1
|
Sun L, Zhang Y, Li W, Zhang J, Zhang Y. Mucin Glycans: A Target for Cancer Therapy. Molecules 2023; 28:7033. [PMID: 37894512 PMCID: PMC10609567 DOI: 10.3390/molecules28207033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Mucin glycans are an important component of the mucus barrier and a vital defence against physical and chemical damage as well as pathogens. There are 20 mucins in the human body, which can be classified into secreted mucins and transmembrane mucins according to their distributions. The major difference between them is that secreted mucins do not have transmembrane structural domains, and the expression of each mucin is organ and cell-specific. Under physiological conditions, mucin glycans are involved in the composition of the mucus barrier and thus protect the body from infection and injury. However, abnormal expression of mucin glycans can lead to the occurrence of diseases, especially cancer, through various mechanisms. Therefore, targeting mucin glycans for the diagnosis and treatment of cancer has always been a promising research direction. Here, we first summarize the main types of glycosylation (O-GalNAc glycosylation and N-glycosylation) on mucins and the mechanisms by which abnormal mucin glycans occur. Next, how abnormal mucin glycans contribute to cancer development is described. Finally, we summarize MUC1-based antibodies, vaccines, radio-pharmaceuticals, and CAR-T therapies using the best characterized MUC1 as an example. In this section, we specifically elaborate on the recent new cancer therapy CAR-M, which may bring new hope to cancer patients.
Collapse
Affiliation(s)
- Lingbo Sun
- Medical College of Yan'an University, Yan'an University, Yan'an 716000, China
| | - Yuhan Zhang
- Medical College of Yan'an University, Yan'an University, Yan'an 716000, China
| | - Wenyan Li
- Medical College of Yan'an University, Yan'an University, Yan'an 716000, China
| | - Jing Zhang
- Medical College of Yan'an University, Yan'an University, Yan'an 716000, China
| | - Yuecheng Zhang
- Key Laboratory of Analytical Technology and Detection of Yan'an, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China
| |
Collapse
|
2
|
Dave A, Park EJ, Pezzuto JM. Multi-Organ Nutrigenomic Effects of Dietary Grapes in a Mouse Model. Antioxidants (Basel) 2023; 12:1821. [PMID: 37891900 PMCID: PMC10604885 DOI: 10.3390/antiox12101821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
As a whole food, the potential health benefits of table grapes have been widely studied. Some individual constituents have garnered great attention, particularly resveratrol, but normal quantities in the diet are meniscal. On the other hand, the grape contains hundreds of compounds, many of which have antioxidant potential. Nonetheless, the achievement of serum or tissue concentrations of grape antioxidants sufficient to mediate a direct quenching effect is not likely, which supports the idea of biological responses being mediated by an indirect catalytic-type response. We demonstrate herein with Hsd:ICR (CD-1® Outbred, 18-24 g, 3-4 weeks old, female) mice that supplementation of a semi-synthetic diet with a grape surrogate, equivalent to the human consumption of 2.5 servings per day for 12 months, modulates gene expression in the liver, kidney, colon, and ovary. As might be expected when sampling changes in a pool of over 35,000 genes, there are numerous functional implications. Analysis of some specific differentially expressed genes suggests the potential of grape consumption to bolster metabolic detoxification and regulation of reactive oxygen species in the liver, cellular metabolism, and anti-inflammatory activity in the ovary and kidney. In the colon, the data suggest anti-inflammatory activity, suppression of mitochondrial dysfunction, and maintaining homeostasis. Pathway analysis reveals a combination of up- and down-regulation in the target tissues, primarily up-regulated in the kidney and down-regulated in the ovary. More broadly, based on these data, it seems logical to conclude that grape consumption leads to modulation of gene expression throughout the body, the consequence of which may help to explain the broad array of activities demonstrated in diverse tissues such as the brain, heart, eye, bladder, and colon. In addition, this work further supports the profound impact of nutrigenomics on mammalian phenotypic expression.
Collapse
Affiliation(s)
- Asim Dave
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (A.D.); (E.-J.P.)
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eun-Jung Park
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (A.D.); (E.-J.P.)
- Department of Pharmaceutical and Administrative Science, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
| | - John M. Pezzuto
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
- Department of Medicine, UMass Chan Medical School—Baystate, Springfield, MA 01199, USA
| |
Collapse
|
3
|
Muilenburg KM, Isder CC, Radhakrishnan P, Batra SK, Ly QP, Carlson MA, Bouvet M, Hollingsworth MA, Mohs AM. Mucins as contrast agent targets for fluorescence-guided surgery of pancreatic cancer. Cancer Lett 2023; 561:216150. [PMID: 36997106 PMCID: PMC10150776 DOI: 10.1016/j.canlet.2023.216150] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/16/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023]
Abstract
Pancreatic cancer is difficult to resect due to its unique challenges, often leading to incomplete tumor resections. Fluorescence-guided surgery (FGS), also known as intraoperative molecular imaging and optical surgical navigation, is an intraoperative tool that can aid surgeons in complete tumor resection through an increased ability to detect the tumor. To target the tumor, FGS contrast agents rely on biomarkers aberrantly expressed in malignant tissue compared to normal tissue. These biomarkers allow clinicians to identify the tumor and its stage before surgical resection and provide a contrast agent target for intraoperative imaging. Mucins, a family of glycoproteins, are upregulated in malignant tissue compared to normal tissue. Therefore, these proteins may serve as biomarkers for surgical resection. Intraoperative imaging of mucin expression in pancreatic cancer can potentially increase the number of complete resections. While some mucins have been studied for FGS, the potential ability to function as a biomarker target extends to the entire mucin family. Therefore, mucins are attractive proteins to investigate more broadly as FGS biomarkers. This review summarizes the biomarker traits of mucins and their potential use in FGS for pancreatic cancer.
Collapse
Affiliation(s)
- Kathryn M Muilenburg
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA.
| | - Carly C Isder
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA.
| | - Prakash Radhakrishnan
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, S 45th St, Omaha, NE, 68198, USA.
| | - Quan P Ly
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Department of Surgery, University of Nebraska Medical Center, 983280 Nebraska Medical Center, Omaha, NE, 68198-3280, USA.
| | - Mark A Carlson
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Department of Surgery, University of Nebraska Medical Center, 983280 Nebraska Medical Center, Omaha, NE, 68198-3280, USA.
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA; VA San Diego Healthcare System, 3350 La Jolla Village Dr, San Diego, CA, 92161, USA.
| | - Michael A Hollingsworth
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA.
| | - Aaron M Mohs
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, S 45th St, Omaha, NE, 68198, USA.
| |
Collapse
|
4
|
Yu X, Lin W, Spirtos A, Wang Y, Chen H, Ye J, Parker J, Liu CC, Wang Y, Quinn G, Zhou F, Chambers SK, Lewis C, Lea J, Li B, Zheng W. Dissection of transcriptome dysregulation and immune characterization in women with germline BRCA1 mutation at single-cell resolution. BMC Med 2022; 20:283. [PMID: 36076202 PMCID: PMC9461201 DOI: 10.1186/s12916-022-02489-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND High-grade serous carcinoma (HGSC) is the most frequent and lethal type of ovarian cancer. It has been proposed that tubal secretory cells are the origin of ovarian HGSC in women with familial BRCA1/2 mutations. However, the molecular changes underlying malignant transformation remain unknown. METHOD We performed single-cell RNA and T cell receptor sequencing of tubal fimbriated ends from 3 BRCA1 germline mutation carriers (BRCA1 carriers) and 3 normal controls with no high-risk history (non-BRCA1 carriers). RESULTS Exploring the transcriptomes of 19,008 cells, predominantly from BRCA1+ samples, we identified 5 major cell populations in the fallopian tubal mucosae. The secretory cells of BRCA1+ samples had differentially expressed genes involved in tumor growth and regulation, chemokine signaling, and antigen presentation compared to the wild-type BRCA1 controls. There are several novel findings in this study. First, a subset of the fallopian tubal secretory cells from one BRCA1 carrier exhibited an epithelial-to-mesenchymal transition (EMT) phenotype, which was also present in the mucosal fibroblasts. Second, we identified a previously unreported phenotypic split of the EMT secretory cells with distinct evolutionary endpoints. Third, we observed increased clonal expansion among the CD8+ T cell population from BRCA1+ carriers. Among those clonally expanded CD8+ T cells, PD-1 was significantly increased in tubal mucosae of BRCA1+ patients compared with that of normal controls, indicating that T cell exhaustion may occur before the development of any premalignant or malignant lesions. CONCLUSION These results indicate that EMT and immune evasion in normal-looking tubal mucosae may represent early events leading to the development of HGSC in women with BRCA1 germline mutation. Our findings provide a probable molecular mechanism explaining why some, but not all, women with BRCA1 germline mutation present with early development and rapid dissemination of HGSC.
Collapse
Affiliation(s)
- Xuexin Yu
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Wanrun Lin
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexandra Spirtos
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yan Wang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hao Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jianfeng Ye
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jessica Parker
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Present address: Department of Obstetrics and Gynecology, Indiana University, Indianapolis, IN, USA
| | - Ci Ci Liu
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Present address: Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Yiying Wang
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gabriella Quinn
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Feng Zhou
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Present address: Department of Pathology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Setsuko K Chambers
- Department of Obstetrics and Gynecology, The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Cheryl Lewis
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jayanthi Lea
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Present address: Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Bo Li
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Wenxin Zheng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
5
|
Slayden OD, Luo F, Bishop CV. Physiological Action of Progesterone in the Nonhuman Primate Oviduct. Cells 2022; 11:1534. [PMID: 35563839 PMCID: PMC9100958 DOI: 10.3390/cells11091534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 02/01/2023] Open
Abstract
Therapies that target progesterone action hold potential as contraceptives and in managing gynecological disorders. Recent literature reviews describe the role of steroid hormones in regulating the mammalian oviduct and document that estrogen is required to stimulate epithelial differentiation into a fully functional ciliated and secretory state. However, these reviews do not specifically address progesterone action in nonhuman primates (NHPs). Primates differ from most other mammals in that estrogen levels are >50 pg/mL during the entire menstrual cycle, except for a brief decline immediately preceding menstruation. Progesterone secreted in the luteal phase suppresses oviductal ciliation and secretion; at the end of the menstrual cycle, the drop in progesterone triggers renewed estrogen-driven tubal cell proliferation ciliation secretory activity. Thus, progesterone, not estrogen, drives fallopian tube cycles. Specific receptors mediate these actions of progesterone, and synthetic progesterone receptor modulators (PRMs) disrupt the normal cyclic regulation of the tube, significantly altering steroid receptor expression, cilia abundance, cilia beat frequency, and the tubal secretory milieu. Addressing the role of progesterone in the NHP oviduct is a critical step in advancing PRMs as pharmaceutical therapies.
Collapse
Affiliation(s)
- Ov D Slayden
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, 505 NW 185th Ave., Beaverton, OR 97006, USA
- Department of Obstetrics and Gynecology, Health & Science University, Portland, OR 97239, USA
| | - Fangzhou Luo
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, 505 NW 185th Ave., Beaverton, OR 97006, USA
| | - Cecily V Bishop
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, 505 NW 185th Ave., Beaverton, OR 97006, USA
- Department of Animal and Rangeland Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
6
|
Zhao Y, Vanderkooi S, Kan FWK. The role of oviduct-specific glycoprotein (OVGP1) in modulating biological functions of gametes and embryos. Histochem Cell Biol 2022; 157:371-388. [PMID: 34993641 PMCID: PMC8979936 DOI: 10.1007/s00418-021-02065-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2021] [Indexed: 01/13/2023]
Abstract
Diverse lines of evidence indicate that the mammalian oviduct makes important contributions to the complex process of reproduction other than being simply a conduit for the transport of gametes and embryos. The cumulative synthesis and transport of proteins secreted by oviductal secretory cells into the oviductal lumen create a microenvironment supporting important reproductive events, including sperm capacitation, fertilization, and early embryo development. Among the components that have been identified in the oviductal fluid is a family of glycosylated proteins known collectively as oviduct-specific glycoprotein (OVGP1) or oviductin. OVGP1 has been identified in several mammalian species, including humans. The present review summarizes the work carried out, in various mammalian species, by many research groups revealing the synthesis and secretion of OVGP1, its fate in the female reproductive tract upon secretion by the oviductal epithelium, and its role in modulating biological functions of gametes and embryos. The production and functions of recombinant human OVGP1 and recombinant OVGP1 of other mammalian species are also discussed. Some of the findings obtained with immunocytochemistry will be highlighted in the present review. It is hoped that the findings obtained from recent studies carried out with recombinant OVGP1 from various species will rekindle researchers’ interest in pursuing further the role of the oviductal microenvironment, of which OVGP1 is a major component, in contributing to the successful occurrence of early reproductive events, and the potential use of OVGP1 in improving the current assisted reproductive technology in alleviating infertility.
Collapse
Affiliation(s)
- Yuewen Zhao
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, ON, K7L 3N, Canada
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Fertility Center, Yale University, Orange, CT, 06477, USA
| | - Sydney Vanderkooi
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, ON, K7L 3N, Canada
| | - Frederick W K Kan
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, ON, K7L 3N, Canada.
| |
Collapse
|
7
|
Argüeso P. Human ocular mucins: The endowed guardians of sight. Adv Drug Deliv Rev 2022; 180:114074. [PMID: 34875287 PMCID: PMC8724396 DOI: 10.1016/j.addr.2021.114074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/22/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023]
Abstract
Mucins are an ancient group of glycoproteins that provide viscoelastic, lubricating and hydration properties to fluids bathing wet surfaced epithelia. They are involved in the protection of underlying tissues by forming a barrier with selective permeability properties. The expression, processing and spatial distribution of mucins are often determined by organ-specific requirements that in the eye involve protecting against environmental insult while allowing the passage of light. The human ocular surface epithelia have evolved to produce an extremely thin and watery tear film containing a distinct soluble mucin product secreted by goblet cells outside the visual axis. The adaptation to the ocular environment is notably evidenced by the significant contribution of transmembrane mucins to the tear film, where they can occupy up to one-quarter of its total thickness. This article reviews the tissue-specific properties of human ocular mucins, methods of isolation and detection, and current approaches to model mucin systems recapitulating the human ocular surface mucosa. This knowledge forms the fundamental basis to develop applications with a promising biological and clinical impact.
Collapse
Affiliation(s)
- Pablo Argüeso
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
8
|
Ruan Y, Chen L, Xie D, Luo T, Xu Y, Ye T, Chen X, Feng X, Wu X. Mechanisms of Cell Adhesion Molecules in Endocrine-Related Cancers: A Concise Outlook. Front Endocrinol (Lausanne) 2022; 13:865436. [PMID: 35464064 PMCID: PMC9021432 DOI: 10.3389/fendo.2022.865436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Chemotherapy is a critical treatment for endocrine-related cancers; however, chemoresistance and disease recurrence remain a challenge. The interplay between cancer cells and the tumor microenvironment via cell adhesion molecules (CAMs) promotes drug resistance, known as cell adhesion-mediated drug resistance (CAM-DR). CAMs are cell surface molecules that facilitate cell-to-cell or cell-to-extracellular matrix binding. CAMs exert an adhesion effect and trigger intracellular signaling that regulates cancer cell stemness maintenance, survival, proliferation, metastasis, epithelial-mesenchymal transition, and drug resistance. To understand these mechanisms, this review focuses on the role of CD44, cadherins, selectins, and integrins in CAM-DR in endocrine-related cancers.
Collapse
Affiliation(s)
- Yongsheng Ruan
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Yongsheng Ruan, ; Xuedong Wu,
| | - Libai Chen
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Danfeng Xie
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tingting Luo
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yiqi Xu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Ye
- Department of Endocrinology, Affiliated Baoan Hospital of Shenzhen, Southern Medical University, Shenzhen, China
| | - Xiaona Chen
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoqin Feng
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuedong Wu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Yongsheng Ruan, ; Xuedong Wu,
| |
Collapse
|
9
|
Meng H, Jiang X, Huang H, Shen N, Guo C, Yu C, Yin G, Wang Y. A MUCINs expression signature impacts overall survival in patients with clear cell renal cell carcinoma. Cancer Med 2021; 10:5823-5838. [PMID: 34327857 PMCID: PMC8419780 DOI: 10.1002/cam4.4128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/28/2022] Open
Abstract
Background Kidney cancer, especially clear cell renal cell carcinoma (ccRCC), is one of the most common cancers in the urinary system. Previous studies suggested that certain members of MUCINs could serve as independent predictors for the survival of ccRCC patients. None of them, however, is robust enough to predict prognosis accurately. Objective To analyze the correlation of MUCINs alterations and their expression levels with the prognosis of ccRCC patients and develop a prognosis‐related predictor. Methods We applied whole‐exome sequencing in samples from 22 Chinese ccRCC patients to identify genetic alterations in MUCIN genes and analyzed their genetic alterations, expression, and correlation with survival using the TCGA, GSE73731, and GSE29069 datasets. Result Genetic alternations in MUCINs were identified in 91% and 51% of ccRCC patients in our cohort and the TCGA database, respectively. No correlation with survival was found for the genetic alterations. Using unsupervised clustering analysis of gene expression, we identified two major clusters of MUCIN expression patterns. Cluster 1 was characterized by a global overexpression of MUC1, MUC12, MUC13, MUC16, and OVGP1; and cluster 2 was characterized by a global overexpression of MUC4, MUC5B, MUC6, MUC20, EMCN, and MCAM. Patients with cluster 1 expression pattern had significantly shorter overall survival time and worse clinical features, including higher tumor grades and metastasis. Meanwhile, they had a higher level of mutation counts and more infiltrated immune cells, but lower enrichment in angiogenesis signature genes. A five‐MUCINs expression signature was constructed from cluster 1, and notably, it was demonstrated to be associated with shorter overall survival. A similar worse clinical feature, lower angiogenesis but the more immune signature, was identified in samples presented with signature 1. In the validation data set GSE29069, patients with signature 1 were also associated with a trend of poor survival outcomes. Conclusion We established a five‐MUCINs expression signature as a new prognostic marker for ccRCC. The distinct tumor microenvironment feature between the two signatures may further affect ccRCC patients’ clinical management.
Collapse
Affiliation(s)
- Hui Meng
- Department of Urology, Qilu Hospital, Jinan, Shandong, China.,Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xuewen Jiang
- Department of Urology, Qilu Hospital, Jinan, Shandong, China.,Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Huangwei Huang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Neng Shen
- Department of Surgery, Taian TSCM hospital, Taian, Shandong, China
| | - Changsheng Guo
- Department of Urology, Liaoning Hospital of Traditional Chinese Medicine, Dezhou, Shandong, China
| | - Chunxiao Yu
- Department of Urology, Central Hospital of Zaozhuang Mining Group, Shandong, China
| | - Gang Yin
- Department of Urology, Qilu Hospital, Jinan, Shandong, China.,Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yu Wang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Jinan, Shandong, China
| |
Collapse
|
10
|
Almasmoum H. The Roles of Transmembrane Mucins Located on Chromosome 7q22.1 in Colorectal Cancer. Cancer Manag Res 2021; 13:3271-3280. [PMID: 33883940 PMCID: PMC8053700 DOI: 10.2147/cmar.s299089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common types of cancers. It is associated with a poor prognosis and high mortality. The role of mucins (MUCs) in colon tumorigenesis is unclear, but it might be significant in the progression of malignancy. Some mucins, such as MUC1 and MUC13, act as oncogenes, whereas others, such as MUC2 and MUC6, are tumor suppressors. However, there are still mucins with unidentified roles in CRC. In this review, we discuss the reported roles of mucins in CRC. Moreover, we review the capability of the mucin family to serve as a sensitive and specific histopathological marker for the early diagnosis of CRC. Lastly, the role of mucin genes clustered on chromosome 7q22 in CRC and other cancers is also discussed.
Collapse
Affiliation(s)
- Hussain Almasmoum
- Laboratory Medicine Department, Faculty of Applied Medical Science, Umm Al-Qura University, Makkah, 7607, Saudi Arabia
| |
Collapse
|
11
|
Kori M, Aydin B, Gulfidan G, Beklen H, Kelesoglu N, Caliskan Iscan A, Turanli B, Erzik C, Karademir B, Arga KY. The Repertoire of Glycan Alterations and Glycoproteins in Human Cancers. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:139-168. [PMID: 33404348 DOI: 10.1089/omi.2020.0210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer as the leading cause of death worldwide has many issues that still need to be addressed. Since the alterations on the glycan compositions or/and structures (i.e., glycosylation, sialylation, and fucosylation) are common features of tumorigenesis, glycomics becomes an emerging field examining the structure and function of glycans. In the past, cancer studies heavily relied on genomics and transcriptomics with relatively little exploration of the glycan alterations and glycoprotein biomarkers among individuals and populations. Since glycosylation of proteins increases their structural complexity by several orders of magnitude, glycome studies resulted in highly dynamic biomarkers that can be evaluated for cancer diagnosis, prognosis, and therapy. Glycome not only integrates our genetic background with past and present environmental factors but also offers a promise of more efficient patient stratification compared with genetic variations. Therefore, studying glycans holds great potential for better diagnostic markers as well as developing more efficient treatment strategies in human cancers. While recent developments in glycomics and associated technologies now offer new possibilities to achieve a high-throughput profiling of glycan diversity, we aim to give an overview of the current status of glycan research and the potential applications of the glycans in the scope of the personalized medicine strategies for cancer.
Collapse
Affiliation(s)
- Medi Kori
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Busra Aydin
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Gizem Gulfidan
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Hande Beklen
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Nurdan Kelesoglu
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Ayşegul Caliskan Iscan
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey.,Department of Pharmacy, Istinye University, Istanbul, Turkey
| | - Beste Turanli
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Can Erzik
- Department of Medical Biology and School of Medicine, Marmara University, Istanbul, Turkey
| | - Betul Karademir
- Department of Biochemistry, School of Medicine, Marmara University, Istanbul, Turkey.,Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
| | - Kazim Yalcin Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| |
Collapse
|
12
|
Hassan AA, Artemenko M, Tang MK, Wong AS. Selectins: An Important Family of Glycan-Binding Cell Adhesion Molecules in Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12082238. [PMID: 32785160 PMCID: PMC7463917 DOI: 10.3390/cancers12082238] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy worldwide. Unlike most other tumor types that metastasize via the vasculature, ovarian cancer metastasizes predominantly via the transcoelomic route within the peritoneal cavity. As cancer metastasis accounts for the majority of deaths, there is an urge to better understand its determinants. In the peritoneal cavity, tumor-mesothelial adhesion is an important step for cancer dissemination. Selectins are glycan-binding molecules that facilitate early steps of this adhesion cascade by mediating heterotypic cell-cell interaction under hydrodynamic flow. Here, we review the function and regulation of selectins in peritoneal carcinomatosis of ovarian cancer, and highlight how dysregulation of selectin ligand biogenesis affects disease outcome. Further, we will introduce the latest tools in studying selectin-glycan interaction. Finally, an overview of potential therapeutic intervention points that may lead to the development of efficacious therapies for ovarian cancer is provided.
Collapse
|
13
|
Casey L, Singh N. Ovarian High-Grade Serous Carcinoma: Assessing Pathology for Site of Origin, Staging and Post-neoadjuvant Chemotherapy Changes. Surg Pathol Clin 2019; 12:515-528. [PMID: 31097113 DOI: 10.1016/j.path.2019.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
High-grade serous (HGSC) stands apart from the other ovarian cancer histotypes in being the most frequent, in occurring as part of a genetic predisposition in a significant proportion of cases, and in having the poorest clinical outcomes. Although the pathologic diagnosis of HGSC is now made with high accuracy, there remain areas of disagreement regarding viewpoints on tissue site of origin and designation of primary site, with impact on staging in low-stage cases, as well as difficulties in reproducible and clinically relevant reporting of HGSC in specimens taken after neoadjuvant chemotherapy. These areas are discussed in the current article.
Collapse
Affiliation(s)
- Laura Casey
- Department of Pathology, Queen's Hospital, Rom Valley Way, Romford RM7 0AG, UK
| | - Naveena Singh
- Department of Cellular Pathology, Barts Health NHS Trust, The Royal London Hospital, 2nd Floor, 80 Newark Street, London E1 2ES, UK.
| |
Collapse
|
14
|
Yeo IJ, Lee CK, Han SB, Yun J, Hong JT. Roles of chitinase 3-like 1 in the development of cancer, neurodegenerative diseases, and inflammatory diseases. Pharmacol Ther 2019; 203:107394. [PMID: 31356910 DOI: 10.1016/j.pharmthera.2019.107394] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2019] [Indexed: 02/07/2023]
Abstract
Chitinase 3-like 1 (CHI3L1) is a secreted glycoprotein that mediates inflammation, macrophage polarization, apoptosis, and carcinogenesis. The expression of CHI3L1 is strongly increased by various inflammatory and immunological conditions, including rheumatoid arthritis, multiple sclerosis, Alzheimer's disease, and several cancers. However, its physiological and pathophysiological roles in the development of cancer and neurodegenerative and inflammatory diseases remain unclear. Several studies have reported that CHI3L1 promotes cancer proliferation, inflammatory cytokine production, and microglial activation, and that multiple receptors, such as advanced glycation end product, syndecan-1/αVβ3, and IL-13Rα2, are involved. In addition, the pro-inflammatory action of CHI3L1 may be mediated via the protein kinase B and phosphoinositide-3 signaling pathways and responses to various pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, interleukin-6, and interferon-γ. Therefore, CHI3L1 could contribute to a vast array of inflammatory diseases. In this article, we review recent findings regarding the roles of CHI3L1 and suggest therapeutic approaches targeting CHI3L1 in the development of cancers, neurodegenerative diseases, and inflammatory diseases.
Collapse
Affiliation(s)
- In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk 28160, Republic of Korea
| | - Chong-Kil Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk 28160, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk 28160, Republic of Korea
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk 28160, Republic of Korea.
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk 28160, Republic of Korea.
| |
Collapse
|
15
|
Proteomics Analysis Identifies Orthologs of Human Chitinase-Like Proteins as Inducers of Tube Morphogenesis Defects in Drosophila melanogaster. Genetics 2017; 206:973-984. [PMID: 28404605 DOI: 10.1534/genetics.116.199323] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/05/2017] [Indexed: 11/18/2022] Open
Abstract
Elevated levels of human chitinase-like proteins (CLPs) are associated with numerous chronic inflammatory diseases and several cancers, often correlating with poor prognosis. Nevertheless, there is scant knowledge of their function. The CLPs normally mediate immune responses and wound healing and, when upregulated, they can promote disease progression by remodeling tissue, activating signaling cascades, stimulating proliferation and migration, and by regulating adhesion. We identified Imaginal disc growth factors (Idgfs), orthologs of human CLPs CHI3L1, CHI3L2, and OVGP1, in a proteomics analysis designed to discover factors that regulate tube morphogenesis in a Drosophila melanogaster model of tube formation. We implemented a novel approach that uses magnetic beads to isolate a small population of specialized ovarian cells, cells that nonautonomously regulate morphogenesis of epithelial tubes that form and secrete eggshell structures called dorsal appendages (DAs). Differential mass spectrometry analysis of these cells detected elevated levels of four of the six Idgf family members (Idgf1, Idgf2, Idgf4, and Idgf6) in flies mutant for bullwinkle (bwk), which encodes a transcription factor and is a known regulator of DA-tube morphogenesis. We show that, during oogenesis, dysregulation of Idgfs (either gain or loss of function) disrupts the formation of the DA tubes. Previous studies demonstrate roles for Drosophila Idgfs in innate immunity, wound healing, and cell proliferation and motility in cell culture. Here, we identify a novel role for Idgfs in both normal and aberrant tubulogenesis processes.
Collapse
|
16
|
Laheri S, Modi D, Bhatt P. Extra-oviductal expression of oviductal glycoprotein 1 in mouse: Detection in testis, epididymis and ovary. J Biosci 2017; 42:69-80. [PMID: 28229966 DOI: 10.1007/s12038-016-9657-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oviductal glycoprotein 1 (OVGP1), also called oviductin, is an oviduct-specific protein and is suggested to play a role in fertilization. Traditionally, Ovgp1 has been shown to be exclusively expressed by the oviduct; however, recent studies have demonstrated its expression in some cancers. This observation led us to hypothesize that Ovgp1 might have some extra-oviductal expression. In the current study, we evaluated the mRNA and protein expression of Ovgp1 in normal reproductive tissues of male and female mice. For the first time, we demonstrate that beyond the oviduct, Ovgp1 mRNA is expressed in the testis, epididymis and ovary, but not in the uterus, cervix, vagina, breast, seminal vesicles and prostate gland. In the testis, Ovgp1 mRNA was localized in the cells at the base of seminiferous tubules (most likely, Sertoli cells), while the protein was detected in the round and elongating spermatids. In the epididymis, Ovgp1 transcripts were localized in epididymal epithelium of the caput but not the corpus and cauda; OVGP1 protein was, however, not detected in any of the segments but was present in the epididymal sperm. In the ovary, Ovgp1 transcripts and protein were detected in the surface epithelium, granulosa cells of the preantral and the antral follicles and corpus luteum. In both, the ovary and oviduct, the expression of Ovgp1 was found to be higher at estrus stage than at diestrus stage. To the best of our knowledge, this is the first study demonstrating the extra-oviductal expression of Ovgp1. Our data suggests that, beyond fertilization, Ovgp1 might have specific roles in gonadal physiology. [Laheri S, Modi D and Bhatt P 2017 Extra-oviductal expression of oviductal.
Collapse
Affiliation(s)
- Saniya Laheri
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS University, Vile Parle (West), Mumbai 400 056, India
| | | | | |
Collapse
|
17
|
An integrated model of clinical information and gene expression for prediction of survival in ovarian cancer patients. Transl Res 2016; 172:84-95.e11. [PMID: 27059002 DOI: 10.1016/j.trsl.2016.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 11/20/2022]
Abstract
Accumulating evidence shows that clinical factors alone are not adequate for predicting the survival of patients with ovarian cancer (OvCa), and many genes have been found to be associated with OvCa prognosis. The objective of this study was to develop a model that integrates clinical information and a gene signature to predict the survival durations of patients diagnosed with OvCa. We constructed mRNA and microRNA expression profiles and gathered the corresponding clinical data of 552 OvCa patients and 8 normal controls from The Cancer Genome Atlas. Using univariate Cox regression followed by a permutation test, elastic net-regulated Cox regression, and ridge regression, we generated a prognosis index consisting of 2 clinical variables, 7 protective mRNAs, 12 risky mRNAs, and 1 protective microRNA. The area under the curve of the receiver operating characteristic of the integrated clinical-and-gene model was 0.756, larger than that of the clinical-alone model (0.686) or the gene-alone model (0.703). OvCa patients in the high-risk group had a significantly shorter overall survival time compared with patients in the low-risk group (hazard ratio = 8.374, 95% confidence interval = 4.444-15.780, P = 4.90 × 10(-11), by the Wald test). The reliability of the gene signature was confirmed by a public external data set from the Gene Expression Omnibus. Our conclusions that we have identified an integrated clinical-and-gene model superior to the traditional clinical-alone model in ascertaining the survival prognosis of patients with OvCa. Our findings may prove valuable for improving the clinical management of OvCa.
Collapse
|
18
|
Ablamowicz AF, Nichols JJ. Ocular Surface Membrane-Associated Mucins. Ocul Surf 2016; 14:331-41. [PMID: 27154035 DOI: 10.1016/j.jtos.2016.03.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 03/29/2016] [Accepted: 03/01/2016] [Indexed: 01/17/2023]
Abstract
Ocular surface epithelial cells produce and secrete mucins that form a hydrophilic barrier for protection and lubrication of the eye. This barrier, the glycocalyx, is formed by high molecular weight heavily glycosylated membrane-associated mucins (MAMs) that include MUC1, MUC4, and MUC16. These mucins extend into the tear film from the anterior surfaces of the conjunctiva and cornea, and, through interactions with galectin-3, prevent penetrance of pathogens into the eye. Due primarily to the glycosylation of the mucins, the glycocalyx also creates less friction during blinking and enables the tear film to maintain wetting of the eye. The secretory mucins include soluble MUC7 and gel-forming MUC5AC. These mucins, particularly MUC5AC, assist with removal of debris from the tear film and contribute to the hydrophilicity of the tear film. While new methodologies and cell culture models have expanded our understanding of mucin structure and function on the ocular surface, there is still a paucity of studies characterizing the glycosylation of MAMs on a normal ocular surface and a diseased ocular surface. Although studies have shown alterations in mucin production and expression in dry eye diseases, the relationship between changes in mucins and functional consequences is unclear. This review focuses on comparing what is known about MAMs in wet-surfaced epithelia of the body to what has been studied on the eye.
Collapse
Affiliation(s)
- Anna F Ablamowicz
- School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jason J Nichols
- School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
19
|
Endsley MP, Moyle-Heyrman G, Karthikeyan S, Lantvit DD, Davis DA, Wei JJ, Burdette JE. Spontaneous Transformation of Murine Oviductal Epithelial Cells: A Model System to Investigate the Onset of Fallopian-Derived Tumors. Front Oncol 2015; 5:154. [PMID: 26236688 PMCID: PMC4505108 DOI: 10.3389/fonc.2015.00154] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/29/2015] [Indexed: 12/20/2022] Open
Abstract
High-grade serous carcinoma (HGSC) is the most lethal ovarian cancer histotype. The fallopian tube secretory epithelial cells (FTSECs) are a proposed progenitor cell type. Genetically altered FTSECs form tumors in mice; however, a spontaneous HGSC model has not been described. Apart from a subpopulation of genetically predisposed women, most women develop ovarian cancer spontaneously, which is associated with aging and lifetime ovulations. A murine oviductal cell line (MOE(LOW)) was developed and continuously passaged in culture to mimic cellular aging (MOE(HIGH)). The MOE(HIGH) cellular model exhibited a loss of acetylated tubulin consistent with an outgrowth of secretory epithelial cells in culture. MOE(HIGH) cells proliferated significantly faster than MOE(LOW), and the MOE(HIGH) cells produced more 2D foci and 3D soft agar colonies as compared to MOE(LOW) MOE(HIGH) were xenografted into athymic female nude mice both in the subcutaneous and the intraperitoneal compartments. Only the subcutaneous grafts formed tumors that were negative for cytokeratin, but positive for oviductal markers, such as oviductal glycoprotein 1 and Pax8. These tumors were considered to be poorly differentiated carcinoma. The differential molecular profiles between MOE(HIGH) and MOE(LOW) were determined using RNA-Seq and confirmed by protein expression to uncover pathways important in transformation, like the p53 pathway, the FOXM1 pathway, WNT signaling, and splicing. MOE(HIGH) had enhanced protein expression of c-myc, Cyclin E, p53, and FOXM1 with reduced expression of p21. MOE(HIGH) were also less sensitive to cisplatin and DMBA, which induce lesions typically repaired by base-excision repair. A model of spontaneous tumorogenesis was generated starting with normal oviductal cells. Their transition to cancer involved alterations in pathways associated with high-grade serous cancer in humans.
Collapse
Affiliation(s)
- Michael P Endsley
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , Chicago, IL , USA
| | - Georgette Moyle-Heyrman
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , Chicago, IL , USA
| | - Subbulakshmi Karthikeyan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , Chicago, IL , USA
| | - Daniel D Lantvit
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , Chicago, IL , USA
| | - David A Davis
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , Chicago, IL , USA
| | - Jian-Jun Wei
- Department of Pathology, Northwestern University , Chicago, IL , USA
| | - Joanna E Burdette
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , Chicago, IL , USA
| |
Collapse
|
20
|
Jeong HH, Kim S, Wee K, Sohn KA. Investigating the utility of clinical outcome-guided mutual information network in network-based Cox regression. BMC SYSTEMS BIOLOGY 2015; 9 Suppl 1:S8. [PMID: 25708115 PMCID: PMC4331683 DOI: 10.1186/1752-0509-9-s1-s8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Network-based approaches have recently gained considerable popularity in high- dimensional regression settings. For example, the Cox regression model is widely used in expression analysis to predict the survival of patients. However, as the number of genes becomes substantially larger than the number of samples, the traditional Cox or L2-regularized Cox models are still prone to noise and produce unreliable estimations of regression coefficients. A recent approach called the network-based Cox (Net-Cox) model attempts to resolve this issue by incorporating prior gene network information into the Cox regression. The Net-Cox model has shown to outperform the models that do not use this network information. RESULTS In this study, we demonstrate an alternative network construction method for the outcome-guided gene interaction network, and we investigate its utility in survival analysis using Net-Cox regression as compared with conventional networks, such as co-expression or static networks obtained from the existing knowledgebase. Our network edges consist of gene pairs that are significantly associated with the clinical outcome. We measure the strength of this association using mutual information between the gene pair and the clinical outcome. We applied this approach to ovarian cancer patients' data in The Cancer Genome Atlas (TCGA) and compared the predictive performance of the proposed approach with those that use other types of networks. CONCLUSIONS We found that the alternative outcome-guided mutual information network further improved the prediction power of the network-based Cox regression. We expect that a modification of the network regularization term in the Net-Cox model could further improve its prediction power because the properties of our network edges are not optimally reflected in its current form.
Collapse
|
21
|
Meng C, Kuster B, Culhane AC, Gholami AM. A multivariate approach to the integration of multi-omics datasets. BMC Bioinformatics 2014; 15:162. [PMID: 24884486 PMCID: PMC4053266 DOI: 10.1186/1471-2105-15-162] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/14/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND To leverage the potential of multi-omics studies, exploratory data analysis methods that provide systematic integration and comparison of multiple layers of omics information are required. We describe multiple co-inertia analysis (MCIA), an exploratory data analysis method that identifies co-relationships between multiple high dimensional datasets. Based on a covariance optimization criterion, MCIA simultaneously projects several datasets into the same dimensional space, transforming diverse sets of features onto the same scale, to extract the most variant from each dataset and facilitate biological interpretation and pathway analysis. RESULTS We demonstrate integration of multiple layers of information using MCIA, applied to two typical "omics" research scenarios. The integration of transcriptome and proteome profiles of cells in the NCI-60 cancer cell line panel revealed distinct, complementary features, which together increased the coverage and power of pathway analysis. Our analysis highlighted the importance of the leukemia extravasation signaling pathway in leukemia that was not highly ranked in the analysis of any individual dataset. Secondly, we compared transcriptome profiles of high grade serous ovarian tumors that were obtained, on two different microarray platforms and next generation RNA-sequencing, to identify the most informative platform and extract robust biomarkers of molecular subtypes. We discovered that the variance of RNA-sequencing data processed using RPKM had greater variance than that with MapSplice and RSEM. We provided novel markers highly associated to tumor molecular subtype combined from four data platforms. MCIA is implemented and available in the R/Bioconductor "omicade4" package. CONCLUSION We believe MCIA is an attractive method for data integration and visualization of several datasets of multi-omics features observed on the same set of individuals. The method is not dependent on feature annotation, and thus it can extract important features even when there are not present across all datasets. MCIA provides simple graphical representations for the identification of relationships between large datasets.
Collapse
Affiliation(s)
- Chen Meng
- Chair of Proteomics and Bioanalytics, Technische Universität München, Freising, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technische Universität München, Freising, Germany
- Center for Integrated Protein Science Munich, Freising, Germany
| | - Aedín C Culhane
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02215, USA
| | | |
Collapse
|
22
|
Tan W, Donovan MJ, Jiang J. Aptamers from cell-based selection for bioanalytical applications. Chem Rev 2013; 113:2842-62. [PMID: 23509854 PMCID: PMC5519293 DOI: 10.1021/cr300468w] [Citation(s) in RCA: 477] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology and College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, People’s Republic of China
- Center For Research at Bio/nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611, United States
| | - Michael J. Donovan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology and College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, People’s Republic of China
- Center For Research at Bio/nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611, United States
| | - Jianhui Jiang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology and College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, People’s Republic of China
- Center For Research at Bio/nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
23
|
Hussain M, Wilson JB. New Paralogues and Revised Time Line in the Expansion of the Vertebrate GH18 Family. J Mol Evol 2013; 76:240-60. [DOI: 10.1007/s00239-013-9553-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 02/20/2013] [Indexed: 01/25/2023]
|
24
|
Kristjansdottir B, Levan K, Partheen K, Carlsohn E, Sundfeldt K. Potential tumor biomarkers identified in ovarian cyst fluid by quantitative proteomic analysis, iTRAQ. Clin Proteomics 2013; 10:4. [PMID: 23557354 PMCID: PMC3637236 DOI: 10.1186/1559-0275-10-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 03/14/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epithelial-derived ovarian adenocarcinoma (EOC) is the most deadly gynecologic tumor, and the principle cause of the poor survival rate is diagnosis at a late stage. Screening and diagnostic biomarkers with acceptable specificity and sensitivity are lacking. Ovarian cyst fluid should harbor early ovarian cancer biomarkers because of its closeness to the tumor. We investigated ovarian cyst fluid as a source for discovering biomarkers for use in the diagnosis of EOC. RESULTS Using quantitative mass spectrometry, iTRAQ MS, we identified 837 proteins in cyst fluid from benign, EOC stage I, and EOC stage III. Only patients of serous histology were included in the study. Comparing the benign (n = 5) with the malignant (n = 10) group, 87 of the proteins were significantly (p < 0.05) differentially expressed. Two proteins, serum amyloid A-4 (SAA4) and astacin-like metalloendopeptidase (ASTL), were selected for verification of the iTRAQ method and external validation with immunoblot in a larger cohort with mixed histology, in plasma (n = 68), and cyst fluid (n = 68). The protein selections were based on either high significance and high fold change or abundant appearance and several peptide recognitions in the sample sets (p = 0.04, FC = 1.95) and (p < 0.001, FC = 8.48) for SAA4 and ASTL respectively. Both were found to be significantly expressed (p < 0.05), but the methods did not correlate concerning ASTL. CONCLUSIONS Fluid from ovarian cysts connected directly to the primary tumor harbor many possible new tumor-specific biomarkers. We have identified 87 differentially expressed proteins and validated two candidates to verify the iTRAQ method. However several of the proteins are of interest for validation in a larger setting.
Collapse
Affiliation(s)
- Björg Kristjansdottir
- Institute of Clinical Sciences, Department of Obstetrics and Gynecology, University of Gothenburg, Gothenburg S-413 45, Sweden.
| | | | | | | | | |
Collapse
|
25
|
Tarang S, Kumar S, Batra SK. Mucins and toll-like receptors: kith and kin in infection and cancer. Cancer Lett 2012; 321:110-9. [PMID: 22306702 PMCID: PMC3285398 DOI: 10.1016/j.canlet.2012.01.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 01/28/2012] [Indexed: 12/11/2022]
Abstract
Inflammation is underlying biological phenomenon common in infection and cancer. Mucins are glycoproteins which establish a physical barrier for undesirable entry of foreign materials through epithelial surfaces. A deregulated expression and an anomalous glycosylation pattern of mucins are known in large number of cancers. TLRs are class of receptors which recognize the molecular patterns of invading pathogens and activate complex inflammatory pathways to clear them. Aberrant expression of TLRs is observed in many cancers. A highly orchestrated action of mucins and TLRs is well evolved host defence mechanism; however, a link between the two in other non-infectious conditions has received less attention. Here we present an overview as to how mucins and TLRs give protection to the host and are deregulated during carcinogenesis. Further, we propose the possible mechanisms of cross-regulation between them in pathogenesis of cancer. As both mucins and TLRs are therapeutically important class of molecules, an understanding of the underlying molecular mechanisms connecting the two will open new avenues for the therapeutic targeting of cancer.
Collapse
Affiliation(s)
- Shikha Tarang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | |
Collapse
|
26
|
The C-terminal fragment of the immunoproteasome PA28S (Reg alpha) as an early diagnosis and tumor-relapse biomarker: evidence from mass spectrometry profiling. Histochem Cell Biol 2012; 138:141-54. [DOI: 10.1007/s00418-012-0953-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2012] [Indexed: 10/28/2022]
|
27
|
Morotti M, Menada MV, Gillott DJ, Venturini PL, Ferrero S. The preoperative diagnosis of borderline ovarian tumors: a review of current literature. Arch Gynecol Obstet 2011; 285:1103-12. [DOI: 10.1007/s00404-011-2194-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 12/19/2011] [Indexed: 12/14/2022]
|
28
|
Treviño LS, Giles JR, Wang W, Urick ME, Johnson PA. Gene expression profiling reveals differentially expressed genes in ovarian cancer of the hen: support for oviductal origin? Discov Oncol 2011; 1:177-86. [PMID: 21761365 DOI: 10.1007/s12672-010-0024-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Ovarian cancer has a high mortality rate due, in part, to the lack of early detection and incomplete understanding of the origin of the disease. The hen is the only spontaneous model of ovarian cancer and can therefore aid in the identification and testing of early detection strategies and therapeutics. Our aim was to combine the use of the hen animal model and microarray technology to identify differentially expressed genes in ovarian tissue from normal hens compared with hens with ovarian cancer. We found that the transcripts up-regulated in chicken ovarian tumors were enriched for oviduct-related genes. Quantitative real-time PCR and immunohistochemistry confirmed expression of oviduct-related genes in normal oviduct and in ovaries from hens with early- and late-stage ovarian tumors, but not in normal ovarian surface epithelium. In addition, one of the oviduct-related genes identified in our analysis, paired box 2 has been implicated in human ovarian cancer and may serve as a marker of the disease. Furthermore, estrogen receptor 1 mRNA is over-expressed in early-stage tumors, suggesting that expression of the oviduct-related genes may be regulated by estrogen. We have also identified oviduct-related genes that encode secreted proteins that could represent putative serum biomarkers. The expression of oviduct-related genes in early-stage tumors is similar to what is seen in human ovarian cancer, with tumors resembling normal Müllerian epithelium. These data suggest that chicken ovarian tumors may arise from alternative sites, including the oviduct.
Collapse
|
29
|
Study of the molecular recognition of aptamers selected through ovarian cancer cell-SELEX. PLoS One 2010; 5:e13770. [PMID: 21072169 PMCID: PMC2967474 DOI: 10.1371/journal.pone.0013770] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 10/06/2010] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Ovarian cancer is the most lethal gynecological malignancy, and the ovarian clear cell carcinoma subtype (OCCA) demonstrates a particularly poor response to standard treatment. Improvements in ovarian cancer outcomes, especially for OCCA, could be expected from a clearer understanding of the molecular pathology that might guide strategies for earlier diagnosis and more effective treatment. METHODOLOGY/PRINCIPAL FINDINGS Cell-SELEX technology was employed to develop new molecular probes for ovarian cancer cell surface markers. A total of thirteen aptamers with K(d)'s to ovarian cancer cells in the pico- to nanomolar range were obtained. Preliminary investigation of the targets of these aptamers and their binding characteristics was also performed. CONCLUSIONS/SIGNIFICANCE We have selected a series of aptamers that bind to different types of ovarian cancer, but not cervical cancer. Though binding to other cancer cell lines was observed, these aptamers could lead to identification of biomarkers that are related to cancer.
Collapse
|