1
|
Maaroufi I, Jamsransuren D, Hashida K, Matsuda S, Ogawa H, Takeda Y. An Abies Extract Containing Nonvolatile Polyphenols Shows Virucidal Activity against SARS-CoV-2 That Is Enhanced in Increased pH Conditions. Pathogens 2023; 12:1093. [PMID: 37764901 PMCID: PMC10534523 DOI: 10.3390/pathogens12091093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Researching the beneficial health properties of wood byproducts can prevent wastage by turning them into valuable resources. In this study, the virucidal activity of two extracts from Abies sachalinensis byproducts, ASE1, and ASE2, against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was investigated. ASE1 is rich in monoterpenoid volatile compounds, whereas ASE2 contains nonvolatile polyphenols. SARS-CoV-2 solutions were mixed with ASE1 or ASE2, and viral titer reduction was evaluated. At their original acidic pH, ASE2 showed stronger virucidal activity than ASE1. The virucidal activity of ASE2 was also significantly enhanced when pH was increased to neutral or basic, which was not the case for ASE1. At a neutral pH, ASE2 induced statistically significant viral titer reduction in 1 min. HCl and NaOH solutions, which had a pH close to that of acidic and basic ASE2 test mixtures, respectively, exhibited no virucidal activity against SARS-CoV-2. Among the SARS-CoV-2 variants, Omicron showed the highest vulnerability to ASE2. Western blotting, RT-PCR, and electron microscopic analysis revealed that neutral ASE2 interacts with SARS-CoV-2 spike proteins and moderately disrupts the SARS-CoV-2 genome and viral envelope. These findings reveal the virucidal potential of ASE2.
Collapse
Affiliation(s)
- Imane Maaroufi
- Graduate School of Animal and Veterinary Sciences and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan;
| | - Dulamjav Jamsransuren
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (D.J.); (S.M.)
| | - Koh Hashida
- Department of Forest Resources Chemistry, Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan;
| | - Sachiko Matsuda
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (D.J.); (S.M.)
| | - Haruko Ogawa
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan;
| | - Yohei Takeda
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (D.J.); (S.M.)
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan;
| |
Collapse
|
2
|
Iacovelli F, Romeo A, Lattanzio P, Ammendola S, Battistoni A, La Frazia S, Vindigni G, Unida V, Biocca S, Gaziano R, Divizia M, Falconi M. Deciphering the Broad Antimicrobial Activity of Melaleuca alternifolia Tea Tree Oil by Combining Experimental and Computational Investigations. Int J Mol Sci 2023; 24:12432. [PMID: 37569803 PMCID: PMC10420022 DOI: 10.3390/ijms241512432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Tea Tree Oil (TTO) is an essential oil obtained from the distillation of Melaleuca alternifolia leaves and branches. Due to its beneficial properties, TTO is widely used as an active ingredient in antimicrobial preparations for topical use or in cosmetic products and contains about 100 different compounds, with terpinen-4-ol, γ-terpinene and 1,8-cineole (or eucalyptol) being the molecules most responsible for its biological activities. In this work, the antimicrobial activity of whole TTO and these three major components was evaluated in vitro against fungi, bacteria and viruses. Molecular dynamics simulations were carried out on a bacterial membrane model and a Coxsackievirus B4 viral capsid, to propose an atomistic explanation of their mechanism of action. The obtained results indicate that the strong antimicrobial activity of TTO is attributable to the induction of an altered membrane functionality, mediated by the incorporation of its components within the lipid bilayer, and to a possible ability of the compounds to bind and alter the structural properties of the viral capsid.
Collapse
Affiliation(s)
- Federico Iacovelli
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (F.I.); (A.R.); (P.L.); (S.A.); (A.B.); (S.L.F.)
| | - Alice Romeo
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (F.I.); (A.R.); (P.L.); (S.A.); (A.B.); (S.L.F.)
| | - Patrizio Lattanzio
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (F.I.); (A.R.); (P.L.); (S.A.); (A.B.); (S.L.F.)
| | - Serena Ammendola
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (F.I.); (A.R.); (P.L.); (S.A.); (A.B.); (S.L.F.)
| | - Andrea Battistoni
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (F.I.); (A.R.); (P.L.); (S.A.); (A.B.); (S.L.F.)
| | - Simone La Frazia
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (F.I.); (A.R.); (P.L.); (S.A.); (A.B.); (S.L.F.)
| | - Giulia Vindigni
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.V.); (V.U.); (S.B.)
| | - Valeria Unida
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.V.); (V.U.); (S.B.)
| | - Silvia Biocca
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.V.); (V.U.); (S.B.)
| | - Roberta Gaziano
- Microbiology Section, Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1–00133 Rome, Italy;
| | - Maurizio Divizia
- Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy;
| | - Mattia Falconi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (F.I.); (A.R.); (P.L.); (S.A.); (A.B.); (S.L.F.)
| |
Collapse
|
3
|
Nascimento T, Gomes D, Simões R, da Graça Miguel M. Tea Tree Oil: Properties and the Therapeutic Approach to Acne-A Review. Antioxidants (Basel) 2023; 12:1264. [PMID: 37371994 DOI: 10.3390/antiox12061264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Acne vulgaris is an inflammatory dermatological pathology that affects mostly young people. However, it can also appear in adulthood, mainly in women. It has a high psychosocial impact, not only at the time of active lesions but also due to the consequences of lesions such as scarring and hyperpigmentation. Several factors are involved in the physiopathology of acne and the constant search for active ingredients is a reality, namely phytotherapeutic ingredients. Tea tree oil is an essential oil extracted from Melaleuca alternifolia (Maiden & Betch) Cheel with known antibacterial, anti-inflammatory, and antioxidant properties, making it a candidate for the treatment of acne. This review aims to describe the various properties of tea tree oil that make it a possible ingredient to use in the treatment of acne and to present several human studies that have evaluated the efficacy and safety of using tea tree oil in the treatment of acne. It can be concluded that tea tree oil has good antibacterial, anti-inflammatory, and antioxidant properties that result in a decrease in the number of inflammatory lesions, mainly papules, and pustules. However, given the diversity of study designs, it is not possible to draw concrete conclusions on the efficacy and safety of this oil in the treatment of acne.
Collapse
Affiliation(s)
- Tânia Nascimento
- Escola Superior de Saúde, Universidade do Algarve (ESSUAlg), Campus de Gambelas, Edifício 2, 8005-139 Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, Edifício 2, 8005-139 Faro, Portugal
| | - Diana Gomes
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ricardo Simões
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Maria da Graça Miguel
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Mediterranean Institute for Agriculture, Environment and Development, Mediterranean Institute for Agriculture, Environment and Development, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
4
|
Egner P, Pavlačková J, Sedlaříková J, Pleva P, Mokrejš P, Janalíková M. Non-Alcohol Hand Sanitiser Gels with Mandelic Acid and Essential Oils. Int J Mol Sci 2023; 24:ijms24043855. [PMID: 36835267 PMCID: PMC9961504 DOI: 10.3390/ijms24043855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Antimicrobial hand gels have become extremely popular in recent years due to the COVID-19 pandemic. Frequent use of hand sanitising gel can lead to dryness and irritation of the skin. This work focuses on the preparation of antimicrobial acrylic acid (Carbomer)-based gels enhanced by non-traditional compounds-mandelic acid and essential oils-as a substitute for irritating ethanol. Physicochemical properties (pH and viscosity), stability and sensory attributes of the prepared gels were investigated. Antimicrobial activity against representative Gram-positive and Gram-negative bacteria and yeasts was determined. The prepared gels with mandelic acid and essential oil (cinnamon, clove, lemon, and thyme) proved to have antimicrobial activity and even better organoleptic properties than commercial ethanol-based antimicrobial gel. Further, results confirmed that the addition of mandelic acid had a desirable effect on gel properties (antimicrobial, consistency, stability). It has been shown that the essential oil/mandelic acid combination can be a dermatologically beneficial hand sanitiser compared to commercial products. Thus, the produced gels can be used as a natural alternative to alcohol-based daily hand hygiene sanitisers.
Collapse
Affiliation(s)
- Pavlína Egner
- Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
- Correspondence: (P.E.); (M.J.)
| | - Jana Pavlačková
- Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
| | - Jana Sedlaříková
- Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
| | - Pavel Pleva
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
| | - Pavel Mokrejš
- Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
| | - Magda Janalíková
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
- Correspondence: (P.E.); (M.J.)
| |
Collapse
|
5
|
Kairey L, Agnew T, Bowles EJ, Barkla BJ, Wardle J, Lauche R. Efficacy and safety of Melaleuca alternifolia (tea tree) oil for human health-A systematic review of randomized controlled trials. Front Pharmacol 2023; 14:1116077. [PMID: 37033604 PMCID: PMC10080088 DOI: 10.3389/fphar.2023.1116077] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/04/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction: Leaves of the Australian tea tree plant Melaleuca alternifolia were used traditionally by First Nations Australians for treating wounds, burns, and insect bites. Tea tree oil, the essential oil steam-distilled from M. alternifolia, is well-known for its medicinal properties, the evidence for most applications however is limited. This review aimed to critically appraise evidence from clinical trials examining the therapeutic efficacy and safety of tea tree oil on outcomes. Methods: Randomized controlled trials with participants of any age, gender, or health status, comparing tea tree oil to any control were included, without limit on publication date. Electronic databases were searched on 12 August 2022 with additional records sourced from article reference sections, reviews, and industry white papers. Risk of bias was assessed by two authors independently using the Cochrane risk-of-bias 1.0 tool. Results were summarized and synthesized thematically. Results: Forty-six articles were eligible from the following medical fields (Dentistry n = 18, Dermatology n = 9, Infectious disease n = 9, Ophthalmology n = 6, Podiatry n = 3; and Other n = 1). Results indicate that oral mouthwashes with 0.2%-0.5% tea tree oil may limit accumulation of dental plaque. Gels containing 5% tea tree oil applied directly to the periodontium may aid treatment of periodontitis as an adjunctive therapy to scaling and root planing. More evidence is needed to confirm the benefits of tea tree oil for reducing acne lesions and severity. Local anti-inflammatory effects on skin, if any, also require further elucidation. Topical tea tree oil regimens show similar efficacy to standard treatments for decolonizing the body from methicillin-resistant Staphylococcus aureus, although intra-nasal use of tea tree oil may cause irritation to mucous membranes. Tea tree oil with added iodine may provide an effective treatment for molluscum contagiosum lesions in young children. More evidence on efficacy of tea tree oil-based eyelid wipes for Demodex mite control are needed. Side effects were reported in 60% of included studies and were minor, except where tea tree oil was applied topically in concentrations ≥ 25%. Discussion: Overall, the quality of research was poor to modest and higher quality trials with larger samples and better reporting are required to substantiate potential therapeutic applications of tea tree oil. Systematic Review Registration: PROSPERO, identifier [CRD42021285168].
Collapse
Affiliation(s)
- Lana Kairey
- National Centre for Naturopathic Medicine, Southern Cross University, Lismore, NSW, Australia
| | - Tamara Agnew
- National Centre for Naturopathic Medicine, Southern Cross University, Lismore, NSW, Australia
| | - Esther Joy Bowles
- National Centre for Naturopathic Medicine, Southern Cross University, Lismore, NSW, Australia
| | - Bronwyn J. Barkla
- Southern Cross Plant Science, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Jon Wardle
- National Centre for Naturopathic Medicine, Southern Cross University, Lismore, NSW, Australia
| | - Romy Lauche
- National Centre for Naturopathic Medicine, Southern Cross University, Lismore, NSW, Australia
- *Correspondence: Romy Lauche,
| |
Collapse
|
6
|
Raj DS, Dhamodharan D, Thanigaivel S, Vickram AS, Byun HS. Nanoemulsion as an Effective Inhibitor of Biofilm-forming Bacterial Associated Drug Resistance: An Insight into COVID Based Nosocomial Infections. BIOTECHNOL BIOPROC E 2022; 27:543-555. [PMID: 36092682 PMCID: PMC9449957 DOI: 10.1007/s12257-022-0055-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022]
Abstract
Antibiotic overuse has resulted in the microevolution of drug-tolerant bacteria. Understandably it has become one of the most significant obstacles of the current century for scientists and researchers to overcome. Bacteria have a tendency to form biofilm as a survival mechanism. Biofilm producing microorganism become far more resistant to antimicrobial agents and their tolerance to drugs also increases. Prevention of biofilm development and curbing the virulency factors of these multi drug resistant or tolerant bacterial pathogens is a newly recognised tactic for overcoming the challenges associated with such bacterial infections and has become a niche to be addressed. In order to inhibit virulence and biofilm from planktonic bacteria such as, Pseudomonas aeruginosa, Acinetobacter baumannii, and others, stable nanoemulsions (NEs) of essential oils (EOs) and their bioactive compounds prove to be an interesting solution. These NEs demonstrated significantly greater anti-biofilm and anti-virulence activity than commercial antibiotics. The EO reduces disease-causing gene expression, which is required for pathogenicity, biofilm formation and attachment to the surfaces. Essential NE and NE-loaded hydrogel surface coatings demonstrates superior antibiofilm activity which can be employed in healthcare-related equipments like glass, plastic, and metal chairs, hospital beds, ventilators, catheters, and tools used in intensive care units. Thus, anti-virulence and anti-biofilm forming strategies based on NEs-loaded hydrogel may be used as coatings to combat biofilm-mediated infection on solid surfaces.
Collapse
Affiliation(s)
- Deena Santhana Raj
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Saveetha University, Thandalam, Chennai, Tamil Nadu 602105 India
| | - Duraisami Dhamodharan
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, 59626 Korea
| | - S. Thanigaivel
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Saveetha University, Thandalam, Chennai, Tamil Nadu 602105 India
| | - A. S. Vickram
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Saveetha University, Thandalam, Chennai, Tamil Nadu 602105 India
| | - Hun-Soo Byun
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, 59626 Korea
| |
Collapse
|
7
|
Potential Use of Tea Tree Oil as a Disinfectant Agent against Coronaviruses: A Combined Experimental and Simulation Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123786. [PMID: 35744913 PMCID: PMC9228983 DOI: 10.3390/molecules27123786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022]
Abstract
The COVID-19 pandemic has highlighted the relevance of proper disinfection procedures and renewed interest in developing novel disinfectant materials as a preventive strategy to limit SARS-CoV-2 contamination. Given its widely known antibacterial, antifungal, and antiviral properties, Melaleuca alternifolia essential oil, also named Tea tree oil (TTO), is recognized as a potential effective and safe natural disinfectant agent. In particular, the proposed antiviral activity of TTO involves the inhibition of viral entry and fusion, interfering with the structural dynamics of the membrane and with the protein envelope components. In this study, for the first time, we demonstrated the virucidal effects of TTO against the feline coronavirus (FCoVII) and the human coronavirus OC43 (HCoV-OC43), both used as surrogate models for SARS-CoV-2. Then, to atomistically uncover the possible effects exerted by TTO compounds on the outer surface of the SARS-CoV-2 virion, we performed Gaussian accelerated Molecular Dynamics simulations of a SARS-CoV-2 envelope portion, including a complete model of the Spike glycoprotein in the absence or presence of the three main TTO compounds (terpinen-4-ol, γ-terpinene, and 1,8-cineole). The obtained results allowed us to hypothesize the mechanism of action of TTO and its possible use as an anti-coronavirus disinfectant agent.
Collapse
|
8
|
Johnson CJ, Eix EF, Lam BC, Wartman KM, Meudt JJ, Shanmuganayagam D, Nett JE. Augmenting the Activity of Chlorhexidine for Decolonization of Candida auris from Porcine skin. J Fungi (Basel) 2021; 7:jof7100804. [PMID: 34682225 PMCID: PMC8537331 DOI: 10.3390/jof7100804] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 01/15/2023] Open
Abstract
Candida auris readily colonizes skin and efficiently spreads among patients in healthcare settings worldwide. Given the capacity of this drug-resistant fungal pathogen to cause invasive disease with high mortality, hospitals frequently employ chlorhexidine bathing to reduce skin colonization. Using an ex vivo skin model, we show only a mild reduction in C. auris following chlorhexidine application. This finding helps explain why chlorhexidine bathing may have failures clinically, despite potent in vitro activity. We further show that isopropanol augments the activity of chlorhexidine against C. auris on skin. Additionally, we find both tea tree (Melaleuca alternifolia) oil and lemongrass (Cymbopogon flexuosus) oil to further enhance the activity of chlorhexidine/isopropanol for decolonization. We link this antifungal activity to individual oil components and show how some of these components act synergistically with chlorhexidine/isopropanol. Together, the studies provide strategies to improve C. auris skin decolonization through the incorporation of commonly used topical compounds.
Collapse
Affiliation(s)
- Chad J. Johnson
- Department of Medicine, University of Wisconsin, Madison, WI 53706, USA; (C.J.J.); (E.F.E.); (B.C.L.); (K.M.W.)
| | - Emily F. Eix
- Department of Medicine, University of Wisconsin, Madison, WI 53706, USA; (C.J.J.); (E.F.E.); (B.C.L.); (K.M.W.)
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA
| | - Brandon C. Lam
- Department of Medicine, University of Wisconsin, Madison, WI 53706, USA; (C.J.J.); (E.F.E.); (B.C.L.); (K.M.W.)
| | - Kayla M. Wartman
- Department of Medicine, University of Wisconsin, Madison, WI 53706, USA; (C.J.J.); (E.F.E.); (B.C.L.); (K.M.W.)
| | - Jennifer J. Meudt
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA; (J.J.M.); (D.S.)
| | - Dhanansayan Shanmuganayagam
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA; (J.J.M.); (D.S.)
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
- Center for Biomedical Swine Research and Innovation, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Jeniel E. Nett
- Department of Medicine, University of Wisconsin, Madison, WI 53706, USA; (C.J.J.); (E.F.E.); (B.C.L.); (K.M.W.)
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA
- Correspondence: ; Tel.: +1-608-263-1545
| |
Collapse
|