1
|
Riester MR, Zullo AR, Joshi R, Daiello LA, Hayes KN, Ko D, Kim DH, Munshi M, Berry SD. Comparative safety and cardiovascular effectiveness of sodium-glucose cotransporter-2 inhibitors and glucagon-like peptide-1 receptor agonists in nursing homes. Diabetes Obes Metab 2024; 26:3403-3417. [PMID: 38779879 PMCID: PMC11233240 DOI: 10.1111/dom.15682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
AIM Studies examining the safety and effectiveness of sodium-glucose cotransporter-2 inhibitors (SGLT2is) versus glucagon-like peptide-1 receptor agonists (GLP-1RAs) among community-dwelling adults may not generalize to nursing home (NH) residents, who are typically older and more multimorbid. We compared the safety and cardiovascular effectiveness of SGLT2is and GLP-1RAs among US NH residents. MATERIALS AND METHODS Eligible individuals were aged ≥66 years with type 2 diabetes mellitus and initiated an SGLT2i or GLP-1RA in an NH between 2013 and 2018. Safety outcomes included fall-related injuries, hypoglycaemia, diabetic ketoacidosis (DKA), urinary tract infection or genital infection, and acute kidney injury in the year following treatment initiation. Cardiovascular effectiveness outcomes included death, major adverse cardiovascular events and hospitalization for heart failure. Per-protocol adjusted hazard ratios (HR) were calculated using stabilized inverse probability of treatment and censoring weighted cause-specific hazard regression models accounting for 127 covariates. RESULTS The study population included 7710 residents (31.08% SGLT2i, 68.92% GLP-1RA). Compared with GLP-1RA initiators, SGLT2i initiators had higher rates of DKA (HR 1.95, 95% confidence limits 1.27, 2.99) and death (HR 1.18, 95% confidence limits 1.02, 1.36). Rates of urinary tract infection or genital infection, acute kidney injury, major adverse cardiovascular events, and heart failure were also elevated, while rates of fall-related injuries and hypoglycaemia were reduced, but all estimates were imprecise and highly compatible with no difference. CONCLUSIONS SGLT2is do not have superior, and may have inferior, effectiveness compared with GLP-1RAs for cardiovascular and mortality outcomes in NH residents. Residents initiating SGLT2is should be monitored closely for DKA.
Collapse
Affiliation(s)
- Melissa R Riester
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, USA
- Center for Gerontology and Healthcare Research, Department of Health Services, Policy, and Practice, Brown University School of Public Health, Providence, Rhode Island, USA
| | - Andrew R Zullo
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, USA
- Center for Gerontology and Healthcare Research, Department of Health Services, Policy, and Practice, Brown University School of Public Health, Providence, Rhode Island, USA
- Center of Innovation in Long-Term Services and Supports, Providence Veterans Affairs Medical Center, Providence, Rhode Island, USA
| | - Richa Joshi
- Center for Gerontology and Healthcare Research, Department of Health Services, Policy, and Practice, Brown University School of Public Health, Providence, Rhode Island, USA
| | - Lori A Daiello
- Center for Gerontology and Healthcare Research, Department of Health Services, Policy, and Practice, Brown University School of Public Health, Providence, Rhode Island, USA
- Department of Neurology, Warren Alpert Medical School of Brown University, and Alzheimer's Disease and Memory Disorders Center at Rhode Island Hospital, Providence, Rhode Island, USA
| | - Kaleen N Hayes
- Center for Gerontology and Healthcare Research, Department of Health Services, Policy, and Practice, Brown University School of Public Health, Providence, Rhode Island, USA
- Graduate Department of Pharmaceutical Sciences, University of Toronto, Leslie Dan Faculty of Pharmacy, Toronto, Ontario, Canada
| | - Darae Ko
- Hinda and Arthur Marcus Institute for Aging Research and Department of Medicine, Hebrew SeniorLife, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Section of Cardiovascular Medicine, Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Dae Hyun Kim
- Hinda and Arthur Marcus Institute for Aging Research and Department of Medicine, Hebrew SeniorLife, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Medha Munshi
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Geriatric Diabetes Program, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Sarah D Berry
- Hinda and Arthur Marcus Institute for Aging Research and Department of Medicine, Hebrew SeniorLife, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Rahman A, Alqaisi S, Saith SE, Alzakhari R, Levy R. The Impact of Glucagon-Like Peptide-1 Receptor Agonist on the Cardiovascular Outcomes in Patients With Type 2 Diabetes Mellitus: A Meta-Analysis and Systematic Review. Cardiol Res 2023; 14:250-260. [PMID: 37559715 PMCID: PMC10409547 DOI: 10.14740/cr1523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
Background Since 2005, the cardioprotective effects of glucagon-like peptide 1 receptor agonists (GLP-1 RAs) have garnered attention. The cardioprotective effect could be an added benefit to the use of GLP-1 RA. This systematic review and meta-analysis aimed at summarizing observational studies that recruited type 2 diabetes individuals with fewer cardiovascular (CV) events before enrolling in the research. Methods Systematically, the databases were searched for observational studies reporting compound CV events and deaths in type 2 diabetics without having the risk of cardiovascular diseases (CVDs) compared to other glucose-lowering agents. A meta-analysis was carried out using random effects model to estimate the overall hazard ratio (HR) with a 95% confidence interval (CI). Five studies were found eligible for the systematic review including a total of 64,452 patients receiving either liraglutide (three studies) or exenatide (two studies). Results The pooled HR for major adverse cardiac event (MACE) and extended MACE was 0.72 (95% CI: 0.65 - 0.93, I2 = 68%) and 0.93 (95% CI: 0.89 - 0.98, I2 = 29%), respectively. The pooled HR for hospitalization due to heart failure (HHF) and occurrence of HF was 0.84 (95% CI: 0.77 - 0.91, I2 = 79%) and 0.83 (95% CI: 0.75 - 0.94, I2 = 95%), respectively. For stroke, GLP-1 RA was associated with a significant risk reduction of 0.86 (95% CI: 0.75 - 0.98, I2 = 81%). There was no significant myocardial infarction (MI) risk reduction with GLP-1 RA. As for all-cause mortality, the pooled HR for the occurrence of all-cause mortality was 0.82 (95% CI: 0.76 - 0.88, I2 = 0%). The pooled HR for the occurrence of CV death was 0.75 (95% CI: 0.65 - 0.85, I2 = 38%). GLP-1 RA therapy was associated with a significantly low risk of MACE, extended MACE, all-cause mortality, and CV mortality. Except for MACE, the heterogenicity among the studies was low. Conclusion We conclude that GLP-1 RA is associated with a low risk of CV events composites and mortality. The findings support the cardioprotective effect of GLP-1 RA.
Collapse
Affiliation(s)
- Ali Rahman
- Department of Internal Medicine, Memorial Healthcare System, Pembroke Pines, FL 33028, USA
| | - Sura Alqaisi
- Department of Internal Medicine, Memorial Healthcare System, Pembroke Pines, FL 33028, USA
| | - Sunil E. Saith
- Cardiovascular Fellowship Program, Cardiovascular Disease at SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Rana Alzakhari
- Cardiovascular Fellowship Program, University of Texas Medical Branch Cardiovascular Disease Program, Galveston, TX, USA
| | - Ralph Levy
- Department of Memorial Health Cardiology, Cardiovascular Disease at Memorial Healthcare System, Pembroke Pines, FL 33028, USA
| |
Collapse
|
3
|
Takeshita Y, Kita Y, Tanaka T, Goto H, Nakano Y, Teramura C, Enyama Y, Takamura T. Insulin-GLP-1 receptor agonist relay and GLP-1 receptor agonist first regimens in individuals with type 2 diabetes: a randomized, open-label trial study. J Diabetes Investig 2022; 13:965-974. [PMID: 35034428 PMCID: PMC9153847 DOI: 10.1111/jdi.13749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/26/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022] Open
Abstract
Aims/Introduction Glucagon‐like peptide‐1 receptor agonists (GLP‐1 RA) might be less effective in patients with severe hyperglycemia, because hyperglycemia downregulated the GLP‐1 receptor in an animal study. To examine this hypothesis clinically, we compared the glucose‐lowering effects of GLP‐1 receptor agonist liraglutide with and without prior glycemic control. Materials and Methods In an open‐label, parallel trial, participants with poorly controlled type 2 diabetes were recruited and randomized to receive once‐daily insulin therapy, degludec (Insulin–GLP‐1 RA relay group, mean 16.8 ± 11.4 IU/day), for 12 weeks and then liraglutide for 12 weeks or subcutaneous injections of GLP‐1 RA, liraglutide (GLP‐1 RA first group, 0.9 mg), for 24 weeks. The primary efficacy end‐points consisted of changes in the levels of fasting plasma glucose and glycated hemoglobin (HbA1c). Results The median fasting plasma glucose and HbA1c before the study were 210.0 mg/dL and 9.8%, respectively. The levels of fasting plasma glucose and HbA1c significantly decreased in the Insulin–GLP‐1 RA relay group (P < 0.001) and GLP‐1 RA first group (P < 0.001) by week 24, although no intergroup differences were observed. The reduction of HbA1c in the Insulin–GLP‐1 RA relay group tended to be larger than that in the GLP‐1 RA first group in the lowest CPR (C‐peptide immunoreactivity) quartile (P = 0.072). The adverse events consisted of gastrointestinal problems, followed by hypoglycemia. Conclusions The GLP‐1 receptor agonist is overall effective without prior glycemic control with insulin in participants with poorly controlled type 2 diabetes. However, in participants with insulinopenic type 2 diabetes, prior glycemic control with insulin might overcome glucose toxicity‐induced GLP‐1 resistance.
Collapse
Affiliation(s)
- Yumie Takeshita
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yuki Kita
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Takeo Tanaka
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Hisanori Goto
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yujiro Nakano
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Chisato Teramura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yasufumi Enyama
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | | |
Collapse
|
4
|
Su M, Hu R, Tang T, Tang W, Huang C. Review of the correlation between Chinese medicine and intestinal microbiota on the efficacy of diabetes mellitus. Front Endocrinol (Lausanne) 2022; 13:1085092. [PMID: 36760813 PMCID: PMC9905712 DOI: 10.3389/fendo.2022.1085092] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/06/2022] [Indexed: 01/26/2023] Open
Abstract
Diabetes mellitus is a serious metabolic disorder that can lead to a number of life-threatening complications. Studies have shown that intestinal microbiota is closely related to the development of diabetes, making it a potential target for the treatment of diabetes. In recent years, research on the active ingredients of traditional Chinese medicine (TCM), TCM compounds, and prepared Chinese medicines to regulate intestinal microbiota and improve the symptoms of diabetes mellitus is very extensive. We focus on the research progress of TCM active ingredients, herbal compounds, and prepared Chinese medicines in the treatment of diabetes mellitus in this paper. When diabetes occurs, changes in the abundance and function of the intestinal microbiota disrupt the intestinal environment by disrupting the intestinal barrier and fermentation. TCM and its components can increase the abundance of beneficial bacteria while decreasing the abundance of harmful bacteria, regulate the concentration of microbial metabolites, improve insulin sensitivity, regulate lipid metabolism and blood glucose, and reduce inflammation. TCM can be converted into active substances with pharmacological effects by intestinal microbiota, and these active substances can reverse intestinal microecological disorders and improve diabetes symptoms. This can be used as a reference for diabetes prevention and treatment.
Collapse
Affiliation(s)
- Min Su
- Hunan Key Laboratory of The Research and Development of Novel Pharmaceutical Preparation, Changsha Medical University, Changsha, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Changsha Medical University, Changsha, China
| | - Rao Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Changsha Medical University, Changsha, China
| | - Ting Tang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Changsha Medical University, Changsha, China
| | - Weiwei Tang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Changsha Medical University, Changsha, China
| | - Chunxia Huang
- Hunan Key Laboratory of The Research and Development of Novel Pharmaceutical Preparation, Changsha Medical University, Changsha, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Changsha Medical University, Changsha, China
- *Correspondence: Chunxia Huang,
| |
Collapse
|
5
|
Sciacqua A, Succurro E, Armentaro G, Miceli S, Pastori D, Rengo G, Sesti G. Pharmacological treatment of type 2 diabetes in elderly patients with heart failure: randomized trials and beyond. Heart Fail Rev 2021; 28:667-681. [PMID: 34859336 DOI: 10.1007/s10741-021-10182-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2021] [Indexed: 12/18/2022]
Abstract
Heart failure (HF) and type 2 diabetes mellitus (T2DM) represent two important public health problems, and despite improvements in the management of both diseases, they are responsible for high rates of hospitalizations and mortality. T2DM accelerates physiological cardiac aging through hyperglycemia and hyperinsulinemia. Thus, HF and T2DM are chronic diseases widely represented in elderly people who often are affected by numerous comorbidities with important functional limitations making it difficult to apply the current guidelines. Several antidiabetic drugs should be used with caution in elderly individuals with T2DM. For instance, sulfonylureas should be avoided due to the risk of hypoglycemia associated with its use. Insulin should be used with caution because it is associated with higher risk of hypoglycemia, and may determine fluid retention which can lead to worsening of HF. Thiazolindinediones should be avoided due to the increased risk of fluid retention and HF. Biguanides may lead to a slightly increased risk of lactic acidosis in particular in elderly individuals with impaired renal function. Dipeptidyl peptidase 4 (DPP-4) inhibitors are safe having few side effects, minimal risk of hypoglycemia, and a neutral effect on cardiovascular (CV) outcome, even if it has been reported that saxagliptin treatment is associated with increased risk of hospitalizations for HF (hHF). Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) have shown a CV protection without a significant reduction in hHF. On the other hand, sodium-glucose cotransporter 2 (SGLT2) inhibitors have shown a significant improvement in CV outcome, with a strong reduction of hHF and a positive impact on renal damage progression. However, it is necessary to consider the possible some side effects related to their use in elderly individuals including hypotension, bone fractures, and ketoacidosis.It is important to remark that elderly patients, in particular the very elderly, are not sufficiently represented in the trials; thus, the management and treatment of elderly diabetic patients with HF should be mainly based on the integration of scientific evidence with clinical judgment and patients' condition, with respect to the dignity and quality of life.
Collapse
Affiliation(s)
- Angela Sciacqua
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Campus Universitario di Germaneto, V.le Europa, 88100, Catanzaro, Italy.
| | - Elena Succurro
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Campus Universitario di Germaneto, V.le Europa, 88100, Catanzaro, Italy
| | - Giuseppe Armentaro
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Campus Universitario di Germaneto, V.le Europa, 88100, Catanzaro, Italy
| | - Sofia Miceli
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Campus Universitario di Germaneto, V.le Europa, 88100, Catanzaro, Italy
| | - Daniele Pastori
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
- Istituti Clinici Scientifici (ICS) Maugeri SPA, Società Benefit, IRCCS, Pavia, Italy
- Istituto Scientifico di Telese Terme, Telese, Terme, Italy
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, University Rome-Sapienza, Rome, Italy
| |
Collapse
|
6
|
Chao CT, Lee SY, Wang J, Chien KL, Hung KY. The risk trajectory of different cardiovascular morbidities associated with chronic kidney disease among patients with newly diagnosed diabetes mellitus: a propensity score-matched cohort analysis. Cardiovasc Diabetol 2021; 20:86. [PMID: 33894776 PMCID: PMC8070330 DOI: 10.1186/s12933-021-01279-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/15/2021] [Indexed: 01/14/2023] Open
Abstract
Background Chronic kidney disease (CKD) introduces an increased cardiovascular risk among patients with diabetes mellitus (DM). The risk and tempo of cardiovascular diseases may differ depending upon their type. Whether CKD differentially influences the risk of developing each cardiovascular morbidity in patients with newly diagnosed DM remains unexplored. Methods We identified patients with incident DM from the Longitudinal Cohort of Diabetes Patients (LCDP) cohort (n = 429,616), and uncovered those developing CKD after DM and their propensity score-matched counterparts without. After follow-up, we examined the cardiovascular morbidity-free rates of patients with and without CKD after DM, followed by Cox proportional hazard regression analyses. We further evaluated the cumulative risk of developing each outcome consecutively during the study period. Results From LCDP, we identified 55,961 diabetic patients with CKD and matched controls without CKD. After 4.2 years, patients with incident DM and CKD afterward had a significantly higher risk of mortality (hazard ratio [HR] 1.1, 95% confidence interval [CI] 1.06–1.14), heart failure (HF) (HR 1.282, 95% CI 1.19–1.38), acute myocardial infarction (AMI) (HR 1.16, 95% CI 1.04–1.3), and peripheral vascular disease (PVD) (HR 1.277, 95% CI 1.08–1.52) compared to those without CKD. The CKD-associated risk of mortality, HF and AMI became significant soon after DM occurred and remained significant throughout follow-up, while the risk of PVD conferred by CKD did not emerge until 4 years later. The CKD-associated risk of ischemic, hemorrhagic stroke and atrial fibrillation remained insignificant. Conclusions The cardiovascular risk profile among incident DM patients differs depending on disease type. These findings can facilitate the selection of an optimal strategy for early cardiovascular care for newly diagnosed diabetic patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-021-01279-6.
Collapse
Affiliation(s)
- Chia-Ter Chao
- Neprology Division, Department of Internal Medicine, National Taiwan University Hospital BeiHu Branch, Taipei, Taiwan.,Geriatric and Community Medicine Research Center, National Taiwan University Hospital BeiHu Branch, Taipei, Taiwan.,Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Szu-Ying Lee
- Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin County, Taiwan
| | - Jui Wang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Kuo-Liong Chien
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Kuan-Yu Hung
- Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
7
|
Chen Y, Liu C, Zhou P, Li J, Zhao X, Wang Y, Chen R, Song L, Zhao H, Yan H. Liraglutide reduces coronary endothelial cells no-reflow damage through activating MAPK/ERK signaling pathway. J Recept Signal Transduct Res 2020; 41:553-557. [PMID: 33045879 DOI: 10.1080/10799893.2020.1833921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yi Chen
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chen Liu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Peng Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiannan Li
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxiao Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Wang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Runzhen Chen
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Song
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hanjun Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| | - Hongbing Yan
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| |
Collapse
|