1
|
Zhang X, Yu H, Sun P, Huang M, Li B. Antiviral Effects and Mechanisms of Active Ingredients in Tea. Molecules 2024; 29:5218. [PMID: 39519859 PMCID: PMC11547931 DOI: 10.3390/molecules29215218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Viruses play a significant role in human health, as they can cause a wide range of diseases, from mild illnesses to severe and life-threatening conditions. Cellular and animal experiments have demonstrated that the functional components in tea, such as catechins, theaflavins, theanine, and caffeine, exhibit significant inhibitory effects on a diverse array of viruses, including influenza, rotavirus, hepatitis, HPV, and additional types. The inhibition mechanisms may involve blocking virus-host recognition, interfering with viral replication, enhancing host immune responses, and inhibiting viral enzyme activity. This article reviews the research progress on the antiviral effects of tea's functional components and their related mechanisms, hoping to contribute to future studies in this field.
Collapse
Affiliation(s)
- Xinghai Zhang
- Modern Service Industry Research Institute, Zhejiang Shuren University, Hangzhou, 310015, China;
| | - Haonan Yu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China; (H.Y.); (P.S.); (M.H.)
| | - Panjie Sun
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China; (H.Y.); (P.S.); (M.H.)
| | - Mengxin Huang
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China; (H.Y.); (P.S.); (M.H.)
| | - Bo Li
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China; (H.Y.); (P.S.); (M.H.)
| |
Collapse
|
2
|
Calcagno M, Incocciati B, Di Fraia L, Unfer V. Counteracting HPV Cervical and Anal Infection through Dietary Supplementation of EGCG, Folic Acid, Vitamin B12 and Hyaluronic Acid: Clinical Case Reports. J Clin Med 2024; 13:3597. [PMID: 38930126 PMCID: PMC11204999 DOI: 10.3390/jcm13123597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Human papilloma virus (HPV) infection and the management of its persistence is still a great medical challenge. Recently, scientific evidence has supported the potential therapeutic effects of four combined natural molecules-epigallocatechin gallate (EGCG), folic acid, vitamin B12 and hyaluronic acid (HA)-in counteracting HPV DNA positivity and related cytological lesions. Methods: Each patient of these five clinical cases had persistent HPV positivity in the anogenital site and assumed a dietary supplement based on a combination of 200 mg of EGCG, 50 mg of HA, 1 mg of vitamin B12 and 400 mcg of folic acid (Pervistop®, Farmares s.r.l., Rome, Italy) at a dosage of 1 or 2 caps/day for 6 or 3 months, respectively, depending on clinical history. Results: After treatment, all the patients reported a negative HPV DNA test and improved cytological lesions, thus demonstrating the ability of these combined molecules to counteract both anal and cervical HPV infection and related manifestations. Conclusions: Overall, these data corroborate previous evidence about the effectiveness of such natural molecules in the management of HPV infection and its persistence. Naturally, further studies with a larger population and long-term follow-up will contribute to reinforce the positive effects of this dietary supplement in counteracting HPV infection.
Collapse
Affiliation(s)
- Marco Calcagno
- Department of Obstetrics and Gynecology, Santo Spirito Hospital, 00193 Rome, Italy
| | | | | | - Vittorio Unfer
- A.G.Un.Co. Obstetrics and Gynaecology Center, 00155 Rome, Italy
- UniCamillus–Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| |
Collapse
|
3
|
Leung HKM, Lo EKK, Zhang F, Felicianna, Ismaiah MJ, Chen C, El-Nezami H. Modulation of Gut Microbial Biomarkers and Metabolites in Cancer Management by Tea Compounds. Int J Mol Sci 2024; 25:6348. [PMID: 38928054 PMCID: PMC11203446 DOI: 10.3390/ijms25126348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Cancers are causing millions of deaths and leaving a huge clinical and economic burden. High costs of cancer drugs are limiting their access to the growing number of cancer cases. The development of more affordable alternative therapy could reach more patients. As gut microbiota plays a significant role in the development and treatment of cancer, microbiome-targeted therapy has gained more attention in recent years. Dietary and natural compounds can modulate gut microbiota composition while providing broader and more accessible access to medicine. Tea compounds have been shown to have anti-cancer properties as well as modulate the gut microbiota and their related metabolites. However, there is no comprehensive review that focuses on the gut modulatory effects of tea compounds and their impact on reshaping the metabolic profiles, particularly in cancer models. In this review, the effects of different tea compounds on gut microbiota in cancer settings are discussed. Furthermore, the relationship between these modulated bacteria and their related metabolites, along with the mechanisms of how these changes led to cancer intervention are summarized.
Collapse
Affiliation(s)
- Hoi Kit Matthew Leung
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Emily Kwun Kwan Lo
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Fangfei Zhang
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Felicianna
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Marsena Jasiel Ismaiah
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Congjia Chen
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
| | - Hani El-Nezami
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China; (H.K.M.L.); (E.K.K.L.); (F.Z.); (F.); (M.J.I.); (C.C.)
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| |
Collapse
|
4
|
Włodarczyk M, Ciebiera M, Nowicka G, Łoziński T, Ali M, Al-Hendy A. Epigallocatechin Gallate for the Treatment of Benign and Malignant Gynecological Diseases-Focus on Epigenetic Mechanisms. Nutrients 2024; 16:559. [PMID: 38398883 PMCID: PMC10893337 DOI: 10.3390/nu16040559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The most common malignant gynecologic diseases are cervical, uterine, ovarian, vaginal, and vulvar cancer. Among them, ovarian cancer causes more deaths than any other cancer of the female reproductive system. A great number of women suffer from endometriosis, uterine fibroids (UFs), adenomyosis, dysmenorrhea, and polycystic ovary syndrome (PCOS), which are widespread benign health problems causing troublesome and painful symptoms and significantly impairing the quality of life of affected women, and they are some of the main causes of infertility. In addition to the available surgical and pharmacological options, the effects of supporting standard treatment with naturally occurring compounds, mainly polyphenols, are being studied. Catechins are responsible for the majority of potential health benefits attributed to green tea consumption. Epigallocatechin gallate (EGCG) is considered a non-toxic, natural compound with potential anticancer properties. Antioxidant action is its most common function, but attention is also drawn to its participation in cell division inhibition, apoptosis stimulation and epigenetic regulation. In this narrative review, we describe the role of EGCG consumption in preventing the development of benign reproductive disorders such as UF, endometriosis, and PCOS, as well as malignant gynecologic conditions. We discuss possible epigenetic mechanisms that may be related to the action of EGCG.
Collapse
Affiliation(s)
- Marta Włodarczyk
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Michał Ciebiera
- Second Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 00-189 Warsaw, Poland;
- Warsaw Institute of Women’s Health, 00-189 Warsaw, Poland
- Development and Research Center of Non-Invasive Therapies, Pro-Familia Hospital, 35-302 Rzeszów, Poland
| | - Grażyna Nowicka
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Tomasz Łoziński
- Department of Obstetrics and Gynecology, Pro-Familia Hospital, 35-302 Rzeszow, Poland;
- Department of Gynecology and Obstetrics, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (M.A.); (A.A.-H.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (M.A.); (A.A.-H.)
| |
Collapse
|
5
|
Wang G, Wang J, Momeni MR. Epigallocatechin-3-gallate and its nanoformulation in cervical cancer therapy: the role of genes, MicroRNA and DNA methylation patterns. Cancer Cell Int 2023; 23:335. [PMID: 38129839 PMCID: PMC10740301 DOI: 10.1186/s12935-023-03161-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Green tea, a popular and healthy nonalcoholic drink consumed globally, is abundant in natural polyphenols. One of these polyphenols is epigallocatechin-3-gallate (EGCG), which offers a range of health benefits, such as metabolic regulation, antioxidant properties, anti-inflammatory effects, and potential anticancer properties. Clinical research has shown that EGCG can inhibit cancers in the male and female reproductive systems, including ovarian, cervical, endometrial, breast, testicular, and prostate cancers. Further research on cervical cancer has revealed the crucial role of epigenetic mechanisms in the initiation and progression of this type of cancer. These include changes to the DNA, histones, and non-coding RNAs, such as microRNAs. These changes are reversible and can occur even before genetic mutations, making them a potential target for intervention therapies. One promising approach to cancer prevention and treatment is the use of specific agents (known as epi-drugs) that target the cancer epigenome or epigenetic dysregulation. Phytochemicals, a group of diverse molecules, have shown potential in modulating cancer processes through their interaction with the epigenetic machinery. Among these, green tea and its main polyphenol EGCG have been extensively studied. This review highlights the therapeutic effects of EGCG and its nanoformulations on cervical cancer. It also discusses the epigenetic events involved in cervical cancer, such as DNA methylation and microRNA dysregulation, which may be affected by EGCG.
Collapse
Affiliation(s)
- Guichun Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jinyi Wang
- School of Clinical Medicine, Tsinghua University, Beijing, 100084, China.
| | | |
Collapse
|
6
|
Liang C, Zhang C, Zhuo Y, Gong B, Xu W, Zhang G. 1,5,6-Trimethoxy-2,7-dihydroxyphenanthrene from Dendrobium officinale Exhibited Antitumor Activities for HeLa Cells. Int J Mol Sci 2023; 24:15375. [PMID: 37895055 PMCID: PMC10607032 DOI: 10.3390/ijms242015375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Natural products are irreplaceable reservoirs for cancer treatments. In this study, 12 phenanthrene compounds were extracted and isolated from Dendrobium officinale. Each chemical structure was identified using comprehensive NMR analysis. All compounds were evaluated for their cytotoxic activities against five tumor cell lines, i.e., HeLa, MCF-7, SK-N-AS, Capan-2 and Hep G2. Compound 5, 1,5,6-trimethoxy-2,7-dihydroxyphenanthrene, displayed the most significant cytotoxic effect against HeLa and Hep G2 cells, with an IC50 of 0.42 and 0.20 μM. For Hela cells, further experiments demonstrated that compound 5 could obviously inhibit cell migration, block cell cycle in the G0/G1 phase and induce apoptosis. Expression measurements for p53 indicated that knock down of p53 by siRNA could mitigate the apoptosis induced by compound 5. Therefore, the compound 5 is a potential candidate drug for HeLa cells in cervical cancer.
Collapse
Affiliation(s)
- Chong Liang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China; (C.L.); (Y.Z.); (B.G.)
| | - Chonglun Zhang
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China;
| | - Yinlin Zhuo
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China; (C.L.); (Y.Z.); (B.G.)
| | - Baocheng Gong
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China; (C.L.); (Y.Z.); (B.G.)
| | - Weizhuo Xu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Guogang Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China; (C.L.); (Y.Z.); (B.G.)
| |
Collapse
|
7
|
Sabanayagam R, Krishnamoorthy S, Gnanagurusamy J, Muruganatham B, Muthusami S. EGCG attenuate EGF triggered matrix abundance and migration in HPV positive and HPV negative cervical cancer cells. Med Oncol 2023; 40:261. [PMID: 37544940 DOI: 10.1007/s12032-023-02135-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/21/2023] [Indexed: 08/08/2023]
Abstract
Our previous laboratory findings suggested the beneficial effects of epigallocatechin gallate (EGCG) against cervical cancer (CC) cells survival. The present study is aimed at identifying the effects of EGCG in preventing the actions of epidermal growth factor (EGF) in human papilloma virus (HPV) 68 positive ME180 and HPV negative C33A CC cells. An elevated level of EGF in tumor micro-environment (TME) is linked to the metastasis of several cancers including CC. We hypothesized that EGCG has the ability to block the actions of EGF. To test this, survival assay was performed in cells treated with or without EGF and EGCG. The mitochondrial activity of cells was ascertained using MTT assay and mitored staining. Protein and non-protein components in the extracellular matrix such as collagen and sulphated glycosaminoglycans (GAGs) were evaluated using sirius red and alcian blue staining, respectively. Matrix metalloproteinase-2 (MMP-2) gene expression and enzymatic activity were assessed using real time-reverse transcriptase-polymerase chain reaction (RT-PCR) and gelatin zymography. Wound healing assay was performed to assess the EGF induced migratory ability and its inhibition by EGCG pre-treatment. Clonogenic assay showed that EGCG pre-treatment blocked the EGF driven colony formation. In silico analysis performed identified the efficacy of EGCG in binding with different domains of EGF receptor (EGFR). EGCG pre-treatment prevented the epithelial-mesenchymal transition (EMT) and metabolic activity induced by EGF, this is associated with concomitant reduction in the gene expression and enzyme activity of MMP-2. Further, reduced migration and ability to form colonies were observed in EGCG pre-treated cells when stimulated with EGF. HPV positive ME180 cells showed increased migratory and clonogenic ability upon EGF stimulation, whose effects were not much significant in HPV negative C33A cells. EGCG effectively blocked the actions of EGF in both HPV positive and HPV negative conditions and can be advocated as supplementary therapy for the management of EGF driven CC. However, further studies using cell line-derived xenograft (CDX)/patient-derived xenograft (PDX) model system is warranted to validate the therapeutic utility of EGCG.
Collapse
Affiliation(s)
- Rajalakshmi Sabanayagam
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Sneha Krishnamoorthy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Jayapradha Gnanagurusamy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Bharathi Muruganatham
- Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India.
- Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India.
| |
Collapse
|
8
|
Kciuk M, Alam M, Ali N, Rashid S, Głowacka P, Sundaraj R, Celik I, Yahya EB, Dubey A, Zerroug E, Kontek R. Epigallocatechin-3-Gallate Therapeutic Potential in Cancer: Mechanism of Action and Clinical Implications. Molecules 2023; 28:5246. [PMID: 37446908 PMCID: PMC10343677 DOI: 10.3390/molecules28135246] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Cellular signaling pathways involved in the maintenance of the equilibrium between cell proliferation and apoptosis have emerged as rational targets that can be exploited in the prevention and treatment of cancer. Epigallocatechin-3-gallate (EGCG) is the most abundant phenolic compound found in green tea. It has been shown to regulate multiple crucial cellular signaling pathways, including those mediated by EGFR, JAK-STAT, MAPKs, NF-κB, PI3K-AKT-mTOR, and others. Deregulation of the abovementioned pathways is involved in the pathophysiology of cancer. It has been demonstrated that EGCG may exert anti-proliferative, anti-inflammatory, and apoptosis-inducing effects or induce epigenetic changes. Furthermore, preclinical and clinical studies suggest that EGCG may be used in the treatment of numerous disorders, including cancer. This review aims to summarize the existing knowledge regarding the biological properties of EGCG, especially in the context of cancer treatment and prophylaxis.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (M.K.); (R.K.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Pola Głowacka
- Department of Medical Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 90-001 Lodz, Poland;
- Doctoral School of Medical University of Lodz, Hallera 1 Square, 90-700 Lodz, Poland
| | - Rajamanikandan Sundaraj
- Department of Biochemistry, Centre for Drug Discovery, Karpagam Academy of Higher Education, Coimbatore 641021, India;
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey;
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Amit Dubey
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida 201310, India;
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Chennai 600077, India
| | - Enfale Zerroug
- LMCE Laboratory, Group of Computational and Pharmaceutical Chemistry, University of Biskra, Biskra 07000, Algeria;
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (M.K.); (R.K.)
| |
Collapse
|
9
|
Grandi G, Botticelli L, Fraia PD, Babalini C, Masini M, Unfer V. The Association of Four Natural Molecules-EGCG, Folic Acid, Vitamin B12, and HA-To Counteract HPV Cervical Lesions: A Case Report. J Pers Med 2023; 13:jpm13030567. [PMID: 36983748 PMCID: PMC10051187 DOI: 10.3390/jpm13030567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/21/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Precancerous lesions of the uterine cervix, due to HPV infections, are still today a great medical challenge. This clinical case highlighted the effectiveness of epigallocatechin gallate (EGCG), vitamin B12, folic acid, and hyaluronic acid (HA) in counteracting HPV lesions in a 39-year-old patient with a long history of viral persistence, cervical lesions of various degree, and several unsuccessful surgical approaches. After eight weeks of treatment, both the histological and cytological analyses revealed only a chronic cervicitis without any malignant lesions or cellular dysplasia, thus reducing the urgency of an invasive surgery, a total hysterectomy.
Collapse
Affiliation(s)
- Giovanni Grandi
- Department of Medical and Surgical Sciences for Mother, Child and Adult, Obstetrics and Gynecology Unit, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, 41125 Modena, Italy
| | - Laura Botticelli
- Department of Pathology, Azienda Ospedaliero Universitaria Policlinico, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | | | | | - Meris Masini
- Department of Medical and Surgical Sciences for Mother, Child and Adult, Obstetrics and Gynecology Unit, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, 41125 Modena, Italy
| | - Vittorio Unfer
- UniCamillus-Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| |
Collapse
|
10
|
Evaluating the Efficacy of Pervistop®, a New Combination Based on EGCG, Folic Acid, Vitamin B12 and Hyaluronic Acid on Patients with Human Papilloma Virus (HPV) Persistent Infections and Cervical Lesions: A Pilot Study. J Clin Med 2023; 12:jcm12062171. [PMID: 36983172 PMCID: PMC10051211 DOI: 10.3390/jcm12062171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Background: The persistence of the HPV infection is a risk factor in the integration of viral DNA in the host genome, leading to transforming events. The lack of therapies for HPV-persistent infections determine an unmet medical need. Methods: We enrolled forty patients with persistent HPV infections and cervical lesions and divided them into two groups. The women in the treated group received 200 mg epigallocatechin gallate (EGCG), 400 µg folic acid (FA), 1 mg vitamin B12, and 50 mg hyaluronic acid (HA) for 12 weeks. The control group received no treatment. Results: 40 patients completed the study. Fifteen out of 20 women in the control group still had an LSIL at the end of the study. One woman had a decrease in the DNA load, while six had no change and eight had an increase in DNA content. In the treatment group, 17 out of 20 women achieved a full viral clearance. These women showed no cytological or histological evidence of lesions following the treatment. Conclusions: Our data highlight the possible effect of such combination on LSIL. Therefore, the evidence reported here supports the potential to carry out further randomized placebo-controlled studies with an adequate number of patients to verify our results.
Collapse
|
11
|
Preventing Persistence of HPV Infection with Natural Molecules. Pathogens 2023; 12:pathogens12030416. [PMID: 36986338 PMCID: PMC10056139 DOI: 10.3390/pathogens12030416] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Human papillomavirus (HPV) infection is one the most common sexually transmitted infections worldwide. In most cases, the infection is temporary and asymptomatic; however, when persistent, it may lead to lesions that can evolve into cancer in both women and men. Nowadays, prophylactic vaccination is the primary preventive strategy for HPV infections, but vaccines do not cover all types of HPV strains. Scientific research has uncovered the beneficial role of some natural supplements in preventing persistent HPV infections or treating HPV-related lesions. We review the current insight into the roles of natural molecules in HPV infection with a special focus on epigallocatechin gallate (EGCG), folic acid, vitamin B12, and hyaluronic acid (HA). Specifically, EGCG from green tea extracts plays a critical role in suppressing HPV oncogenes and oncoproteins (E6/E7), which are responsible for HPV oncogenic activity and cancer development. Folic acid and vitamin B12 are essential vitamins for multiple functions in the body, and accumulating evidence suggests their importance in maintaining a high degree of methylation of the HPV genome, thus decreasing the likelihood of causing malignant lesions. HA, due to its re-epithelizing property, may prevent HPV virus entry in damaged mucosa and epithelia. Thereby, based on these premises, the combination of EGCG, folic acid, vitamin B12, and HA may be a very promising therapeutic approach to prevent HPV persistence.
Collapse
|
12
|
Parish M, Massoud G, Hazimeh D, Segars J, Islam MS. Green Tea in Reproductive Cancers: Could Treatment Be as Simple? Cancers (Basel) 2023; 15:cancers15030862. [PMID: 36765820 PMCID: PMC9913717 DOI: 10.3390/cancers15030862] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Green tea originates from the tea plant Camellia sinensis and is one of the most widely consumed beverages worldwide. Green tea polyphenols, commonly known as catechins, are the major bioactive ingredients and account for green tea's unique health benefits. Epigallocatechin-3-gallate (EGCG), is the most potent catechin derivative and has been widely studied for its pro- and anti-oxidative effects. This review summarizes the chemical and chemopreventive properties of green tea in the context of female reproductive cancers. A comprehensive search of PubMed and Google Scholar up to December 2022 was conducted. All original and review articles related to green tea or EGCG, and gynecological cancers published in English were included. The findings of several in vitro, in vivo, and epidemiological studies examining the effect of green tea on reproductive cancers, including ovarian, cervical, endometrial, and vulvar cancers, are presented. Studies have shown that this compound targets specific receptors and intracellular signaling pathways involved in cancer pathogenesis. The potential benefits of using green tea in the treatment of reproductive cancers, alone or in conjunction with chemotherapeutic agents, are examined, shedding light on new therapeutic strategies for the management of female reproductive cancers.
Collapse
Affiliation(s)
| | | | | | - James Segars
- Correspondence: (J.S.); or (M.S.I.); Tel.: +1-410-614-2000 (J.S. & M.S.I.)
| | - Md Soriful Islam
- Correspondence: (J.S.); or (M.S.I.); Tel.: +1-410-614-2000 (J.S. & M.S.I.)
| |
Collapse
|
13
|
Chemopreventive Properties of Black Raspberries and Strawberries in Esophageal Cancer Review. Antioxidants (Basel) 2022; 11:antiox11091815. [PMID: 36139889 PMCID: PMC9495642 DOI: 10.3390/antiox11091815] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/02/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
Esophageal cancer is one of the most fetal malignancies in the world. Esophageal squamous cell carcinoma (SCC) and esophageal adenocarcinoma (AC) are two main types of esophageal cancer and each with distinct epidemiological, etiological and histopathological characteristics. The continued global prevalence of tobacco use and alcohol consumption, coupled with limited intake of fresh fruits and vegetables, ensures that esophageal cancer will remain one of the major health threats. In addition to promoting quitting smoking and alcohol abuse, one of the strategies of cancer prevention is to identify foods, food components, or dietary patterns that can prevent or delay the onset of esophageal cancer. A food-based approach has the advantage of a complex of mixtures of bioactive components simultaneously targeting multiple processes in carcinogenesis. We have employed a preclinical rodent model of esophageal SCC to assess the effects of black raspberries (BRB) and strawberries. Our investigations demonstrate that BRB and strawberries are potent inhibitors of esophageal cancer. To prepare for this review, a literature search was performed to screen BRB and strawberries against esophageal cancer using electronic databases from PubMed, Science Direct and Google Scholar. Search was conducted covering the period from January 2000 to June 2022. Our present review has provided a systematic review about chemopreventive effects of BRB and strawberries in esophageal cancer by collecting and compiling diverse research findings from the above sources. In this review, we discussed the anti-tumor potentials of BRB and strawberries in esophageal SCC and esophageal AC separately. For each cancer type, we discuss animal models and research findings from both animal bioassays and human clinical studies. We also discuss the potential mechanisms of action of berries and their key bioactive components.
Collapse
|
14
|
A Review with Updated Perspectives on the Antiviral Potentials of Traditional Medicinal Plants and Their Prospects in Antiviral Therapy. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081287. [PMID: 36013466 PMCID: PMC9410304 DOI: 10.3390/life12081287] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 02/06/2023]
Abstract
Exploration of the traditional medicinal plants is essential for drug discovery and development for various pharmacological targets. Various phytochemicals derived from medicinal plants were extensively studied for antiviral activity. This review aims to highlight the role of medicinal plants against viral infections that remains to be the leading cause of human death globally. Antiviral properties of phytoconstituents isolated from 45 plants were discussed for five different types of viral infections. The ability of the plants’ active compounds with antiviral effects was highlighted as well as their mechanism of action, pharmacological studies, and toxicological data on a variety of cell lines. The experimental values, such as IC50, EC50, CC50, ED50, TD50, MIC100, and SI of the active compounds, were compiled and discussed to determine their potential. Among the plants mentioned, 11 plants showed the most promising medicinal plants against viral infections. Sambucus nigra and Clinacanthus nutans manifested antiviral activity against three different types of viral infections. Echinacea purpurea, Echinacea augustofolia, Echinacea pallida, Plantago major, Glycyrrhiza uralensis, Phyllanthus emblica, Camellia sinensis, and Cistus incanus exhibited antiviral activity against two different types of viral infections. Interestingly, Nicotiana benthamiana showed antiviral effects against mosquito-borne infections. The importance of phenolic acids, alkamides, alkylamides, glycyrrhizin, epicatechin gallate (ECG), epigallocatechin gallate (EGCG), epigallocatechin (EGC), protein-based plant-produced ZIKV Envelope (PzE), and anti-CHIKV monoclonal antibody was also reviewed. An exploratory approach to the published literature was conducted using a variety of books and online databases, including Scopus, Google Scholar, ScienceDirect, Web of Science, and PubMed Central, with the goal of obtaining, compiling, and reconstructing information on a variety of fundamental aspects, especially regarding medicinal plants. This evaluation gathered important information from all available library databases and Internet searches from 1992 to 2022.
Collapse
|
15
|
The Use of Ellagic Acid and Annona Muricata Improves Semen Quality in Men with High-Risk Papillomavirus Infection. J Clin Med 2022; 11:jcm11164691. [PMID: 36012935 PMCID: PMC9409659 DOI: 10.3390/jcm11164691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Few data are currently available on the treatment of patients with HPV infection. In particular, there is no agreement on the use of antioxidants in these patients. Ellagic acid and annona muricata appear to improve HPV clearance in infected women. However, it is presently unknown whether they could enhance the clearance of HPV infection in infertile male patients. Aim: To evaluate the effects of a commercially available combined compound containing ellagic acid and annona muricata on semen quality in patients with documented papillomavirus (HPV) infection, and on the frequency of HPV DNA detection in seminal fluid after treatment. In addition, anti-sperm antibodies and the percentage of spermatozoa with fragmented DNA were evaluated. Materials and methods: This was a retrospective case-control study including patients attending our center for infertility. Fifty selected patients who were positive for high risk (HR)-HPV with available semen analysis results were consecutively enrolled. Patients were classified into two groups, according to the clinician’s decision to either administer ellagic acid 100 mg and annona muricata 100 mg (combined tablet formulation) for a period of three months (Group A; 25 patients), or to re-evaluate HPV DNA after a period of active surveillance only (protected sexual intercourse) (Group B; 25 patients). Results: Group A patients had a mean age of 31.0 ± 11.0 years, while Group B was 33.0 ± 8.0 years old (p > 0.05). After three months of treatment with ellagic acid and annona muricata, all conventional seminal parameters improved more significantly in Group A than in Group B patients: sperm concentration = 45 mil/mL vs. 20 mil/mL (p < 0.05); sperm progressive motility = 45% vs. 18% (p < 0.05); and normal sperm morphology = 18% vs. 6% (p < 0.05). After the treatment, the frequency of persistence of HPV DNA in the seminal fluid was significantly lower in Group A patients compared to those in Group B (12/25 = 48% vs. 22/25 = 88%; p < 0.05). Finally, after 3 months, Group A showed a significant reduction in anti-sperm antibodies and in the percentage of spermatozoa with fragmented DNA. Conclusion: The results of this study demonstrate, for the first time, the effects of a commercially available combined compound containing ellagic acid and annona muricata on semen quality in patients with HR-HPV infection, and that this therapy is also associated with a significant reduction in the persistence of HPV DNA in the seminal fluid.
Collapse
|
16
|
Tang Y, Chen Q, Chen J, Mo Z, Li H, Peng L, Ke Y, Liang B, Li R, Zhu H. Green Tea Polyphenols Cause Apoptosis and Autophagy in HPV-16 Subgene-Immortalized Human Cervical Epithelial Cells via the Activation of the Nrf2 Pathway. Nutr Cancer 2022; 74:3769-3778. [PMID: 35770917 DOI: 10.1080/01635581.2022.2093922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Infection with human papillomavirus (HPV) is relatively common and certain high-risk HPV strains can induce epithelial dysplasia, increasing the risk of cervical cancer. Green tea polyphenol (GTP) preparations exhibit diverse anti-inflammatory, antioxidative, and antitumor properties In Vitro and In Vivo. Topical GTP application has been recommended as a treatment for genital warts, but the effect of GTP treatment on HPV infection and HPV-associated cancer remains to be established. The present study aimed to explore the mechanism by which GTP affected HPV type 16 (HPV-16)-positive immortalized human cervical epithelial cells. Survival, apoptosis, and autophagocytosis of these cells following GTP treatment was assessed using CCK-8 assay, flow cytometry, and monodansylcadaverine (MDC) staining. These cells were further transfected with an shRNA specific for Nrf2 to generate stable Nrf2-knockdown cells. The levels of Caspase-3, Bcl-2, Bax, P53, Rb, HPV-16 E6, HPV-16 E7, P62, Beclin1 and LC3B were determined via Western blotting. These analyses revealed that GTP treatment induced autophagy and apoptosis in HPV-16-positive cells, while Nrf2 gene knockdown reversed GTP-induced autophagic and apoptotic effects. Together, these results suggested that GTP could alleviate HPV infection and HPV-associated precancerous lesions In Vitro by regulating the Nrf2 pathway, highlighting the therapeutic potential of GTP in treating HPV infection.
Collapse
Affiliation(s)
- Yi Tang
- Guangzhou Medical University, Guangzhou, Guangdong Province, China.,Guangzhou Institute of Dermatology, Guangzhou, Guangdong Province, China.,Institute of Dermatology, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Quan Chen
- Guangzhou Institute of Dermatology, Guangzhou, Guangdong Province, China.,Institute of Dermatology, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Jiaoquan Chen
- Guangzhou Medical University, Guangzhou, Guangdong Province, China.,Guangzhou Institute of Dermatology, Guangzhou, Guangdong Province, China.,Institute of Dermatology, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ziyin Mo
- Guangzhou Medical University, Guangzhou, Guangdong Province, China.,Guangzhou Institute of Dermatology, Guangzhou, Guangdong Province, China.,Institute of Dermatology, Guangzhou Medical University, Guangzhou, Guangdong Province, China.,Dermatology Department, Guangzhou Red Cross Hospital, Guangzhou, Guangdong Province, China
| | - Huaping Li
- Guangzhou Institute of Dermatology, Guangzhou, Guangdong Province, China.,Institute of Dermatology, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Liqian Peng
- Guangzhou Institute of Dermatology, Guangzhou, Guangdong Province, China.,Institute of Dermatology, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yanan Ke
- Guangzhou Institute of Dermatology, Guangzhou, Guangdong Province, China.,Institute of Dermatology, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Bihua Liang
- Guangzhou Institute of Dermatology, Guangzhou, Guangdong Province, China.,Institute of Dermatology, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Runxiang Li
- Guangzhou Medical University, Guangzhou, Guangdong Province, China.,Guangzhou Institute of Dermatology, Guangzhou, Guangdong Province, China.,Institute of Dermatology, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Huilan Zhu
- Guangzhou Medical University, Guangzhou, Guangdong Province, China.,Guangzhou Institute of Dermatology, Guangzhou, Guangdong Province, China.,Institute of Dermatology, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
17
|
Massa S, Pagliarello R, Paolini F, Venuti A. Natural Bioactives: Back to the Future in the Fight against Human Papillomavirus? A Narrative Review. J Clin Med 2022; 11:jcm11051465. [PMID: 35268556 PMCID: PMC8911515 DOI: 10.3390/jcm11051465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
Human papillomavirus (HPV) still represents an important threat to health worldwide. Better therapy in terms of further improvement of outcomes and attenuation of related side-effects is desirable. The pharmaceutical industry has always targeted natural substances-phytochemicals in particular-to identify lead compounds to be clinically validated and industrially produced as antiviral and anticancer drugs. In the field of HPV, numerous naturally occurring bioactives and dietary phytochemicals have been investigated as potentially valuable in vitro and in vivo. Interference with several pathways and improvement of the efficacy of chemotherapeutic agents have been demonstrated. Notably, some clinical trials have been conducted. Despite being endowed with general safety, these natural substances are in urgent need of further assessment to foresee their clinical exploitation. This review summarizes the basic research efforts conducted so far in the study of anti-HPV properties of bio-actives with insights into their mechanisms of action and highlights the variety of their natural origin in order to provide comprehensive mapping throughout the different sources. The clinical studies available are reported, as well, to highlight the need of uniformity and consistency of studies in the future to select those natural compounds that may be suited to clinical application.
Collapse
Affiliation(s)
- Silvia Massa
- Biotechnology Laboratory, Casaccia Research Center, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy;
- Correspondence:
| | - Riccardo Pagliarello
- Biotechnology Laboratory, Casaccia Research Center, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy;
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Francesca Paolini
- HPV-Unit, Unità Operativa Semplice Dipartimentale (UOSD) Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.P.); (A.V.)
| | - Aldo Venuti
- HPV-Unit, Unità Operativa Semplice Dipartimentale (UOSD) Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.P.); (A.V.)
| |
Collapse
|
18
|
Paradkar PH, Juvekar AS, Barkume MS, Amonkar AJ, Joshi JV, Soman G, Vaidya ADB. In vitro and in vivo evaluation of a standardized haridra (Curcuma longa Linn) formulation in cervical cancer. J Ayurveda Integr Med 2021; 12:616-622. [PMID: 34531090 PMCID: PMC8642669 DOI: 10.1016/j.jaim.2021.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/09/2021] [Accepted: 06/01/2021] [Indexed: 11/17/2022] Open
Abstract
Background The anti-cancer activity of phytomolecules present in turmeric or haridra (Curcuma longa Linn) extracts against cancer has been described in various ‘in vitro and in vivo’ studies. Objective In the present study, in vitro and in vivo anti-cancer and chemo-preventive activity of a new standardized Supercritical Turmeric Oil Extract (SCTOE) NBFR-03 was evaluated in cervical cancer models. Methods and materials In vitro cytotoxicity of this formulation was assessed at 10, 20, 40, and 80 μg/ml concentrations, in three cervical cancer cell lines (HeLa, SiHa, ME180) using Sulforhodamine B assay. The in vivo anti-cancer activity was evaluated in two groups of female nude mice; the first one was with tumor xenograft implants and at the same time treatment was started with 96 μl/kg/day p.o. and 192 μl/kg/day p.o. NBFR-03 for three months. The second group was kept as chemoprevention group where mice were pre-treated with the formulation (96 μl/kg/day p.o.) for two weeks and injected with cancer cell suspension with continued treatment for three months. Results No cytotoxicity was seen in any cell line with the extract when compared to positive control (Adriamycin 10 μg/ml). In mice the first treatment group with tumor xenograft implants did not show any significant anti-tumor activity but showed a trend where higher dose group had smaller tumor volumes as compared to lower dose group and controls (p = 0.37 and p = 0.34 respectively). The chemopreventive group with pre-treated mice also showed smaller tumor size as compared to controls (p = 0.163). Conclusion NBFR-03 turmeric oil extract showed a promising trend in mice pre-treated with NBFR-03. There is a scope for further studying the potential of this extract as complementary therapy and as a chemopreventive.
Collapse
Affiliation(s)
- P H Paradkar
- Kasturba Health Society- Medical Research Center, Vile Parle West, Mumbai, India.
| | - A S Juvekar
- Anticancer Drug Screening Facility, ACTREC, Kharghar, Navi Mumbai, India
| | - M S Barkume
- Anticancer Drug Screening Facility, ACTREC, Kharghar, Navi Mumbai, India
| | - A J Amonkar
- Kasturba Health Society- Medical Research Center, Vile Parle West, Mumbai, India
| | - J V Joshi
- Kasturba Health Society- Medical Research Center, Vile Parle West, Mumbai, India
| | - G Soman
- Nisarga Biotech Pvt Ltd., Satara, India
| | - A D B Vaidya
- Kasturba Health Society- Medical Research Center, Vile Parle West, Mumbai, India
| |
Collapse
|
19
|
The Major Constituent of Green Tea, Epigallocatechin-3-Gallate (EGCG), Inhibits the Growth of HPV18-Infected Keratinocytes by Stimulating Proteasomal Turnover of the E6 and E7 Oncoproteins. Pathogens 2021; 10:pathogens10040459. [PMID: 33920477 PMCID: PMC8069595 DOI: 10.3390/pathogens10040459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/19/2021] [Accepted: 04/02/2021] [Indexed: 11/17/2022] Open
Abstract
Epigallocatechin-3-gallate (EGCG), the primary bioactive polyphenol in green tea, has been shown to inhibit the growth of human papilloma virus (HPV)-transformed keratinocytes. Here, we set out to examine the consequences of EGCG treatment on the growth of HPV18-immortalised foreskin keratinocytes (HFK-HPV18) and an authentic HPV18-positive vulvar intraepithelial neoplasia (VIN) clone, focusing on its ability to influence cell proliferation and differentiation and to impact on viral oncogene expression and virus replication. EGCG treatment was associated with degradation of the E6 and E7 oncoproteins and an upregulation of their associated tumour suppressor genes; consequently, keratinocyte proliferation was inhibited in both monolayer and organotypic raft culture. While EGCG exerted a profound effect on cell proliferation, it had little impact on keratinocyte differentiation. Expression of the late viral protein E4 was suppressed in the presence of EGCG, suggesting that EGCG was able to block productive viral replication in differentiating keratinocytes. Although EGCG did not alter the levels of E6 and E7 mRNA, it enhanced the turnover of the E6 and E7 proteins. The addition of MG132, a proteasome inhibitor, to EGCG-treated keratinocytes led to the accumulation of the E6/E7 proteins, showing that EGCG acts as an anti-viral, targeting the E6 and E7 proteins for proteasome-mediated degradation.
Collapse
|
20
|
Xiong Y, Cui L, Bian C, Zhao X, Wang X. Clearance of human papillomavirus infection in patients with cervical intraepithelial neoplasia: A systemic review and meta-analysis. Medicine (Baltimore) 2020; 99:e23155. [PMID: 33181688 PMCID: PMC7668491 DOI: 10.1097/md.0000000000023155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND There are currently no available standard drugs treating human papillomavirus (HPV) infection, especially for patients with low-grade cervical lesion. Several therapies are explored but the results are inconclusive. The objective of this study was to evaluate the efficacy of reported non-invasive treatments in patients with HPV infection and cervical lesions by meta-analysis. METHODS A comprehensive search of prospective and randomized studies published from April 2000 to April 2020 was conducted in electronic databases. The statistical analyses of the pooled risk ratios (RRs) and the corresponding 95% confidence intervals (95% CIs) were performed using the Revman 5.2 software. RESULTS Twelve articles including 12 randomized controlled studies and 1 prospective controlled randomized pilot study were enrolled. Therapeutic medications included biological and herbal regimen, interferon regimen and probiotics. The meta-analysis showed the experimental treatments had a statistically significant improvement in HPV clearance rate compared with the controls (RR = 0.71, 95% CI [0.63, 0.80], P < .00001); subgroup analyses stratified by regimen categories were consistent with results in the overall group. Treatment using biological and herbal regimen, interferon regimen or probiotics also resulted in a beneficial outcome in regression rate of cervical lesions compared with the controls (RR = 0.55, 95% CI [0.39, 0.79], P = .001). The trend was more favorable in the probiotics than that in the biological and herbal regimen (RR 0.48 vs 0.72). CONCLUSION Treatment of biological and herbal regimen, interferon regimen and probiotics benefit patients who have HPV infection and cervical lesions. Both the clearance of HPV and regression of cervical lesions are significant. More studies with less heterogeneity are needed to draw a concrete conclusion.
Collapse
|
21
|
Franconi R, Massa S, Paolini F, Vici P, Venuti A. Plant-Derived Natural Compounds in Genetic Vaccination and Therapy for HPV-Associated Cancers. Cancers (Basel) 2020; 12:cancers12113101. [PMID: 33114220 PMCID: PMC7690868 DOI: 10.3390/cancers12113101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary DNA vaccination represents a useful approach for human papillomavirus (HPV) cancer therapy. The therapeutic potential of plant-based natural compounds for control of HPV- associated cancers has been also widely explored. Genetic vaccines for HPV-associated tumors that include plant protein-encoding gene sequences, used alone or in combinations with plant metabolites, are being investigated but are still in their infancy. Main focus of this paper is to provide an overview of the current state of novel therapeutic strategies employing genetic vaccines along with plant-derived compounds and genes. We highlight the importance of multimodality treatment regimen such as combining immunotherapy with plant-derived agents. Abstract Antigen-specific immunotherapy and, in particular, DNA vaccination provides an established approach for tackling human papillomavirus (HPV) cancers at different stages. DNA vaccines are stable and have a cost-effective production. Their intrinsic low immunogenicity has been improved by several strategies with some success, including fusion of HPV antigens with plant gene sequences. Another approach for the control of HPV cancers is the use of natural immunomodulatory agents like those derived from plants, that are able to interfere in carcinogenesis by modulating many different cellular pathways and, in some instances, to reduce chemo- and radiotherapy resistance of tumors. Indeed, plant-derived compounds represent, in many cases, an abundantly available, cost-effective source of molecules that can be either harvested directly in nature or obtained from plant cell cultures. In this review, an overview of the most relevant data reported in literature on the use of plant natural compounds and genetic vaccines that include plant-derived sequences against HPV tumors is provided. The purpose is also to highlight the still under-explored potential of multimodal treatments implying DNA vaccination along with plant-derived agents.
Collapse
Affiliation(s)
- Rosella Franconi
- Division of Health Protection Technology, Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, 00123 Rome, Italy
- Correspondence: (R.F.); (S.M.); Tel.: +39-06-3048-4482 (R.F.); +39-06-3048-4052 (S.M.)
| | - Silvia Massa
- Division of Biotechnology and Agroindustry, Department for Sustainability, ENEA, 00123 Rome, Italy
- Correspondence: (R.F.); (S.M.); Tel.: +39-06-3048-4482 (R.F.); +39-06-3048-4052 (S.M.)
| | - Francesca Paolini
- HPV-UNIT—UOSD Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.P.); (A.V.)
| | - Patrizia Vici
- Division of Medical Oncology B, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Aldo Venuti
- HPV-UNIT—UOSD Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.P.); (A.V.)
| |
Collapse
|
22
|
Aarthy M, Panwar U, Singh SK. Structural dynamic studies on identification of EGCG analogues for the inhibition of Human Papillomavirus E7. Sci Rep 2020; 10:8661. [PMID: 32457393 PMCID: PMC7250877 DOI: 10.1038/s41598-020-65446-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/04/2020] [Indexed: 02/04/2023] Open
Abstract
High risk human papillomaviruses are highly associated with the cervical carcinoma and the other genital tumors. Development of cervical cancer passes through the multistep process initiated from benign cyst to increasingly severe premalignant dysplastic lesions in an epithelium. Replication of this virus occurs in the fatal differentiating epithelium and involves in the activation of cellular DNA replication proteins. The oncoprotein E7 of human papillomavirus expressed in the lower epithelial layers constrains the cells into S-phase constructing an environment favorable for genome replication and cell proliferation. To date, no suitable drug molecules exist to treat HPV infection whereas anticipation of novel anti-HPV chemotherapies with distinctive mode of actions and identification of potential drugs are crucial to a greater extent. Hence, our present study focused on identification of compounds analogue to EGCG, a green tea molecule which is considered to be safe to use for mammalian systems towards treatment of cancer. A three dimensional similarity search on the small molecule library from natural product database using EGCG identified 11 potential small molecules based on their structural similarity. The docking strategies were implemented with acquired small molecules and identification of the key interactions between protein and compounds were carried out through binding free energy calculations. The conformational changes between the apoprotein and complexes were analyzed through simulation performed thrice demonstrating the dynamical and structural effects of the protein induced by the compounds signifying the domination. The analysis of the conformational stability provoked us to describe the features of the best identified small molecules through electronic structure calculations. Overall, our study provides the basis for structural insights of the identified potential identified small molecules and EGCG. Hence, the identified analogue of EGCG can be potent inhibitors against the HPV 16 E7 oncoprotein.
Collapse
Affiliation(s)
- Murali Aarthy
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630004, India
| | - Umesh Panwar
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630004, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630004, India.
| |
Collapse
|
23
|
Wang YQ, Lu JL, Liang YR, Li QS. Suppressive Effects of EGCG on Cervical Cancer. Molecules 2018; 23:E2334. [PMID: 30213130 PMCID: PMC6225117 DOI: 10.3390/molecules23092334] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023] Open
Abstract
Cervical cancer is the fourth most common gynecological cancer worldwide. Although prophylactic vaccination presents the most effective method for cervical cancer prevention, chemotherapy is still the primary invasive intervention. It is urgent to exploit low-toxic natural anticancer drugs on account of high cytotoxicity and side-effects of conventional agents. As a natural product, (-)-epigallocatechingallate (EGCG) has abilities in anti-proliferation, anti-metastasis and pro-apoptosis of cervical cancer cells. Moreover, EGCG also has pharmaceutical synergistic effects with conventional agents such as cisplatin (CDDP) and bleomycin (BLM). The underlying mechanisms of EGCG suppressive effects on cervical cancer are reviewed in this article. Further research directions and ambiguous results are also discussed.
Collapse
Affiliation(s)
- Ying-Qi Wang
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Qing-Sheng Li
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
24
|
Aarthy M, Kumar D, Giri R, Singh SK. E7 oncoprotein of human papillomavirus: Structural dynamics and inhibitor screening study. Gene 2018. [DOI: 10.1016/j.gene.2018.03.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Khiewkamrop P, Phunsomboon P, Richert L, Pekthong D, Srisawang P. Epistructured catechins, EGCG and EC facilitate apoptosis induction through targeting de novo lipogenesis pathway in HepG2 cells. Cancer Cell Int 2018; 18:46. [PMID: 29588626 PMCID: PMC5863485 DOI: 10.1186/s12935-018-0539-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/13/2018] [Indexed: 02/06/2023] Open
Abstract
Background Abnormally high expression of the mammalian de novo lipogenesis (DNL) pathway in various cancer cells promotes cell over-proliferation and resistance to apoptosis. Inhibition of key enzymes in the DNL pathway, namely, ATP citrate lyase, acetyl-CoA carboxylase, and fatty acid synthase (FASN) can increase apoptosis without cytotoxicity to non-cancerous cells, leading to the search for and presentation of novel selective and powerful targets for cancer therapy. Previous studies reported that epistructured catechins, epigallocatechin gallate (EGCG) and epicatechin (EC) exhibit different mechanisms regarding a strong inducer of apoptosis in various cancer cell lines. Thus, the current study investigated the growth inhibitory effect of EGCG and EC, on the enzyme expression and activity of the DNL pathway, which leads to the prominent activity of carnitine palmitoyl transferase-1 (CPT-1) mediating apoptosis in HepG2 cells. Methods The cytotoxicity on HepG2 cells of EGCG and EC was determined by MTT assay. Cell death caused by apoptosis, the dissipation of mitochondrial membrane potential (MMP), and cell cycle arrest were then detected by flow cytometry. We further investigated the decrease of fatty acid levels associated with DNL retardation, followed by evaluation of DNL protein expression. Then, the negative inhibitory effect of depleted fatty acid synthesis on malonyl-CoA synthesis followed by regulating of CPT-1 activity was investigated. Thereafter, we inspected the enhanced reactive oxygen species (ROS) generation, which is recognized as one of the causes of apoptosis in HepG2 cells. Results We found that EGCG and EC decreased cancer cell viability by increasing apoptosis as well as causing cell cycle arrest in HepG2 cells. Apoptosis was associated with MMP dissipation. Herein, EGCG and EC inhibited the expression of FASN enzymes contributing to decreasing fatty acid levels. Notably, this decrease consequently showed a suppressing effect on the CPT-1 activity. We suggest that epistructured catechin-induced apoptosis targets CPT-1 activity suppression mediated through diminishing the DNL pathway in HepG2 cells. In addition, increased ROS production was found after treatment with EGCG and EC, indicating oxidative stress mechanism-induced apoptosis. The strong apoptotic effect of EGCG and EC was specifically absent in primary human hepatocytes. Conclusion Our supportive evidence confirms potential alternative cancer treatments by EGCG and EC that selectively target the DNL pathway.
Collapse
Affiliation(s)
- Phuriwat Khiewkamrop
- 1Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000 Thailand
| | - Pattamaphron Phunsomboon
- 2Clinical Research Unit Floor 5 His Majesty's 7th Cycle Birthday Anniversary 2, Faculty of Medicine, Naresuan University, Phitsanulok, 65000 Thailand
| | - Lysiane Richert
- KaLy-Cell, 20A rue du Général Leclerc, 67115 Plobsheim, France.,Laboratoire de Toxicologie Cellulaire, Université de Bourgogne Franche-Comté, EA 4267, Besançon, France
| | - Dumrongsak Pekthong
- 5Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000 Thailand
| | - Piyarat Srisawang
- 1Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000 Thailand
| |
Collapse
|
26
|
Costa C, Tsatsakis A, Mamoulakis C, Teodoro M, Briguglio G, Caruso E, Tsoukalas D, Margina D, Dardiotis E, Kouretas D, Fenga C. Current evidence on the effect of dietary polyphenols intake on chronic diseases. Food Chem Toxicol 2017; 110:286-299. [DOI: 10.1016/j.fct.2017.10.023] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023]
|
27
|
Le Donne M, Lentini M, Alibrandi A, Salimbeni V, Giuffre' G, Mazzeo F, Triolo O, D'Anna R. Antiviral activity of Ellagic acid and Annona Muricata in cervical HPV related pre-neoplastic lesions: A randomized trial. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
28
|
Budisan L, Gulei D, Zanoaga OM, Irimie AI, Sergiu C, Braicu C, Gherman CD, Berindan-Neagoe I. Dietary Intervention by Phytochemicals and Their Role in Modulating Coding and Non-Coding Genes in Cancer. Int J Mol Sci 2017; 18:ijms18061178. [PMID: 28587155 PMCID: PMC5486001 DOI: 10.3390/ijms18061178] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/20/2017] [Accepted: 05/24/2017] [Indexed: 12/13/2022] Open
Abstract
Phytochemicals are natural compounds synthesized as secondary metabolites in plants, representing an important source of molecules with a wide range of therapeutic applications. These natural agents are important regulators of key pathological processes/conditions, including cancer, as they are able to modulate the expression of coding and non-coding transcripts with an oncogenic or tumour suppressor role. These natural agents are currently exploited for the development of therapeutic strategies alone or in tandem with conventional treatments for cancer. The aim of this paper is to review the recent studies regarding the role of these natural phytochemicals in different processes related to cancer inhibition, including apoptosis activation, angiogenesis and metastasis suppression. From the large palette of phytochemicals we selected epigallocatechin gallate (EGCG), caffeic acid phenethyl ester (CAPE), genistein, morin and kaempferol, due to their increased activity in modulating multiple coding and non-coding genes, targeting the main hallmarks of cancer.
Collapse
Affiliation(s)
- Liviuta Budisan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", 400012 Cluj-Napoca, Romania.
| | - Diana Gulei
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", 400012 Cluj-Napoca, Romania.
| | - Oana Mihaela Zanoaga
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", 400012 Cluj-Napoca, Romania.
| | - Alexandra Iulia Irimie
- Department of Prosthodontics and Dental Materials, Faculty of Dental Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu", 23 Marinescu Street, 400012 Cluj-Napoca, Romania.
| | - Chira Sergiu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", 400012 Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", 400012 Cluj-Napoca, Romania.
| | - Claudia Diana Gherman
- Surgical Clinic II, 4-6 Clinicilor Street, 400006 Cluj-Napoca, Romania.
- Department of Surgery, University of Medicine and Pharmacy "Iuliu Haţieganu", 8 Victor Babes Street, 400012 Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", 400012 Cluj-Napoca, Romania.
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", 400012 Cluj-Napoca, Romania.
- Department of Functional Genomics and Experimental Pathology, Oncological Institute "Prof. Dr. Ion Chiricuţă", 400015 Cluj-Napoca, Romania.
| |
Collapse
|
29
|
Morosetti G, Criscuolo AA, Santi F, Perno CF, Piccione E, Ciotti M. Ellagic acid and Annona muricata in the chemoprevention of HPV-related pre-neoplastic lesions of the cervix. Oncol Lett 2017; 13:1880-1884. [PMID: 28454338 DOI: 10.3892/ol.2017.5634] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/12/2016] [Indexed: 12/13/2022] Open
Abstract
Ellagic acid is a phenolic compound naturally present in nuts and berries. Several studies have demonstrated that this bioactive compound has antioxidant, chemopreventive and antiviral activity. Annona muricata is a type of fruit tree with a long history of traditional use. A number of properties have been attributed to different parts of the plant, including anticancer and antioxidant activities. In the current study, a complex based on ellagic acid, Annona Muricata and antioxidant factors (an ellagic acid complex) was administered to a group of human papilloma virus (HPV) infected women with and without cervical lesions, for 12 months. Its effect on HPV clearance and cervical cytological outcomes was assessed and a group of women with the same clinical features who did not receive the ellagic acid complex served as a control. A positive correlation was observed between intake of ellagic acid complex and negative Pap test following 6 and 12 months of treatment (χ2 test: 0.041 and 0.014, respectively). Women treated with the ellagic acid complex were less likely to be diagnosed with an abnormal Pap smear at 6 months [Odds ratio (OR): 0.39; 95% confidence interval (CI) 0.14-1.06] and 12 months (OR: 0.35; 95% CI 0.13-0.89), compared with the control group. After adjusting for confounding factors including age and smoking habit, this association remained significant. No effect was observed on HPV clearance or viral integration. The data from the current study suggest a protective effect of the ellagic acid complex on cervical cells, possibly through apoptosis, cell cycle arrest and repair mechanisms.
Collapse
Affiliation(s)
- Giulia Morosetti
- Clinical Department of Surgery, Division of Gynecology, Polyclinic Tor Vergata, I-00133 Rome, Italy
| | - Anna Angela Criscuolo
- Clinical Department of Surgery, Division of Gynecology, Polyclinic Tor Vergata, I-00133 Rome, Italy
| | - Flavia Santi
- Department of Statistical Sciences, Sapienza University of Rome, I-00185 Rome, Italy
| | - Carlo Federico Perno
- Department of Laboratory Medicine, Laboratory of Molecular Virology, Polyclinic Tor Vergata, I-00133 Rome, Italy.,Department of Experimental Medicine and Surgery, Tor Vergata University, I-00133 Rome, Italy
| | - Emilio Piccione
- Clinical Department of Surgery, Division of Gynecology, Polyclinic Tor Vergata, I-00133 Rome, Italy.,Department of Biomedicine and Prevention, Tor Vergata University, I-00133 Rome, Italy
| | - Marco Ciotti
- Department of Laboratory Medicine, Laboratory of Molecular Virology, Polyclinic Tor Vergata, I-00133 Rome, Italy
| |
Collapse
|
30
|
Harati K, Behr B, Wallner C, Daigeler A, Hirsch T, Jacobsen F, Renner M, Harati A, Lehnhardt M, Becerikli M. Anti‑proliferative activity of epigallocatechin‑3‑gallate and silibinin on soft tissue sarcoma cells. Mol Med Rep 2016; 15:103-110. [PMID: 27909727 PMCID: PMC5355719 DOI: 10.3892/mmr.2016.5969] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 10/26/2016] [Indexed: 12/17/2022] Open
Abstract
Disseminated soft tissue sarcomas (STS) present a therapeutic dilemma. The first-line cytostatic doxorubicin demonstrates a response rate of 30% and is not suitable for elderly patients with underlying cardiac disease, due to its cardiotoxicity. Well‑tolerated alternative treatment options, particularly in palliative situations, are rare. Therefore, the present study assessed the anti‑proliferative effects of the natural compounds epigallocatechin-3-gallate (EGCG), silibinin and noscapine on STS cells. A total of eight different human STS cell lines were used in the study: Fibrosarcoma (HT1080), liposarcoma (SW872, T778 and MLS‑402), synovial sarcoma (SW982, SYO1 and 1273) and pleomorphic sarcoma (U2197). Cell proliferation and viability were analysed by 5‑bromo-2'-deoxyuridine and MTT assays and real‑time cell analysis (RTCA). RTCA indicated that noscapine did not exhibit any inhibitory effects. By contrast, EGCG decreased proliferation and viability of all cell lines except for the 1273 synovial sarcoma cell line. Silibinin exhibited anti‑proliferative effects on all synovial sarcoma, liposarcoma and fibrosarcoma cell lines. Liposarcoma cell lines responded particularly well to EGCG while synovial sarcoma cell lines were more sensitive to silibinin. In conclusion, the green tea polyphenol EGCG and the natural flavonoid silibinin from milk thistle suppressed the proliferation and viability of liposarcoma, synovial sarcoma and fibrosarcoma cells. These compounds are therefore potential candidates as mild therapeutic options for patients that are not suitable for doxorubicin‑based chemotherapy and require palliative treatment. The findings from the present study provide evidence to support in vivo trials assessing the effect of these natural compounds on solid sarcomas.
Collapse
Affiliation(s)
- Kamran Harati
- Department of Plastic Surgery, Burn Center, Hand Center, Sarcoma Reference Center, BG‑University Hospital Bergmannsheil, D‑44789 Bochum, Germany
| | - Björn Behr
- Department of Plastic Surgery, Burn Center, Hand Center, Sarcoma Reference Center, BG‑University Hospital Bergmannsheil, D‑44789 Bochum, Germany
| | - Christoph Wallner
- Department of Plastic Surgery, Burn Center, Hand Center, Sarcoma Reference Center, BG‑University Hospital Bergmannsheil, D‑44789 Bochum, Germany
| | - Adrien Daigeler
- Department of Plastic Surgery, Burn Center, Hand Center, Sarcoma Reference Center, BG‑University Hospital Bergmannsheil, D‑44789 Bochum, Germany
| | - Tobias Hirsch
- Department of Plastic Surgery, Burn Center, Hand Center, Sarcoma Reference Center, BG‑University Hospital Bergmannsheil, D‑44789 Bochum, Germany
| | - Frank Jacobsen
- Department of Plastic Surgery, Burn Center, Hand Center, Sarcoma Reference Center, BG‑University Hospital Bergmannsheil, D‑44789 Bochum, Germany
| | - Marcus Renner
- Institute of Pathology, University of Heidelberg, D‑69120 Heidelberg, Germany
| | - Ali Harati
- Department of Neurosurgery, Klinikum Dortmund, D‑44145 Dortmund, Germany
| | - Marcus Lehnhardt
- Department of Plastic Surgery, Burn Center, Hand Center, Sarcoma Reference Center, BG‑University Hospital Bergmannsheil, D‑44789 Bochum, Germany
| | - Mustafa Becerikli
- Department of Plastic Surgery, Burn Center, Hand Center, Sarcoma Reference Center, BG‑University Hospital Bergmannsheil, D‑44789 Bochum, Germany
| |
Collapse
|
31
|
The Role of Natural Polyphenols in the Prevention and Treatment of Cervical Cancer-An Overview. Molecules 2016; 21:molecules21081055. [PMID: 27548122 PMCID: PMC6274328 DOI: 10.3390/molecules21081055] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/06/2016] [Accepted: 08/08/2016] [Indexed: 12/28/2022] Open
Abstract
Cervical cancer represents the second leading cause of death for women worldwide. The importance of the diet and its impact on specific types of neoplasia has been highlighted, focusing again interest in the analysis of dietary phytochemicals. Polyphenols have shown a wide range of cellular effects: they may prevent carcinogens from reaching the targeted sites, support detoxification of reactive molecules, improve the elimination of transformed cells, increase the immune surveillance and the most important factor is that they can influence tumor suppressors and inhibit cellular proliferation, interfering in this way with the steps of carcinogenesis. From the studies reviewed in this paper, it is clear that certain dietary polyphenols hold great potential in the prevention and therapy of cervical cancer, because they interfere in carcinogenesis (in the initiation, development and progression) by modulating the critical processes of cellular proliferation, differentiation, apoptosis, angiogenesis and metastasis. Specifically, polyphenols inhibit the proliferation of HPV cells, through induction of apoptosis, growth arrest, inhibition of DNA synthesis and modulation of signal transduction pathways. The effects of combinations of polyphenols with chemotherapy and radiotherapy used in the treatment of cervical cancer showed results in the resistance of cervical tumor cells to chemo- and radiotherapy, one of the main problems in the treatment of cervical neoplasia that can lead to failure of the treatment because of the decreased efficiency of the therapy.
Collapse
|
32
|
Ullah N, Ahmad M, Aslam H, Tahir MA, Aftab M, Bibi N, Ahmad S. Green tea phytocompounds as anticancer: A review. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(15)61040-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Butt MS, Ahmad RS, Sultan MT, Qayyum MMN, Naz A. Green tea and anticancer perspectives: updates from last decade. Crit Rev Food Sci Nutr 2016; 55:792-805. [PMID: 24915354 DOI: 10.1080/10408398.2012.680205] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Green tea is the most widely consumed beverage besides water and has attained significant attention owing to health benefits against array of maladies, e.g., obesity, diabetes mellitus, cardiovascular disorders, and cancer insurgence. The major bioactive molecules are epigallocatechin-3-gallate, epicatechin, epicatechin-3-gallate, epigallocatechin, etc. The anticarcinogenic and antimutagenic activities of green tea were highlighted some years ago. Several cohort studies and controlled randomized trials suggested the inverse association of green tea consumption and cancer prevalence. Cell culture and animal studies depicted the mechanisms of green tea to control cancer insurgence, i.e., induction of apoptosis to control cell growth arrest, altered expression of cell-cycle regulatory proteins, activation of killer caspases, and suppression of nuclear factor kappa-B activation. It acts as carcinoma blocker by modulating the signal transduction pathways involved in cell proliferation, transformation, inflammation, and metastasis. However, results generated from some research interventions conducted in different groups like smokers and nonsmokers, etc. contradicted with aforementioned anticancer perspectives. In this review paper, anticancer perspectives of green tea and its components have been described. Recent findings and literature have been surfed and arguments are presented to clarify the ambiguities regarding anticancer perspectives of green tea and its component especially against colon, skin, lung, prostate, and breast cancer. The heading of discussion and future trends is limelight of the manuscript. The compiled manuscript provides new avenues for researchers to be explored in relation to green tea and its bioactive components.
Collapse
Affiliation(s)
- Masood Sadiq Butt
- a National Institute of Food Science and Technology , University of Agriculture , Faisalabad , Pakistan
| | | | | | | | | |
Collapse
|
34
|
Teoh PL. Comparative Study on In Vitro
Anti-Proliferative and Apoptotic Effects of Organic and Non-Organic Tea Extracts. J Food Biochem 2015. [DOI: 10.1111/jfbc.12180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peik Lin Teoh
- Biotechnology Research Institute; Universiti Malaysia Sabah; Jalan UMS Kota Kinabalu Sabah 88400 Malaysia
| |
Collapse
|
35
|
Natural polyphenols: potential in the prevention of sexually transmitted viral infections. Drug Discov Today 2015; 21:333-41. [PMID: 26546859 DOI: 10.1016/j.drudis.2015.10.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 10/22/2022]
Abstract
Sexually transmitted viral infections represent a major public health concern due to lack of effective prevention strategies. Efforts are ongoing to develop modalities that can enable simultaneous prevention of multiple sexually transmitted infections. In the present review, we discuss the potential of natural polyphenols to prevent sexually transmitted viral infections. The review gives an account of various in vitro and in vivo studies carried out on epigallocatechin gallate, theaflavins (black tea polyphenols), resveratrol, genistein and curcumin to highlight their potential to prevent sexually transmitted infections caused by HIV (human immunodeficiency virus), HSV (herpes simplex virus) and HPV (human papilloma virus).
Collapse
|
36
|
Sak K. Characteristic features of cytotoxic activity of flavonoids on human cervical cancer cells. Asian Pac J Cancer Prev 2015; 15:8007-19. [PMID: 25338977 DOI: 10.7314/apjcp.2014.15.19.8007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Cervical cancer is the most common gynecologic malignancy worldwide and development of new therapeutic strategies and anticancer agents is an urgent priority. Plants have remained an important source in the search for novel cytotoxic compounds and several polyphenolic flavonoids possess antitumor properties. In this review article, data about potential anticarcinogenic activity of common natural flavonoids on various human cervical cancer cell lines are compiled and analyzed showing perspectives for the use of these secondary metabolites in the treatment of cervical carcinoma as well as in the development of novel chemotherapeutic drugs. Such anticancer effects of flavonoids seem to differentially depend on the cellular type and origin of cervical carcinoma creating possibilities for specific targeting in the future. Besides the cytotoxic activity per se, several flavonoids can also contribute to the increase in efficacy of conventional therapies rendering tumor cells more sensitive to standard chemotherapeutics and irradiation. Although the current knowledge is still rather scarce and further studies are certainly needed, it is clear that natural flavonoids may have a great potential to benefit cervical cancer patients.
Collapse
|
37
|
Yaswen P, MacKenzie KL, Keith WN, Hentosh P, Rodier F, Zhu J, Firestone GL, Matheu A, Carnero A, Bilsland A, Sundin T, Honoki K, Fujii H, Georgakilas AG, Amedei A, Amin A, Helferich B, Boosani CS, Guha G, Ciriolo MR, Chen S, Mohammed SI, Azmi AS, Bhakta D, Halicka D, Niccolai E, Aquilano K, Ashraf SS, Nowsheen S, Yang X. Therapeutic targeting of replicative immortality. Semin Cancer Biol 2015; 35 Suppl:S104-S128. [PMID: 25869441 PMCID: PMC4600408 DOI: 10.1016/j.semcancer.2015.03.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 03/06/2015] [Accepted: 03/13/2015] [Indexed: 12/15/2022]
Abstract
One of the hallmarks of malignant cell populations is the ability to undergo continuous proliferation. This property allows clonal lineages to acquire sequential aberrations that can fuel increasingly autonomous growth, invasiveness, and therapeutic resistance. Innate cellular mechanisms have evolved to regulate replicative potential as a hedge against malignant progression. When activated in the absence of normal terminal differentiation cues, these mechanisms can result in a state of persistent cytostasis. This state, termed “senescence,” can be triggered by intrinsic cellular processes such as telomere dysfunction and oncogene expression, and by exogenous factors such as DNA damaging agents or oxidative environments. Despite differences in upstream signaling, senescence often involves convergent interdependent activation of tumor suppressors p53 and p16/pRB, but can be induced, albeit with reduced sensitivity, when these suppressors are compromised. Doses of conventional genotoxic drugs required to achieve cancer cell senescence are often much lower than doses required to achieve outright cell death. Additional therapies, such as those targeting cyclin dependent kinases or components of the PI3K signaling pathway, may induce senescence specifically in cancer cells by circumventing defects in tumor suppressor pathways or exploiting cancer cells’ heightened requirements for telomerase. Such treatments sufficient to induce cancer cell senescence could provide increased patient survival with fewer and less severe side effects than conventional cytotoxic regimens. This positive aspect is countered by important caveats regarding senescence reversibility, genomic instability, and paracrine effects that may increase heterogeneity and adaptive resistance of surviving cancer cells. Nevertheless, agents that effectively disrupt replicative immortality will likely be valuable components of new combinatorial approaches to cancer therapy.
Collapse
Affiliation(s)
- Paul Yaswen
- Life Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, United States.
| | - Karen L MacKenzie
- Children's Cancer Institute Australia, Kensington, New South Wales, Australia.
| | | | | | | | - Jiyue Zhu
- Washington State University College of Pharmacy, Pullman, WA, United States.
| | | | | | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, HUVR, Consejo Superior de Investigaciones Cientificas, Universdad de Sevilla, Seville, Spain.
| | | | | | | | | | | | | | - Amr Amin
- United Arab Emirates University, Al Ain, United Arab Emirates; Cairo University, Cairo, Egypt
| | - Bill Helferich
- University of Illinois at Urbana Champaign, Champaign, IL, United States
| | | | - Gunjan Guha
- SASTRA University, Thanjavur, Tamil Nadu, India
| | | | - Sophie Chen
- Ovarian and Prostate Cancer Research Trust, Guildford, Surrey, United Kingdom
| | | | - Asfar S Azmi
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | | | | | | | | | - S Salman Ashraf
- United Arab Emirates University, Al Ain, United Arab Emirates; Cairo University, Cairo, Egypt
| | | | - Xujuan Yang
- University of Illinois at Urbana Champaign, Champaign, IL, United States
| |
Collapse
|
38
|
Human Papillomavirus Vaccine. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 101:231-322. [DOI: 10.1016/bs.apcsb.2015.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
39
|
Krstic M, Stojadinovic M, Smiljanic K, Stanic-Vucinic D, Cirkovic Velickovic T. The anti-cancer activity of green tea, coffee and cocoa extracts on human cervical adenocarcinoma HeLa cells depends on both pro-oxidant and anti-proliferative activities of polyphenols. RSC Adv 2015. [DOI: 10.1039/c4ra13230k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thein vitroanti-cervical cancer potency of tested polyphenol extracts is exhibited in the following order: green tea > coffee > cocoa, with only green tea showing both pro-oxidative and anti-proliferative action.
Collapse
Affiliation(s)
- Maja Krstic
- University of Belgrade – Faculty of Chemistry
- Center of Excellence for Molecular Food Sciences
- Department of Biochemistry
- 11000 Belgrade
- Serbia
| | - Marija Stojadinovic
- University of Belgrade – Faculty of Chemistry
- Center of Excellence for Molecular Food Sciences
- Department of Biochemistry
- 11000 Belgrade
- Serbia
| | - Katarina Smiljanic
- University of Belgrade – Faculty of Chemistry
- Center of Excellence for Molecular Food Sciences
- Department of Biochemistry
- 11000 Belgrade
- Serbia
| | - Dragana Stanic-Vucinic
- University of Belgrade – Faculty of Chemistry
- Center of Excellence for Molecular Food Sciences
- Department of Biochemistry
- 11000 Belgrade
- Serbia
| | - Tanja Cirkovic Velickovic
- University of Belgrade – Faculty of Chemistry
- Center of Excellence for Molecular Food Sciences
- Department of Biochemistry
- 11000 Belgrade
- Serbia
| |
Collapse
|
40
|
Chen D, Zhou Y, Lyons KE, Pahwa R, Reddy MB. Green Tea Consumption Reduces Oxidative Stress in Parkinson’s Disease Patients. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jbbs.2015.56020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Garcia FAR, Cornelison T, Nuño T, Greenspan DL, Byron JW, Hsu CH, Alberts DS, Chow HHS. Results of a phase II randomized, double-blind, placebo-controlled trial of Polyphenon E in women with persistent high-risk HPV infection and low-grade cervical intraepithelial neoplasia. Gynecol Oncol 2014; 132:377-82. [PMID: 24388920 PMCID: PMC3955221 DOI: 10.1016/j.ygyno.2013.12.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/22/2013] [Accepted: 12/24/2013] [Indexed: 11/30/2022]
Abstract
OBJECTIVE In vitro data and pilot data suggest that green tea catechins may possess chemopreventive activity for cervical cancer and precursor lesions. We conducted a randomized, double-blind, placebo-controlled trial of Polyphenon E (decaffeinated and enriched green tea catechin extract) in women with persistent human papillomavirus (HPV) infection and low-grade cervical intraepithelial neoplasia (CIN1) to evaluate the potential of Polyphenon E for cervical cancer prevention. METHODS Ninety-eight eligible women were randomized to receive either Polyphenon E (containing 800 mg epigallocatechin gallate) or placebo once daily for 4 months. The primary study outcome was oncogenic HPV clearance and clearance of CIN1. RESULTS Polyphenon E was shown to be acceptable, safe and well tolerated. There was no difference in the response rate by treatment allocation. Complete response, defined as negative for high-risk HPV and normal histopathology, was noted in 7 (17.1%) and 6 (14.6%) women in the Polyphenon E and placebo arms, respectively. Progression, defined as persistent oncogenic HPV with histopathologic evidence of progression, was more common in the Polyphenon E group than in the placebo group [6 (14.6%) vs. 3 (7.7%)]. CONCLUSION Based on the largest randomized placebo-controlled trial of a green tea extract for HPV related cervical disease, we conclude that 4 months of Polyphenon E intervention did not promote the clearance of persistent high-risk HPV and related CIN1. Further studies may be necessary to better delineate the risk factors for persistent HPV infection and biology of the disease to facilitate the evaluation of chemopreventive strategies.
Collapse
Affiliation(s)
- Francisco A R Garcia
- Center of Excellence in Women's Health, The University of Arizona, Tucson, AZ 85724, United States; University of Arizona Cancer Center, Tucson, AZ 85724, United States
| | - Terri Cornelison
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD 20892, United States
| | - Tomas Nuño
- Center of Excellence in Women's Health, The University of Arizona, Tucson, AZ 85724, United States; University of Arizona Cancer Center, Tucson, AZ 85724, United States.
| | | | - John W Byron
- The Southern Pines Women's Health Center, Southern Pines, NC 28388, United States
| | - Chiu-Hsieh Hsu
- University of Arizona Cancer Center, Tucson, AZ 85724, United States
| | - David S Alberts
- University of Arizona Cancer Center, Tucson, AZ 85724, United States
| | - H-H Sherry Chow
- University of Arizona Cancer Center, Tucson, AZ 85724, United States
| |
Collapse
|
42
|
Jia Y, Hu T, Hang CY, Yang R, Li X, Chen ZL, Mei YD, Zhang QH, Huang KC, Xiang QY, Pan XY, Yan YT, Wang XL, Wang SS, Hang Z, Tang FX, Liu D, Zhou J, Xi L, Wang H, Lu YP, Ma D, Wang SX, Li S. Case-control study of diet in patients with cervical cancer or precancerosis in Wufeng, a high incidence region in China. Asian Pac J Cancer Prev 2013; 13:5299-302. [PMID: 23244152 DOI: 10.7314/apjcp.2012.13.10.5299] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To investigate the diet of patients with cervical cancer and precancerosis in the Wufeng area, a high- incidence region in China. METHODS In the case group, 104 patients diagnosed with cervical cancer or cervical intraepithelial neoplasias (CINII/III) were recruited from the Wufeng area. Nine hundred thirty-six healthy women were selected from the same area as the matched controls. A questionnaire, which included questions about general lifestyle conditions, smoking and alcohol status, source of drinking water, green tea intake, and diet in the past year, was presented to all participants. RESULTS Green tea intake (P=0.022, OR=0.551, 95% CI=0.330-0.919) and vegetable intake (P=0.035, OR=0.896, 95% CI=0.809-0.993) were identified as protective factors against cervical cancer or CINII/III. There was no indication of any associations of other lifestyle factors (smoking status, alcohol status, source of drinking water) or diet (intake of fruit, meat/egg/milk, soybean food, onion/garlic, staple food and pickled food) with cervical cancer. CONCLUSIONS The results suggest that eating more fresh vegetables and drinking more green tea may help to reduce the risk of cervical cancer or CINII/III in people of the Wufeng area.
Collapse
Affiliation(s)
- Yao Jia
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ponte MF, Targino TSES, Mota MADL, Landim JSP, Ribeiro TR, Soares FP, Pereira MRP, Silva SLD, Silva SFRD. Growth inhibition of Walker carcinosarcoma 256 with alcoholic extract of green tea leaves (Camellia sinensis). Acta Cir Bras 2012; 27:634-8. [DOI: 10.1590/s0102-86502012000900008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/11/2012] [Indexed: 11/22/2022] Open
Abstract
PURPOSE: To evaluate the antitumor activity of alcoholic extracts of green tea (Camella sinensis). METHODS: Four groups of six Wistar rats were inoculated intramuscularly with 10(6) Walker tumor cells/mL. During 10 days, the animals received by gavage either 0.9% saline solution (Group I; negative control), solution containing 20 mg/Kg of tamoxifen (Group II; positive control), solution containing 0.07 g/Kg alcoholic extract of C. sinensis (Group III), or solution containing 0.14 g/Kg alcoholic extract of C. sinensis (Group IV). Following euthanasia on the tenth day, the tumor, liver, kidneys and spleen were excised and weighed, and tumor volume and tumor growth inhibition were quantified. RESULTS: The average weight of the animals was greater in Group IV than in Group II (p=0.0107). Tumor weight was smaller in Group IV than in Group I (p=0.0062), but did not differ from Group II. Tumor volume was smaller in Groups II and IV than in Group I (p=0.0131). Tumor growth inhibition was observed in Groups II (44.67% ± 32.47), III (16.83% ± 53.02) and IV (66.4% ± 25.82) (p>0.05). The groups did not differ with regard to the weight of the excised organs. CONCLUSION: Alcoholic extracts of green tea have antitumor activity.
Collapse
|
44
|
Di Domenico F, Foppoli C, Coccia R, Perluigi M. Antioxidants in cervical cancer: Chemopreventive and chemotherapeutic effects of polyphenols. Biochim Biophys Acta Mol Basis Dis 2012; 1822:737-47. [DOI: 10.1016/j.bbadis.2011.10.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 10/05/2011] [Accepted: 10/06/2011] [Indexed: 01/09/2023]
|
45
|
Abstract
Telomeres are stretches of repeated DNA sequences located at the ends of chromosomes that are necessary to prevent loss of gene-coding DNA regions during replication. Telomerase – the enzyme responsible for immortalising cancer cells through the addition of telomeric repeats – is active in ~90% of human cancers. Telomerase activity is inhibited by various phytochemicals such as isoprenoids, genistein, curcumin, epigallocatechin-3-gallate, resveratrol and others. Human TERT (telomerase reverse transcriptase – the rate-limiting component of telomerase), heat shock protein 90, Akt, p70 S6 kinase (S6K) and mammalian target of rapamycin (mTOR) form a physical and functional complex with one another. The inclusion of Akt, mTOR and S6K in the TERT complex is compelling evidence to support mTOR-mediated control of telomerase activity. This review will define the role of mTOR, the master regulator of protein translation, in telomerase regulation and provide additional insights into the numerous ways in which telomerase activity is hindered by phytochemicals.
Collapse
|
46
|
Zhang Z, Knobloch TJ, Seamon LG, Stoner GD, Cohn DE, Paskett ED, Fowler JM, Weghorst CM. A black raspberry extract inhibits proliferation and regulates apoptosis in cervical cancer cells. Gynecol Oncol 2011; 123:401-6. [PMID: 21831414 PMCID: PMC3919135 DOI: 10.1016/j.ygyno.2011.07.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 07/13/2011] [Accepted: 07/15/2011] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Cervical cancer is the second most common female cancer worldwide, and it remains a challenge to manage preinvasive and invasive lesions. Food-based cancer prevention entities, such as black raspberries and their derivatives, have demonstrated a marked ability to inhibit preclinical models of epithelial cancer cell growth and tumor formation. Here, we extend the role of black raspberry-mediated chemoprevention to that of cervical carcinogenesis. METHODS Three human cervical cancer cell lines, HeLa (HPV16-/HPV18+, adenocarcinoma), SiHa (HPV16+/HPV18-, squamous cell carcinoma) and C-33A (HPV16-/HPV18-, squamous cell carcinoma), were treated with a lyophilized black raspberry ethanol extract (RO-ET) at 25, 50, 100 or 200μg/ml for 1, 3 and 5days, respectively. Cell proliferation was measured by WST1 (tetrazolium salt cleavage) assays. Flow cytometry (propidium iodide and Annexin V staining) and fluorescence microscopy analysis were used to measure apoptotic cell changes. RESULTS We found that non-toxic levels of RO-ET significantly inhibited the growth of human cervical cancer cells, in a dose-dependent and time-dependent manner to a maximum of 54%, 52% and 67%, respectively (p<0.05). Furthermore, cell growth inhibition was persistent following short-term withdrawal of RO-ET from the culture medium. Flow cytometry and fluorescence microscopy demonstrated RO-ET-induced apoptosis in all cell lines. CONCLUSION Black raspberries and their bioactive components represent promising candidates for future phytochemical-based mechanistic pathway-targeted cancer prevention strategies.
Collapse
Affiliation(s)
- Zhaoxia Zhang
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Thomas J. Knobloch
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
| | - Leigh G. Seamon
- Department of Obstetrics and Gynecology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Gary D. Stoner
- Division of Hematology & Oncology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - David E. Cohn
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
- Department of Obstetrics and Gynecology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Electra D. Paskett
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
- Division of Epidemiology, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Jeffrey M. Fowler
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
- Department of Obstetrics and Gynecology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Christopher M. Weghorst
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
47
|
Butler LM, Wu AH. Green and black tea in relation to gynecologic cancers. Mol Nutr Food Res 2011; 55:931-40. [PMID: 21595018 DOI: 10.1002/mnfr.201100058] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/31/2011] [Accepted: 04/06/2011] [Indexed: 12/13/2022]
Abstract
SCOPE Observational studies have evaluated the relationship between green tea intake and cancers of the ovary and endometrium, but we are not aware of the published studies on green tea intake and risk of human papillomavirus (HPV)-related cancers of the cervix, vagina, or vulva. METHODS AND RESULTS A critical review of the published literature on tea intake and risk of ovarian and endometrial cancers was conducted. In meta-analyses, we report inverse associations for green tea intake and risk of ovarian cancer (odds ratio [OR]=0.66; 95% confidence interval [CI]: 0.54, 0.80), and for green tea and risk of endometrial cancer (OR=0.78, 95% CI: 0.62, 0.98). There was no association for black tea and ovarian cancer risk (OR=0.94, 95% CI: 0.87, 1.02) and a positive association with endometrial cancer risk (OR=1.20, 95% CI: 1.05, 1.38). We summarized the experimental evidence supporting the antiviral and immunomodulatory activities of green tea catechins, and results from randomized clinical trials that demonstrated green tea catechin efficacy on treatment of cervical lesions and external genital warts. CONCLUSION Observational data support a protective role of green tea on risk of ovarian and endometrial cancers. Observational data are needed to evaluate whether green tea reduces risk of human papillomavirus-related cancers.
Collapse
Affiliation(s)
- Lesley M Butler
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1681, USA.
| | | |
Collapse
|
48
|
Pohanka M, Sobotka J, Stetina R. Sulfur mustard induced oxidative stress and its alteration by epigallocatechin gallate. Toxicol Lett 2010; 201:105-9. [PMID: 21172412 DOI: 10.1016/j.toxlet.2010.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 12/05/2010] [Accepted: 12/13/2010] [Indexed: 12/20/2022]
Abstract
Sulfur mustard (bis(2-chloroethyl)sulfide; CAS: 505-60-2; abbreviated as HD) is a chemical warfare agent with not well understood mechanism of toxic effect. Deprivation of energy in cells and arising of oxidative stress appears during the exposure. Our experiment is based on investigation of 10mg or 20mg epigallocatechin gallate (EGCG) dose prophylactic effect (1h before HD) in rats exposed to either 20mg or 80 mg of HD. Blood mass, plasma and liver were sampled. Ferric reducing antioxidant power (FRAP), reduced glutathione, thiobarbuturic acid reactive substances (TBARSs), glutathione reductase, glutathione S-transferase and caspase 3 were assessed. Animals were sacrificed one day after exposure. We found significant deprivation of low molecular weight antioxidants due to EGCG but not due to HD. However, HD depleted reduced glutathione. EGCG has no effect to influence TBARS level. EGCG and HD up-regulated glutathione reductase and EGCG down regulated glutathione S-transferase in liver tissue. Regarding caspase, EGCG had anti apoptotic potency. We discuss potency to use EGCG to ameliorate redox balance after HD exposure. The data also appoints at difficulty in antioxidant therapy as prophylaxis to the oxidative stress related toxins exposure and ambivalent modulation of oxidative stress.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 50001 Hradec Kralove, Czech Republic.
| | | | | |
Collapse
|
49
|
Ruan HL, Xu FH, Liu WS, Feng QS, Chen LZ, Zeng YX, Jia WH. Alcohol and tea consumption in relation to the risk of nasopharyngeal carcinoma in Guangdong, China. ACTA ACUST UNITED AC 2010; 4:448-56. [DOI: 10.1007/s11684-010-0280-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 11/03/2010] [Indexed: 01/05/2023]
|