild-type p53 but also gain new activities to promote tumorigenesis independently of wild-type p53, termed gain-of-function. Mutant p53 protein often accumulates to very high levels in tumors, contributing to malignant progression. Recently, mutp53 has become an attractive target for cancer therapy. Further understanding of the mechanisms underlying mutp53 protein accumulation and gain-of-function will accelerate the development of targeted therapies for human cancer harboring mutp53. In this review, we summarize the recent advances in the studies on mutp53 protein accumulation and gain-of-function and targeted therapies for mutp53 in human cancer.
Collapse
Affiliation(s)
- Xuetian Yue
- Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Yuhan Zhao
- Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Yang Xu
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Min Zheng
- State Key Lab of Diagnostic and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhaohui Feng
- Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, NJ 08903, USA; Department of Pharmacology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08903, USA.
| | - Wenwei Hu
- Rutgers Cancer Institute of New Jersey, Rutgers, the State University of New Jersey, New Brunswick, NJ 08903, USA; Department of Pharmacology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08903, USA.
| |
Collapse
|
11
|
Labib M, Sargent EH, Kelley SO. Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. Chem Rev 2016; 116:9001-90. [DOI: 10.1021/acs.chemrev.6b00220] [Citation(s) in RCA: 555] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mahmoud Labib
- Department
of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | | | - Shana O. Kelley
- Department
of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|
12
|
Ge X, Zhang A, Lin Y, Du D. Simultaneous immunoassay of phosphorylated proteins based on apoferritin templated metallic phosphates as voltammetrically distinguishable signal reporters. Biosens Bioelectron 2016; 80:201-207. [DOI: 10.1016/j.bios.2016.01.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/21/2016] [Accepted: 01/23/2016] [Indexed: 02/01/2023]
|
13
|
Yang L, Wang Y, Xing R, Bai L, Li C, Li Z, Liu X. Mimotope mimicking epidermal growth factor receptor alleviates mononuclear cell infiltration in exocrine glands induced by muscarinic acetylcholine 3 receptor. Clin Immunol 2016; 163:111-9. [PMID: 26794912 DOI: 10.1016/j.clim.2016.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/13/2016] [Accepted: 01/16/2016] [Indexed: 01/12/2023]
Abstract
The muscarinic type 3 receptor (M3R) plays a pivotal role in the pathogenesis of Sjögren's syndrome (SS). Characterization of the crosstalk between M3R and EGFR has been investigated in some human malignancies. In the current study, we sought to investigate whether EGFR mimic immunization could alleviate the abnormal immune responses in an experimental SS-like model triggered by M3R peptides. After immunization with the combination of mimotope and M3R peptide, the active immunization targeting EGFR induced by the mimotope could reduce the marked infiltration of mononuclear cells, the high titer of antibodies against M3R and the accumulation of crucial pro-inflammatory cytokines in mice immunized with M3R peptide. Mechanistic analysis showed that mimotope immunization could alleviate the autoimmune response through inhibiting mitochondrion-mediated anti-apoptosis and up-regulating the FAS apoptosis pathway. These results may help to clarify the role of M3R in the pathogenesis of SS and suggested that transactivation of the EGFR signaling pathway may help M3R activate the autoimmune response in the pathogenesis of SS.
Collapse
Affiliation(s)
- Lin Yang
- Department of Rheumatology and Immunology, Peking University Third Hospital, No.49, HuaYuan (North) Road, Beijing 100191, PR China
| | - Yongfu Wang
- Department of Rheumatology, The First Affiliated Hospital of Baotou Medical College, No.41, LinYin Road, Baotou 014010, PR China
| | - Rui Xing
- Department of Rheumatology and Immunology, Peking University Third Hospital, No.49, HuaYuan (North) Road, Beijing 100191, PR China
| | - Li Bai
- Department of Rheumatology, The First Affiliated Hospital of Baotou Medical College, No.41, LinYin Road, Baotou 014010, PR China
| | - Changhong Li
- Department of Rheumatology and Immunology, Peking University Third Hospital, No.49, HuaYuan (North) Road, Beijing 100191, PR China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, No.49, HuaYuan (North) Road, Beijing 100191, PR China
| | - Xiangyuan Liu
- Department of Rheumatology and Immunology, Peking University Third Hospital, No.49, HuaYuan (North) Road, Beijing 100191, PR China.
| |
Collapse
|
14
|
Lu TX, Young KH, Xu W, Li JY. TP53 dysfunction in diffuse large B-cell lymphoma. Crit Rev Oncol Hematol 2016; 97:47-55. [PMID: 26315382 DOI: 10.1016/j.critrevonc.2015.08.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 07/05/2015] [Accepted: 08/05/2015] [Indexed: 12/22/2022] Open
|
15
|
Abstract
p53 has been studied intensively as a major tumour suppressor that detects oncogenic events in cancer cells and eliminates them through senescence (a permanent non-proliferative state) or apoptosis. Consistent with this role, p53 activity is compromised in a high proportion of all cancer types, either through mutation of the TP53 gene (encoding p53) or changes in the status of p53 modulators. p53 has additional roles, which may overlap with its tumour-suppressive capacity, in processes including the DNA damage response, metabolism, aging, stem cell differentiation and fertility. Moreover, many mutant p53 proteins, termed 'gain-of-function' (GOF), acquire new activities that help drive cancer aggression. p53 is regulated mainly through protein turnover and operates within a negative-feedback loop with its transcriptional target, MDM2 (murine double minute 2), an E3 ubiquitin ligase which mediates the ubiquitylation and proteasomal degradation of p53. Induction of p53 is achieved largely through uncoupling the p53-MDM2 interaction, leading to elevated p53 levels. Various stress stimuli acting on p53 (such as hyperproliferation and DNA damage) use different, but overlapping, mechanisms to achieve this. Additionally, p53 activity is regulated through critical context-specific or fine-tuning events, mediated primarily through post-translational mechanisms, particularly multi-site phosphorylation and acetylation. In the present review, I broadly examine these events, highlighting their regulatory contributions, their ability to integrate signals from cellular events towards providing most appropriate response to stress conditions and their importance for tumour suppression. These are fascinating aspects of molecular oncology that hold the key to understanding the molecular pathology of cancer and the routes by which it may be tackled therapeutically.
Collapse
|
16
|
Xi Y, Liu C, Xin X. Association between a single nucleotide polymorphism in the TP53 region and risk of ovarian cancer. Cell Biochem Biophys 2015; 70:1907-12. [PMID: 25060098 DOI: 10.1007/s12013-014-0150-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
TP53 is known as a tumor suppressor gene involved in cell cycle regulation. Many previous epidemiological and clinical studies have evaluated the effects of rs1042522 polymorphism on risk of ovarian cancer. But the results are conflicting and heterogeneous. The primary objective of this study was to examine whether rs1042522 polymorphism is associated with ovarian cancer risk. We performed a comprehensive meta-analysis of 19 case-control studies that analyzed rs1042522 polymorphism in ovarian cancer risk. Odds ratios (ORs) were calculated using distinct genetic models. Heterogeneity between studies was detected by the χ(2)-based Q test. Additional analyses such as sensitivity analyses and publication bias were also performed. The rs1042522 polymorphism was not overall associated with ovarian cancer risk. But there was a borderline association in the heterozygote model (OR = 1.09, 95 % CI 0.99-1.21). Similar effects were observed in the subgroup of Caucasian population (the heterozygote model: OR = 1.11, 95 % CI 1.00-1.24). No significant heterogeneity and publication bias were revealed in this meta-analysis. This study provides statistical evidence that TP53 rs1042522 polymorphism may play a role in modulating risk of ovarian cancer. This observation requires further analysis of a larger study size.
Collapse
Affiliation(s)
- Yanni Xi
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Changle Western Road, Xi'an, 710032, Shaanxi, China
| | | | | |
Collapse
|
17
|
Meta-analysis of association between the TP53 Arg72Pro polymorphism and risk of endometriosis based on case-control studies. Eur J Obstet Gynecol Reprod Biol 2015; 189:1-7. [PMID: 25819169 DOI: 10.1016/j.ejogrb.2015.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 02/06/2015] [Accepted: 03/05/2015] [Indexed: 11/20/2022]
Abstract
OBJECTIVE In the light of the relationship between the TP53 Arg72Pro (rs1042522) polymorphism and the risk of endometriosis remains inclusive or controversial. For better understanding of the effect of TP53 Arg72Pro polymorphism on endometriosis risk, we performed a meta-analysis. METHODS The relevant studies were identified through a search of PubMed, Web of Science, EMBASE, Ovid, Springer, China National Knowledge Infrastructure (CNKI), cqvip, Wanfang database, and Chinese Biomedical Literature (CBM) databases up to December, 2014. The association between the TP53 Arg72Pro polymorphism and endometriosis risk was pooled by conducted by odds ratios and 95% confidence intervals. RESULTS A total of fifteen case-control studies with 2683 cases and 3335 controls were eventually identified. There was significant association between Arg72Pro polymorphism and endometriosis risk in all of the five models in overall populations (C vs. G: OR=1.32, 95%CI=1.14-1.53, p=0.00; CC vs. GG: OR=1.80, 95%CI=1.28-2.53, p=0.001; GC vs. GG: OR=1.52, 95%CI=1.22-1.88, p=0.00; CC vs. GC/GG OR=1.32, 95%CI=1.05-1.66, p=0.016; CC/GC vs. GG: OR=1.59, 95%CI=1.26-2.00, p=0.00). In the sub-group analysis according to ethnicity, the results suggested that TP53 Arg72Pro polymorphism was not associated with endometriosis risk in Caucasians. However, the significant association was found in Asians and Mixed race (MIX) under the five models. CONCLUSIONS The results of this meta-analysis suggest that the TP53 Arg72Pro polymorphism can increase the risk of endometriosis, especially among Asians and MIX populations. Considering the limited sample size and ethnicities included in the meta-analysis, further larger scaled and well-designed studies are needed to confirm our results.
Collapse
|
18
|
Shi X, Liu J, Ren L, Mao N, Tan F, Ding N, Yang J, Li M. Nutlin-3 downregulates p53 phosphorylation on serine392 and induces apoptosis in hepatocellular carcinoma cells. BMB Rep 2015; 47:221-6. [PMID: 24286312 PMCID: PMC4163890 DOI: 10.5483/bmbrep.2014.47.4.146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 07/31/2013] [Accepted: 08/22/2014] [Indexed: 02/05/2023] Open
Abstract
Drug-resistance and imbalance of apoptotic regulation limit chemotherapy clinical application for the human hepatocellular carcinoma (HCC) treatment. The reactivation of p53 is an attractive therapeutic strategy in cancer with disrupted-p53 function. Nutlin-3, a MDM2 antagonist, has antitumor activity in various cancers. The post-translational modifications of p53 are a hot topic, but there are some controversy ideas about the function of phospho-Ser392-p53 protein in cancer cell lines in response to Nutlin-3. Therefore, we investigated the relationship between Nutlin-3 and phospho-Ser392-p53 protein expression levels in SMMC-7721 (wild-type TP53) and HuH-7 cells (mutant TP53). We demonstrated that Nutlin-3 induced apoptosis through down-regulation phospho-Ser392-p53 in two HCC cells. The result suggests that inhibition of p53 phosphorylation on Ser392 presents an alternative for HCC chemotherapy. [BMB Reports 2014; 47(4): 221-226]
Collapse
Affiliation(s)
- Xinli Shi
- Department of Microbiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041; Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China
| | - Jingli Liu
- Department of Repairing and Servicing Technology of Medical Equipment, Bethune Medical Non-commissioned Officer Academy of PLA, Shijiazhuang, Hebei 050081, China
| | - Laifeng Ren
- Department of Microbiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Nan Mao
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Fang Tan
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Nana Ding
- Department of Microbiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jing Yang
- Department of Microbiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Mingyuan Li
- Department of Microbiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
19
|
Nguyen TA, Menendez D, Resnick MA, Anderson CW. Mutant TP53 posttranslational modifications: challenges and opportunities. Hum Mutat 2014; 35:738-55. [PMID: 24395704 DOI: 10.1002/humu.22506] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/02/2014] [Indexed: 12/13/2022]
Abstract
The wild-type (WT) human p53 (TP53) tumor suppressor can be posttranslationally modified at over 60 of its 393 residues. These modifications contribute to changes in TP53 stability and in its activity as a transcription factor in response to a wide variety of intrinsic and extrinsic stresses in part through regulation of protein-protein and protein-DNA interactions. The TP53 gene frequently is mutated in cancers, and in contrast to most other tumor suppressors, the mutations are mostly missense often resulting in the accumulation of mutant (MUT) protein, which may have novel or altered functions. Most MUT TP53s can be posttranslationally modified at the same residues as in WT TP53. Strikingly, however, codons for modified residues are rarely mutated in human tumors, suggesting that TP53 modifications are not essential for tumor suppression activity. Nevertheless, these modifications might alter MUT TP53 activity and contribute to a gain-of-function leading to increased metastasis and tumor progression. Furthermore, many of the signal transduction pathways that result in TP53 modifications are altered or disrupted in cancers. Understanding the signaling pathways that result in TP53 modification and the functions of these modifications in both WT TP53 and its many MUT forms may contribute to more effective cancer therapies.
Collapse
Affiliation(s)
- Thuy-Ai Nguyen
- Chromosome Stability Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | | | | | | |
Collapse
|
20
|
Du D, Wang J, Lu D, Dohnalkova A, Lin Y. Multiplexed Electrochemical Immunoassay of Phosphorylated Proteins Based on Enzyme-Functionalized Gold Nanorod Labels and Electric Field-Driven Acceleration. Anal Chem 2011; 83:6580-5. [DOI: 10.1021/ac2009977] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Dan Du
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jun Wang
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Donglai Lu
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Alice Dohnalkova
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yuehe Lin
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
21
|
Dai C, Gu W. p53 post-translational modification: deregulated in tumorigenesis. Trends Mol Med 2011; 16:528-36. [PMID: 20932800 DOI: 10.1016/j.molmed.2010.09.002] [Citation(s) in RCA: 405] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/07/2010] [Accepted: 09/08/2010] [Indexed: 12/17/2022]
Abstract
The p53 tumor suppressor protein has well-established roles in monitoring various types of stress signals by activating specific transcriptional targets that control cell cycle arrest and apoptosis, although some activities are also mediated in a transcription-independent manner. Here, we review the recent advances in our understanding of the wide spectrum of post-translational modifications that act as epigenetic-like codes for modulating specific functions of p53 in vivo and how deregulation of these modifications might contribute to tumorigenesis. We also discuss future research priorities to further understand p53 post-translational modifications and the interpretation of genetic data in appreciation of the increasing evidence that p53 regulates cellular metabolism, autophagy and many unconventional tumor suppressor activities.
Collapse
Affiliation(s)
- Chao Dai
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | | |
Collapse
|
22
|
Du D, Wang L, Shao Y, Wang J, Engelhard MH, Lin Y. Functionalized Graphene Oxide as a Nanocarrier in a Multienzyme Labeling Amplification Strategy for Ultrasensitive Electrochemical Immunoassay of Phosphorylated p53 (S392). Anal Chem 2011; 83:746-52. [PMID: 21210663 DOI: 10.1021/ac101715s] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Dan Du
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People’s Republic of China
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Limin Wang
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yuyan Shao
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jun Wang
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Mark H. Engelhard
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yuehe Lin
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|