1
|
Andreani GA, Mahmood S, Kua KL, Patel MS, Rideout TC. Influence of maternal α-lipoic acid supplementation in Sprague Dawley rats on maternal and fetal metabolic health in pregnancies complicated by obesity. J Nutr Biochem 2024; 134:109731. [PMID: 39147245 DOI: 10.1016/j.jnutbio.2024.109731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/19/2024] [Accepted: 08/04/2024] [Indexed: 08/17/2024]
Abstract
The objective of this study was to investigate the influence of α-lipoic acid (LA; R enantiomer) supplementation on maternal and fetal metabolic health in pregnancies complicated by maternal obesity. Forty female Sprague-Dawley rats were randomized to one of 4 treatment groups (n=10/group) throughout prepregnancy (3 weeks) and gestation (20 days): (1) a low calorie control (CON); (2) a high calorie obesity-inducing diet (HC); (3) the HC diet with 0.25% LA (HC+LA) or; (4) the HC diet pair-fed to match the caloric intake of the HC+LA group (HC+PF). On gestation day 20, pregnant rats were placed under anesthesia for collection of maternal/fetal blood and tissues. Compared with the HC group, LA-supplemented mothers demonstrated lower maternal prepregnancy and gestational weight gain (GWG), improved glycemic control (lower homeostatic model assessment for insulin resistance), and higher cholesterol concentrations in serum [high-density lipoprotein cholesterol (HDL-C) and low-and very-low density lipoprotein cholesterol (LDL/VLDL) fractions] and liver. Male and female fetuses from LA-supplemented mothers exhibited lower body weight, improved insulin sensitivity, and evidence of altered lipid metabolism including lower serum HDL-C, lower serum triglyceride (TG), and increased hepatic TG accumulation. Although maternal LA supplementation showed some benefit for both mothers and fetuses with respect to obesity and glycemic control, concern about the potential longer-term implications of liver cholesterol (mothers) and TG accumulation (fetuses) needs further investigation.
Collapse
Affiliation(s)
- Gabriella A Andreani
- Departments of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214, USA
| | - Saleh Mahmood
- Departments of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214, USA
| | - Kok Lim Kua
- Department of Pediatrics, Center for Diabetes and Metabolic Disease, and Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mulchand S Patel
- Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Todd C Rideout
- Departments of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
2
|
Lin CH, Chin Y, Zhou M, Sobol RW, Hung MC, Tan M. Protein lipoylation: mitochondria, cuproptosis, and beyond. Trends Biochem Sci 2024; 49:729-744. [PMID: 38714376 DOI: 10.1016/j.tibs.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/09/2024]
Abstract
Protein lipoylation, a crucial post-translational modification (PTM), plays a pivotal role in mitochondrial function and emerges as a key player in cell death through cuproptosis. This novel copper-driven cell death pathway is activated by excessive copper ions binding to lipoylated mitochondrial proteins, disrupting energy production and causing lethal protein aggregation and cell death. The intricate relationship among protein lipoylation, cellular energy metabolism, and cuproptosis offers a promising avenue for regulating essential cellular functions. This review focuses on the mechanisms of lipoylation and its significant impact on cell metabolism and cuproptosis, emphasizing the key genes involved and their implications for human diseases. It offers valuable insights into targeting dysregulated cellular metabolism for therapeutic purposes.
Collapse
Affiliation(s)
- Cheng-Han Lin
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Yeh Chin
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Ming Zhou
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Robert W Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School and Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| | - Mien-Chie Hung
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan.
| | - Ming Tan
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
3
|
Abu-Zaid A, Baradwan S, Bukhari IA, Alyousef A, Abuzaid M, Saleh SAK, Adly HM, Alomar O, Al-Badawi IA. The effect of alpha-lipoic acid supplementation on anthropometric, glycemic, lipid, oxidative stress, and hormonal parameters in individuals with polycystic ovary syndrome: a systematic review and meta-analysis of randomized clinical trials. Obstet Gynecol Sci 2024; 67:17-29. [PMID: 38044616 DOI: 10.5468/ogs.23206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/26/2023] [Indexed: 12/05/2023] Open
Abstract
This systematic review and meta-analysis aimed to examine the effect of the antioxidant alpha-lipoic acid (ALA) on various cardiometabolic risk factors and hormonal parameters in patients with polycystic ovary syndrome (PCOS). We searched PubMed, EMBASE, SCOPUS, Cochrane Library, and Web of Science databases without language restrictions until May 2023 to find randomized controlled trials (RCTs) that assessed the impact of ALA supplementation on anthropometric, glycemic, lipid, oxidative stress, and hormonal parameters in women with PCOS. Outcomes were summarized using the standardized mean difference (SMD) and 95% confidence interval (CI) in a random-effects model. An I2 statistic of >60% established significant between-study heterogeneity. The overall certainty of the evidence for each outcome was determined using the grading of recommendations, assessment, development, and evaluations system. Seven RCTs met the inclusion criteria. The ALA group had significant reductions in fasting blood sugar (fasting blood sugar (FBS), n=7 RCTs, SMD, -0.60; 95% CI, -1.10 to -0.10; I2=63.54%, moderate certainty of evidence) and homeostatic model assessment for insulin resistance (homeostatic model assessment of insulin resistance (HOMA-IR), n=4 RCTs, SMD, -2.03; 95% CI, -3.85 to -0.20; I2=96.32%, low certainty of evidence) compared with the control group. However, significant differences were observed between the groups in body mass index, insulin, estrogen, follicle-stimulating hormone, luteinizing hormone, testosterone, low-density lipoprotein, highdensity lipoprotein, triglyceride, total cholesterol, malondialdehyde, or total antioxidant capacity profiles. ALA supplementation improves FBS and HOMA-IR levels in women with PCOS. ALA consumption is an effective complementary therapy for the management of women with PCOS.
Collapse
Affiliation(s)
- Ahmed Abu-Zaid
- Department of Obstetrics and Gynecology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Saeed Baradwan
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Ibtihal Abdulaziz Bukhari
- Department of Obstetrics and Gynecology, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdullah Alyousef
- Department of Obstetrics and Gynecology, King Abdullah bin Abdulaziz University Hospital, Riyadh, Saudi Arabia
| | - Mohammed Abuzaid
- Department of Obstetrics and Gynecology, Muhayil General Hospital, Muhayil, Saudi Arabia
| | - Saleh A K Saleh
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
- Oncology Diagnostic Unit, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Heba M Adly
- Department of Community Medicine and Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Osama Alomar
- Department of Obstetrics and Gynecology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ismail Abdulrahman Al-Badawi
- Department of Obstetrics and Gynecology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Vajdi M, Noshadi N, Hassanizadeh S, Bonyadian A, Seyedhosseini-Ghaheh H, Askari G. The effects of alpha lipoic acid (ALA) supplementation on blood pressure in adults: a GRADE-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Front Cardiovasc Med 2023; 10:1272837. [PMID: 37942070 PMCID: PMC10628535 DOI: 10.3389/fcvm.2023.1272837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction There have been various clinical studies on the effect of Alpha lipoic acid (ALA) supplementation on blood pressure (BP), but the findings from these are contradictory. Therefore, we performed a systematic review and dose-response meta-analysis to summarize the relation of ALA supplementation and systolic blood pressure (SBP) and diastolic blood pressure (DBP) in adults. Methods A comprehensive search was conducted in Medline (PubMed), Embase, Scopus, and ProQuest up to July 2023. Randomized controlled trials (RCTs) evaluating the effect of ALA on SBP and DBP were included. The pooled weighted mean difference (WMD) of included trials was estimated using a random-effects model. The dose-dependent effect was also assessed. Results and discussion A total of 11 RCTs with the participation of 674 patients were included. The result of the meta-analysis indicated that using ALA supplementation significantly reduced the SBP (WMD = -5.46 mmHg; 95% CI: -9.27, -1.65; p < 0.001) and DBP (WMD = -3.36 mmHg, 95% CI: -4.99, -1.74; p < 0.001). The ALA administrations significantly reduced SBP and DBP at the dosages of <800 mg/day, when administered for ≤12 weeks. The present meta-analysis revealed that ALA supplementation could exert favorable effects on SBP and DBP. Further well-designed studies with larger samples are needed to ascertain the long-term effects of ALA on BP. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=447658, identifier PROSPERO: CRD42023447658.
Collapse
Affiliation(s)
- Mahdi Vajdi
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nooshin Noshadi
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Hassanizadeh
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefeh Bonyadian
- Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Nutrition Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Gholamreza Askari
- Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Jermendy G, Rokszin G, Fábián I, Kempler P, Wittmann I. Morbidity and mortality of patients with diabetic neuropathy treated with pathogenetically oriented alpha-lipoic acid versus symptomatic pharmacotherapies - a nationwide database analysis from Hungary. Diabetes Res Clin Pract 2023:110734. [PMID: 37257759 DOI: 10.1016/j.diabres.2023.110734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/14/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
AIMS Diabetic neuropathy is associated with increased risk of morbidity and all-cause mortality. It is unclear whether these outcomes differ in patients with diabetic neuropathy treated with pathogenetically oriented vs symptomatic pharmacotherapies. METHODS We performed a retrospective (2009-2019) database analysis of patients treated with pathogenetically oriented alpha-lipoic acid (ALA) or symptomatic pharmacotherapies for diabetic neuropathy. We investigated clinical outcomes in propensity score matched patients in Hungary. Changes in hazard ratios and annualized event rates were assessed and sensitivity analyses performed. RESULTS Hazard ratios favored treatment with ALA vs symptomatic pharmacotherapies regarding acute myocardial infarction (HR 0.73, 95%CI: 0.60-0.89, p = 0.0016), stroke (HR 0.71, 95%CI: 0.62-0.82, p<0.0001), hospitalization for heart failure (HR 0.72, 95%CI: 0.66-0.78, p<0.0001), cancer events (HR 0.83, 95% CI: 0.76-0.92, p = 0.0002) and all-cause mortality (HR 0.55, 95% CI: 0.49-0.61, p<0.0001), but not for lower limb amputation (HR 1.05, 95%CI: 0.89-1.25, p = 0.5455). This association was supported by results of evaluating annual event rates and sensitivity analyses. CONCLUSIONS This retrospective database analysis revealed a lower occurrence of cardio- and cerebrovascular morbidity, cancer events and all-cause mortality in patients with diabetic neuropathy treated with pathogenetically oriented ALA vs symptomatic pharmacotherapies. This hypothesis-generating result requires further investigations.
Collapse
Affiliation(s)
- György Jermendy
- Bajcsy-Zsilinszky Hospital, 3(rd) Department of Medicine, Maglódi út 89-91, 1106, Budapest, Hungary.
| | - György Rokszin
- RxTarget Ltd., Bacsó Nándor út 10, 5000 Szolnok, Hungary.
| | - Ibolya Fábián
- RxTarget Ltd., Bacsó Nándor út 10, 5000 Szolnok, Hungary.
| | - Péter Kempler
- Semmelweis University, Faculty of Medicine, Department of Medicine and Oncology, Korányi Sándor út 2, 1083 Budapest, Hungary.
| | - István Wittmann
- University of Pécs, Medical School, 2(nd) Department of Medicine, Nephrology-Diabetes Center, Pacsirta út 1, 7624 Pécs, Hungary.
| |
Collapse
|
6
|
Das A, Pathak MP, Pathak K, Saikia R, Gogoi U. Herbal medicine for the treatment of obesity-associated asthma: a comprehensive review. Front Pharmacol 2023; 14:1186060. [PMID: 37251328 PMCID: PMC10213975 DOI: 10.3389/fphar.2023.1186060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Obesity is fast growing as a global pandemic and is associated with numerous comorbidities like cardiovascular disease, hypertension, diabetes, gastroesophageal reflux disease, sleep disorders, nephropathy, neuropathy, as well as asthma. Studies stated that obese asthmatic subjects suffer from an increased risk of asthma, and encounter severe symptoms due to a number of pathophysiology. It is very vital to understand the copious relationship between obesity and asthma, however, a clear and pinpoint pathogenesis underlying the association between obesity and asthma is scarce. There is a plethora of obesity-asthma etiologies reported viz., increased circulating pro-inflammatory adipokines like leptin, resistin, and decreased anti-inflammatory adipokines like adiponectin, depletion of ROS controller Nrf2/HO-1 axis, nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) associated macrophage polarization, hypertrophy of WAT, activation of Notch signaling pathway, and dysregulated melanocortin pathway reported, however, there is a very limited number of reports that interrelates these pathophysiologies. Due to the underlying complex pathophysiologies exaggerated by obese conditions, obese asthmatics respond poorly to anti-asthmatic drugs. The poor response towards anti-asthmatic drugs may be due to the anti-asthmatics approach only that ignores the anti-obesity target. So, aiming only at the conventional anti-asthmatic targets in obese-asthmatics may prove to be futile until and unless treatment is directed towards ameliorating obesity pathogenesis for a holistic approach towards amelioration of obesity-associated asthma. Herbal medicines for obesity as well as obesity-associated comorbidities are fast becoming safer and more effective alternatives to conventional drugs due to their multitargeted approach with fewer adverse effects. Although, herbal medicines are widely used for obesity-associated comorbidities, however, a limited number of herbal medicines have been scientifically validated and reported against obesity-associated asthma. Notable among them are quercetin, curcumin, geraniol, resveratrol, β-Caryophyllene, celastrol, tomatidine to name a few. In view of this, there is a dire need for a comprehensive review that may summarize the role of bioactive phytoconstituents from different sources like plants, marine as well as essential oils in terms of their therapeutic mechanisms. So, this review aims to critically discuss the therapeutic role of herbal medicine in the form of bioactive phytoconstituents against obesity-associated asthma available in the scientific literature to date.
Collapse
Affiliation(s)
- Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Manash Pratim Pathak
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, India
| | - Kalyani Pathak
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Riya Saikia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Urvashee Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| |
Collapse
|
7
|
A Multi-Ingredient Supplement Protects against Obesity and Infertility in Western Diet-Fed Mice. Nutrients 2023; 15:nu15030611. [PMID: 36771318 PMCID: PMC9921271 DOI: 10.3390/nu15030611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
The Western diet (WD) predisposes to bodyweight gain and obesity and is linked to mitochondrial dysfunction, oxidative damage, inflammation, and multisystem disease, even affecting the reproductive organs, fertility, and pregnancy outcomes. In this study, we investigated the effects of multi-ingredient supplementation (MIS) with antioxidants, phytonutrients, and vitamins ('Fertility Enhancer'; FE) on white adipose tissue (WAT) expansion, nonalcoholic fatty liver disease (NAFLD), and infertility in WD-fed C57BL/6J mice. Five-month-old male (M) and female (F) mice were fed a low-fat diet (LF) or a high fat/sucrose WD (HF) for six weeks, followed by six weeks of LF (3.64 kcal/g), HF (4.56 kcal/g), or HF combined with FE (4.50 kcal/g). A sub-set of animals were sacrificed at 12 weeks, while the remainder were harem-mated in a 1:2 male-to-female ratio, and singly housed during the gestational period. Two-way, factorial ANOVA analysis revealed a main effect of diet on bodyweight (BW), total body fat, % body fat, white adipose tissue mass, and liver lipid content (all p < 0.001), driven by the anti-obesogenic effects of the 'Fertility Enhancer'. Similarly, a main effect of diet was found on PGC1-α mRNA levels (p < 0.05) and mitochondrial protein content (p < 0.001) in perigonadal WAT, with PGC1-α induction and higher complex II and complex III expression in FE vs. HF animals. Copulatory plug counts were higher in FE vs. HE couples (30% vs. 6%), resulting in more litters (4 vs. 0) and higher copulatory success (67% vs. 0%). Although the trends of all histology outcomes were suggestive of a benefit from the FE diet, only the number of atretic follicles and testicular mass were significant. Ovarian IL-1β mRNA induction was significantly attenuated in the FE group (p < 0.05 vs. HF) with CASP1 attenuation trending lower (p = 0.09 vs. HF), which is indicative of anti-inflammatory benefits of the 'Fertility Enhancer.' We conclude that supplementation with specific phytonutrients, antioxidants, and vitamins may have utility as an adjunctive therapy for weight management, fatty liver disease, and infertility in overweight and obese couples.
Collapse
|
8
|
N'guessan BB, Twumasi-Ankrah JS, Amponsah SK, Adams I, Poakwah AKK, Brown C, Adinortey MB, Sarkodie JA, Adi-Dako O, Asiedu-Gyekye IJ, Appiah-Opong R. Effect of Metaswitch® dietary supplement on anthropometric parameters, serum lipids, glucose level, oxidative stress and in vivo antioxidant properties in high fat diet-induced overweight Sprague Dawley rats. Biomed Pharmacother 2022; 149:112892. [PMID: 35358796 DOI: 10.1016/j.biopha.2022.112892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Obesity and overweight are metabolic disorders associated with oxidative stress, and risk factors for many chronic diseases. We sought to investigate the effects of Metaswitch dietary supplement on weight gain and associated acute metabolic alterations in a high-fat diet-induced overweight rat model. METHODS Female Sprague Dawley (SD) rats were put into 6 groups. Control groups were fed normal (NCD) or high-fat diet (HFD). Treatment groups on HFD receieved 3 different daily doses of Metaswitch for 3 weeks. Another group on HFD received Slimrite® (phenylpropanolamine), a standard drug. Rats on HFD also received cyproheptadine to stimulate appetite. Food consumption and anthropometric parameters were determined weekly. Serum lipids, glucose level, hepatic lipid peroxidation, and antioxidant activity were used to assess overweight in rats. RESULTS Food intake remained relatively constant among groups. Rats on HFD had significantly increased body weight compared to rats fed NCD. Metaswitch significantly prevented weight gain; this effect was greater or similar to rats administered Slimrite, but was not dose-dependant. No significant changes occurred in the levels of serum lipids and glucose among the groups. However, serum triglyceride (TG) was significantly increased. The TG/HDL-C ratio revealed significant metabolic alterations which was prevented by Metaswitch. Catalase activity was significantly decreased in the HFD untreated group but was restored in Metaswitch-treated groups. CONCLUSIONS A 3-week HFD regimen with cyproheptadine supplementation in female SD rats resulted in a significant increase in body weight and acute metabolic alterations. The aforementioned changes were found to have been prevented with the administration of Metaswitch.
Collapse
Affiliation(s)
- Benoit Banga N'guessan
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, PO Box LG 43 Legon, Accra, Ghana.
| | - Jessica Sarpongmaa Twumasi-Ankrah
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, PO Box LG 43 Legon, Accra, Ghana
| | - Seth Kwabena Amponsah
- Department of Medical Pharmacology, Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Ismaila Adams
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, PO Box LG 43 Legon, Accra, Ghana
| | - Albert Kyei-Kankam Poakwah
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, PO Box LG 43 Legon, Accra, Ghana; Department of Nutrition and Dietetics, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Ghana
| | - Charles Brown
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Ghana
| | | | - Joseph Adusei Sarkodie
- Department of Pharmacognosy and Herbal Medicine, School of Pharmacy, College of Health Sciences, University of Ghana, PO Box LG 43 Legon, Accra, Ghana
| | - Ofosua Adi-Dako
- Department of Pharmaceutics and Microbiology, School of Pharmacy, College of Health Sciences, University of Ghana, Ghana
| | - Isaac Julius Asiedu-Gyekye
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, PO Box LG 43 Legon, Accra, Ghana
| | - Regina Appiah-Opong
- Department of Clinical Pathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Ghana
| |
Collapse
|
9
|
Najafi N, Mehri S, Ghasemzadeh Rahbardar M, Hosseinzadeh H. Effects of alpha lipoic acid on metabolic syndrome: A comprehensive review. Phytother Res 2022; 36:2300-2323. [PMID: 35234312 DOI: 10.1002/ptr.7406] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 12/13/2022]
Abstract
Metabolic syndrome (MetS) is a multifactorial disease with medical conditions such as hypertension, diabetes, obesity, dyslipidemia, and insulin resistance. Alpha-lipoic acid (α-LA) possesses various pharmacological effects, including antidiabetic, antiobesity, hypotensive, and hypolipidemia actions. It exhibits reactive oxygen species scavenger properties against oxidation and age-related inflammation and refines MetS components. Also, α-LA activates the 5' adenosine monophosphate-activated protein kinase and inhibits the NFκb. It can decrease cholesterol biosynthesis, fatty acid β-oxidation, and vascular stiffness. α-LA decreases lipogenesis, cholesterol biosynthesis, low-density lipoprotein and very low-density lipoprotein levels, and atherosclerosis. Moreover, α-LA increases insulin secretion, glucose transport, and insulin sensitivity. These changes occur via PI3K/Akt activation. On the other hand, α-LA treats central obesity by increasing adiponectin levels and mitochondrial biogenesis and can reduce food intake mainly by SIRT1 stimulation. In this review, the most relevant articles have been discussed to determine the effects of α-LA on different components of MetS with a special focus on different molecular mechanisms behind these effects. This review exhibits the potential properties of α-LA in managing MetS; however, high-quality studies are needed to confirm the clinical efficacy of α-LA.
Collapse
Affiliation(s)
- Nahid Najafi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Mahmoudinezhad M, Farhangi MA. Alpha lipoic acid supplementation affects serum lipids in a dose and duration-dependent manner in different health status. INT J VITAM NUTR RES 2021. [PMID: 34605276 DOI: 10.1024/0300-9831/a000732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background: Many studies have investigated the effect of ALA supplementation on lipid profile, and different results have been obtained from these studies. The current systematic review and dose-response meta-analysis was conducted to achive a strong conclusion about the effect of ALA supplementation on lipid profile including total cholesterol (TC), low- and high-density lipoprotein cholesterol (LDL, HDL) and triglyceride (TG). Methods: A systematic search was performed in PubMed, SCOPUS, ProQuest and Embase for randomized placebo-controlled human trials that examined the effect of ALA supplementation on lipid profile up to November 2020. The dose and duration of ALA supplementation for included studies were ranged between 300-1200 mg/d and 2-16 weeks respectively. Weighted mean differences (WMD) and 95% confidence intervals (CIs) were used to evaluate the effect size. Cochran's Q and I2 tests were also used to assess between-study's heterogeneity. In addition, subgroup analysis was performed to investigate potential sources of heterogeneity. Dose-response relationship was done using fractional polynomial modeling. Results: Among all eligible studies, 12 studies with a total number of 548 participants were selected. ALA caused a significant reduction on TC (WMD): -10.78 mg/dl, 95% CI: -20.81, -0.74, P=0.002), LDL (WMD: -10.88 mg/dl, 95% CI: -19.52, -2.24, P=0.014) and TG (WMD: -31.02 mg/dl, 95% CI: -49.63, -12.42, P<0.001). There was also a non-significant increaes in HDL concentrations. In addition, dose-response analysis showed a positive association between LDL (Pnon-linearity=0.026), TG (Pnon-linearity<0.001) and duration of intervention in a non-linear model. Conclusion: The present meta-analysis revealed the beneficial effects of ALA supplementation on TC, LDL and TG levels. Moreover, the beneficial effects of ALA supplementation on LDL and TG levels was duration-dependent.
Collapse
|
11
|
Chang M, Xu G, Xiong C, Yang X, Yan S, Tao Y, Li H, Li Y, Yao S, Zhao Y. Alpha-lipoic acid attenuates silica-induced pulmonary fibrosis by improving mitochondrial function via AMPK/PGC1α pathway activation in C57BL/6J mice. Toxicol Lett 2021; 350:121-132. [PMID: 34252510 DOI: 10.1016/j.toxlet.2021.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/22/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022]
Abstract
Silicosis is characterized by pulmonary interstitial fibrosis that arises as a result of chronic exposure to silica. The few available treatments only delay its progression. As α-lipoic acid (ALA) has been shown to have various beneficial effects, including mitoprotective, antioxidant, and anti-inflammatory effects, we hypothesized that it may exhibit therapeutic effects in pulmonary fibrosis. Therefore, in the present study, we used a murine model of silicosis to investigate whether supplementation with exogenous ALA could attenuate silica-induced pulmonary fibrosis by improving mitochondrial function. ALA was administered to the model mice via continuous intragastric administration for 28 days, and then the antioxidant and mitoprotective effects of ALA were evaluated. The results showed that ALA decreased the production of reactive oxygen species, protected mitochondria from silica-induced dysfunction, and inhibited extracellular matrix deposition. ALA also decreased hyperglycemia and hyperlipidemia. Activation of the mitochondrial AMPK/PGC1α pathway might be responsible for these ALA-mediated anti-fibrotic effects. Exogenous ALA blocked oxidative stress by activating NRF2. Taken together, these findings demonstrate that exogenous ALA effectively prevents the progression of silicosis in a murine model, likely by stimulating mitochondrial biogenesis and endogenous antioxidant responses. Therefore, ALA can potentially delay the progression of silica-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Meiyu Chang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Guangcui Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Cheng Xiong
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Xuesi Yang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Sensen Yan
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Yingjun Tao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Haibin Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Yuchun Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Sanqiao Yao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Yingzheng Zhao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China.
| |
Collapse
|
12
|
Kravchenko LV, Aksenov IV, Nikitin NS, Guseva GV, Avrenyeva LI, Trusov NV, Balakina AS, Tutelyan VA. Lipoic Acid Exacerbates Oxidative Stress and Lipid Accumulation in the Liver of Wistar Rats Fed a Hypercaloric Choline-Deficient Diet. Nutrients 2021; 13:1999. [PMID: 34200615 PMCID: PMC8227681 DOI: 10.3390/nu13061999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 01/14/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently estimated as the most prevalent chronic liver disease in all age groups. An increasing body of evidence obtained in experimental and clinical data indicates that oxidative stress is the most important pathogenic factor in the development of NAFLD. The study aimed to investigate the impact of α-lipoic acid (LA), widely used as an antioxidant, on the effects of a hypercaloric choline-deficient diet. Male Wistar rats were divided into three groups: control diet (C); hypercaloric choline-deficient diet (HCCD), and hypercaloric choline-deficient diet with α-lipoic acid (HCCD+LA). Supplementation of HCCD with LA for eight weeks led to a decrease in visceral adipose tissue/body weight ratio, the activity of liver glutathione peroxidase and paraoxonase-1, plasma, and liver total antioxidant activity, as well as an increase in liver/body weight ratio, liver total lipid and triglyceride content, and liver transaminase activities compared to the HCCD group without LA. In conclusion, our study shows that α-lipoic acid detains obesity development but exacerbates the severity of diet-induced oxidative stress and lipid accumulation in the liver of male Wistar rats fed a hypercaloric choline-deficient diet.
Collapse
Affiliation(s)
- Lidia V. Kravchenko
- Federal Research Centre of Nutrition and Biotechnology, 2/14 Ustinsky Passage, 109240 Moscow, Russia; (L.V.K.); (N.S.N.); (G.V.G.); (L.I.A.); (N.V.T.); (A.S.B.); (V.A.T.)
| | - Ilya V. Aksenov
- Federal Research Centre of Nutrition and Biotechnology, 2/14 Ustinsky Passage, 109240 Moscow, Russia; (L.V.K.); (N.S.N.); (G.V.G.); (L.I.A.); (N.V.T.); (A.S.B.); (V.A.T.)
| | - Nikolay S. Nikitin
- Federal Research Centre of Nutrition and Biotechnology, 2/14 Ustinsky Passage, 109240 Moscow, Russia; (L.V.K.); (N.S.N.); (G.V.G.); (L.I.A.); (N.V.T.); (A.S.B.); (V.A.T.)
| | - Galina V. Guseva
- Federal Research Centre of Nutrition and Biotechnology, 2/14 Ustinsky Passage, 109240 Moscow, Russia; (L.V.K.); (N.S.N.); (G.V.G.); (L.I.A.); (N.V.T.); (A.S.B.); (V.A.T.)
| | - Ludmila I. Avrenyeva
- Federal Research Centre of Nutrition and Biotechnology, 2/14 Ustinsky Passage, 109240 Moscow, Russia; (L.V.K.); (N.S.N.); (G.V.G.); (L.I.A.); (N.V.T.); (A.S.B.); (V.A.T.)
| | - Nikita V. Trusov
- Federal Research Centre of Nutrition and Biotechnology, 2/14 Ustinsky Passage, 109240 Moscow, Russia; (L.V.K.); (N.S.N.); (G.V.G.); (L.I.A.); (N.V.T.); (A.S.B.); (V.A.T.)
| | - Anastasia S. Balakina
- Federal Research Centre of Nutrition and Biotechnology, 2/14 Ustinsky Passage, 109240 Moscow, Russia; (L.V.K.); (N.S.N.); (G.V.G.); (L.I.A.); (N.V.T.); (A.S.B.); (V.A.T.)
| | - Victor A. Tutelyan
- Federal Research Centre of Nutrition and Biotechnology, 2/14 Ustinsky Passage, 109240 Moscow, Russia; (L.V.K.); (N.S.N.); (G.V.G.); (L.I.A.); (N.V.T.); (A.S.B.); (V.A.T.)
- FSAEI HE I.M. Sechenov First MSMU MOH Russia (Sechenovskiy University), 8-2 Trubetskaya Street, 119991 Moscow, Russia
| |
Collapse
|
13
|
Maternal intake of alpha-lipoic acid prevents development of symptoms associated with a fructose-rich diet in the male offspring in Wistar rats. J Dev Orig Health Dis 2020; 12:758-767. [PMID: 33303040 DOI: 10.1017/s2040174420001178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The hypothesis was that maternal intake of the antioxidant alpha-lipoid acid (ALA), during the developmental period of the hypothalamic orexigenic neurons, causes a permanent beneficial effect in offspring metabolism. Pregnant Wistar rats were fed with standard diet (food) + ALA (0.4% wt/wt) from day 14 of gestation to day 20 of lactation (n = 4) or food (n = 4). At 3 months of age, male offspring born from ALA-fed rats or controls (CT) were randomly assigned to be fed with food + 10% fructose solution in drinking water (F) or food + tap water (C), resulting in four groups: ALAF, ALAC, CTF, and CTC (n = 5/group). Food intake and body weight (BW) were measured twice a week for 31 days. Metabolites' levels in blood, mRNA expressions of Npy, Agrp (hypothalamus), Fasn, Srebf1, Ppard, and Pparg (liver), and the antioxidant capacity of the liver were determined. Results significance was set at p < 0.05. Average BW gain, daily BW gain, and intraabdominal fat tissue at necropsy were higher in CTF group followed by CTC, ALAF, and ALAC groups. There were no differences between groups in Kcal intake per day. mRNA expressions of hypothalamic and hepatic genes and plasmatic levels of glucose and triglycerides were higher in CTF group followed by ALAF, CTC, and ALAC groups. Fructose intake affected the oxidative capacity of the liver, but this effect was not observed in the ALAF group. In conclusion, maternal ALA intake protected the adult offspring to develop metabolic symptoms associated with high fructose in the drinking water.
Collapse
|
14
|
Safety Evaluation of α-Lipoic Acid Supplementation: A Systematic Review and Meta-Analysis of Randomized Placebo-Controlled Clinical Studies. Antioxidants (Basel) 2020; 9:antiox9101011. [PMID: 33086555 PMCID: PMC7603186 DOI: 10.3390/antiox9101011] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/10/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
Alpha-lipoic acid (ALA) is a natural short-chain fatty acid that has attracted great attention in recent years as an antioxidant molecule. However, some concerns have been recently raised regarding its safety profile. To address the issue, we aimed to assess ALA safety profile through a systematic review of the literature and a meta-analysis of the available randomized placebo-controlled clinical studies. The literature search included EMBASE, PubMed Medline, SCOPUS, Google Scholar, and ISI Web of Science by Clarivate databases up to 15th August 2020. Data were pooled from 71 clinical studies, comprising 155 treatment arms, which included 4749 subjects with 2558 subjects treated with ALA and 2294 assigned to placebo. A meta-analysis of extracted data suggested that supplementation with ALA was not associated with an increased risk of any treatment-emergent adverse event (all p > 0.05). ALA supplementation was safe, even in subsets of studies categorized according to smoking habit, cardiovascular disease, presence of diabetes, pregnancy status, neurological disorders, rheumatic affections, severe renal impairment, and status of children/adolescents at baseline.
Collapse
|
15
|
Mahmoudi-Nezhad M, Vajdi M, Farhangi MA. An updated systematic review and dose-response meta-analysis of the effects of α-lipoic acid supplementation on glycemic markers in adults. Nutrition 2020; 82:111041. [PMID: 33199187 DOI: 10.1016/j.nut.2020.111041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/28/2020] [Accepted: 10/11/2020] [Indexed: 11/26/2022]
Abstract
This systematic review and dose-response meta-analysis was conducted to summarize data from available clinical trials on the effects of α-lipoic acid (ALA) supplementation on glycemic markers including glucose, hemoglobin A1c (HbA1c), insulin, homeostatic model assessment of insulin resistance (HOMA-IR), HOMA-β, and quantitative insulin check index in adults. A comprehensive literature search was conducted in the electronic databases of PubMed, Web of Science, ProQuest, Embase and SCOPUS from inception to February 2020. Among all of the eligible studies, 28 articles were selected. The weighted mean differences (WMD) and 95% confidence intervals (CI) were calculated to evaluate the pooled effect size. Between-study heterogeneity was evaluated using Cochran's Q test and I2. Subgroup analysis was done to evaluate the potential sources of heterogeneity. The dose-response relationship was evaluated using fractional polynomial modeling. Twenty eight eligible studies with a total sample size of 1,016 participants were included in the current meta-analysis. The findings of the meta-analysis showed that ALA supplementation significantly reduced insulin (WMD: -0.64; CI: -1.287 to 0.004, P = .04), HOMA-IR (WMD: -0.48; 95% CI: -0.79 to -0.16; P = .002). No change in glucose or HbA1C was reported. Moreover, the effect of ALA on insulin was duration-dependent (Pnon-linearity = 0.04). No evidence of departure from linearity was observed between dose and duration of the ALA supplementation on other markers. The subgrouping revealed that ALA dosage and duration of ALA supplementation, health status of participants, geographic locations and the studies' quality are possible sources of heterogeneity. In summary, ALA supplementation improves serum insulin and insulin resistance in a two-class and duration dependent non-linear analysis.
Collapse
Affiliation(s)
- Mahsa Mahmoudi-Nezhad
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Vajdi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|