1
|
Chou WH, Chen LC, Wong HSC, Chao CH, Chu HW, Chang WC. Phenomic landscape and pharmacogenomic implications for HLA region in a Taiwan Han Chinese population. Biomark Res 2024; 12:46. [PMID: 38702819 PMCID: PMC11067262 DOI: 10.1186/s40364-024-00591-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND The human leukocyte antigen (HLA) genes, exhibiting significant genetic diversity, are associated with susceptibility to various clinical diseases and diverse in drug responses. High costs of HLA sequencing and the population-specific architecture of this genetic region necessitate the establishment of a population-specific HLA imputation reference panel. Moreover, there is a lack of understanding about the genetic and phenotypic landscape of HLA variations within the Taiwanese population. METHODS We created models for a Taiwanese-specific HLA imputation reference panel. These models were trained with the array genotype data and HLA sequencing data from 845 Taiwanese subjects. HLA imputation was applied for 59,448 Taiwanese subjects to characterize the HLA allele and haplotype frequencies. Additionally, a phenome-wide association study (PheWAS) was conducted to identify the phenotypes associated with HLA variations. The association of the biallelic HLA variants with the binary and quantitative traits were evaluated with additive logistic and linear regression models, respectively. Furthermore, an omnibus test with likelihood-ratio test was applied for each HLA amino acid position in the multiallelic HLA amino acid polymorphisms to compare the difference between a fitted model and a null model following a χ2 distribution of n-1 degree of freedom at a position with n residues. Finally, we estimated the prevalence of adverse drug reactions (ADR)-related HLA alleles in the Taiwanese population. RESULTS In this study, the reference panel models displayed remarkable accuracy, with averages of 99.3%, 98.9%, and 99.1% for 2-, 4-, 6-digit alleles of the eight classical HLA genes, respectively. For PheWAS, a total of 18,136 significant associations with HLA variants across 26 phenotypes are identified (p < 5×10-8), highlighting the pleiotropy feature of the HLA region. Among the independent signals, 15 are novel, including the association of HLA-B pos 138 variation with ankylosing spondylitis (AS), and rs9266290 and rs9266292 with allergy. Through an analysis spanning the entire HLA region, we identified clusters of phenotype correlations. Finally, the carriers of pharmacogenomic related HLA alleles, including HLA-C*01:02 (35.86%), HLA-B*58:01 (20.9%), and HLA-B*15:02 (8.38%), were characterized in the Taiwanese general population. CONCLUSIONS We successfully delivered the HLA imputation for 59,448 Taiwanese subjects and characterized the genetic and phenotypic landscapes of the HLA variations. In addition, we quantified the estimated prevalence of the ADR-related HLA alleles in the Taiwanese population. The developed HLA imputation reference panel could be used for estimation of population HLA allele frequencies, which can facilitate further studies in the role of HLA variants in a wider range of phenotypes in the population.
Collapse
Affiliation(s)
- Wan-Hsuan Chou
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Lu-Chun Chen
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Henry Sung-Ching Wong
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ching-Hsuan Chao
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Hou-Wei Chu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan.
- Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan.
- Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- Department of Pharmacy, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
2
|
Marks ME, Botta RK, Abe R, Beachkofsky TM, Boothman I, Carleton BC, Chung WH, Cibotti RR, Dodiuk-Gad RP, Grimstein C, Hasegawa A, Hoofnagle JH, Hung SI, Kaffenberger B, Kroshinsky D, Lehloenya RJ, Martin-Pozo M, Micheletti RG, Mockenhaupt M, Nagao K, Pakala S, Palubinsky A, Pasieka HB, Peter J, Pirmohamed M, Reyes M, Saeed HN, Shupp J, Sukasem C, Syu JY, Ueta M, Zhou L, Chang WC, Becker P, Bellon T, Bonnet K, Cavalleri G, Chodosh J, Dewan AK, Dominguez A, Dong X, Ezhkova E, Fuchs E, Goldman J, Himed S, Mallal S, Markova A, McCawley K, Norton AE, Ostrov D, Phan M, Sanford A, Schlundt D, Schneider D, Shear N, Shinkai K, Tkaczyk E, Trubiano JA, Volpi S, Bouchard CS, Divito SJ, Phillips EJ. Updates in SJS/TEN: collaboration, innovation, and community. Front Med (Lausanne) 2023; 10:1213889. [PMID: 37901413 PMCID: PMC10600400 DOI: 10.3389/fmed.2023.1213889] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/31/2023] [Indexed: 10/31/2023] Open
Abstract
Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis (SJS/TEN) is a predominantly drug-induced disease, with a mortality rate of 15-20%, that engages the expertise of multiple disciplines: dermatology, allergy, immunology, clinical pharmacology, burn surgery, ophthalmology, urogynecology, and psychiatry. SJS/TEN has an incidence of 1-5/million persons per year in the United States, with even higher rates globally. One of the challenges of SJS/TEN has been developing the research infrastructure and coordination to answer questions capable of transforming clinical care and leading to improved patient outcomes. SJS/TEN 2021, the third research meeting of its kind, was held as a virtual meeting on August 28-29, 2021. The meeting brought together 428 international scientists, in addition to a community of 140 SJS/TEN survivors and family members. The goal of the meeting was to brainstorm strategies to support the continued growth of an international SJS/TEN research network, bridging science and the community. The community workshop section of the meeting focused on eight primary themes: mental health, eye care, SJS/TEN in children, non-drug induced SJS/TEN, long-term health complications, new advances in mechanisms and basic science, managing long-term scarring, considerations for skin of color, and COVID-19 vaccines. The meeting featured several important updates and identified areas of unmet research and clinical need that will be highlighted in this white paper.
Collapse
Affiliation(s)
- Madeline E. Marks
- Center for Drug Interactions and Immunology, Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ramya Krishna Botta
- Center for Drug Interactions and Immunology, Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Riichiro Abe
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Thomas M. Beachkofsky
- Departments of Dermatology and Medicine, Uniformed Services University, Bethesda, MD, United States
| | - Isabelle Boothman
- The SFI Centre for Research Training in Genomics Data Science, Dublin, Ireland
| | - Bruce C. Carleton
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia and the British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Wen-Hung Chung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ricardo R. Cibotti
- National Institute of Arthritis and Musculoskeletal and Skin (NIAMS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Roni P. Dodiuk-Gad
- Department of Dermatology, Emek Medical Center, Afula, Israel
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Dermatology, Bruce Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
| | - Christian Grimstein
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Akito Hasegawa
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jay H. Hoofnagle
- Liver Disease Research Branch, Division of Digestive Diseases and Nutrition of NIDDK, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Shuen-Iu Hung
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Benjamin Kaffenberger
- Department of Dermatology, Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Daniela Kroshinsky
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Rannakoe J. Lehloenya
- Division of Dermatology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Michelle Martin-Pozo
- Center for Drug Interactions and Immunology, Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Robert G. Micheletti
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Maja Mockenhaupt
- Dokumentationszentrum schwerer Hautreaktionen (dZh), Department of Dermatology, Medical Center and Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Keisuke Nagao
- National Institute of Arthritis and Musculoskeletal and Skin (NIAMS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Suman Pakala
- Center for Drug Interactions and Immunology, Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Amy Palubinsky
- Center for Drug Interactions and Immunology, Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Helena B. Pasieka
- Departments of Dermatology and Medicine, Uniformed Services University, Bethesda, MD, United States
- The Burn Center, MedStar Washington Hospital Center, Washington, D.C., DC, United States
- Department of Dermatology, MedStar Health/Georgetown University, Washington, D.C., DC, United States
| | - Jonathan Peter
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Munir Pirmohamed
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Melissa Reyes
- Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, United States
| | - Hajirah N. Saeed
- Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Jeffery Shupp
- Department of Surgery, Plastic and Reconstructive Surgery, Biochemistry, and Molecular and Cellular Biology, MedStar Washington Hospital Center, Georgetown University School of Medicine, Washington, D.C., DC, United States
| | - Chonlaphat Sukasem
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Jhih Yu Syu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Mayumi Ueta
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Li Zhou
- Division of General Internal Medicine and Primary Care, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Wan-Chun Chang
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia and the British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Patrice Becker
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Disease, Bethesda, MD, United States
| | - Teresa Bellon
- Drug Hypersensitivity Laboratory, La Paz Health Research Institute (IdiPAZ), Madrid, Spain
| | - Kemberlee Bonnet
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
| | - Gianpiero Cavalleri
- The SFI Centre for Research Training in Genomics Data Science, Dublin, Ireland
| | - James Chodosh
- University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Anna K. Dewan
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Arturo Dominguez
- Department of Dermatology and Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
| | - Xinzhong Dong
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Elena Ezhkova
- Department of Cell, Developmental, and Regenerative Biology and Dermatology, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - Esther Fuchs
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, United States
| | - Jennifer Goldman
- Division of Pediatric Infectious Diseases and Clinical Pharmacology, Children’s Mercy, Kansas City, MO, United States
| | - Sonia Himed
- College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Simon Mallal
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Alina Markova
- Department of Dermatology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, United States
| | - Kerry McCawley
- Stevens-Johnson Syndrome Foundation, Westminster, CO, United States
| | - Allison E. Norton
- Division of Pediatric Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - David Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Michael Phan
- Division of Pharmacovigilance-I, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Arthur Sanford
- Division of Trauma, Surgical Critical Care, and Burns, Loyola University Medical Center, Chicago, IL, United States
| | - David Schlundt
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
| | - Daniel Schneider
- Department of Psychiatry and Surgery, MedStar Washington Hospital Center, Georgetown University School of Medicine, Washington, D.C., DC, United States
| | - Neil Shear
- Department of Dermatology, Emek Medical Center, Afula, Israel
| | - Kanade Shinkai
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, United States
| | - Eric Tkaczyk
- Department of Veterans Affairs, Vanderbilt Dermatology Translational Research Clinic (VDTRC.org), Nashville, TN, United States
| | - Jason A. Trubiano
- Department of Infectious Diseases and Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia
| | - Simona Volpi
- National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Charles S. Bouchard
- Department of Opthalmology, Loyola University Medical Center, Chicago, IL, United States
| | - Sherrie J. Divito
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Elizabeth J. Phillips
- Center for Drug Interactions and Immunology, Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
3
|
Chen CB, Hung WK, Wang CW, Lee CC, Hung SI, Chung WH. Advances in understanding of the pathogenesis and therapeutic implications of drug reaction with eosinophilia and systemic symptoms: an updated review. Front Med (Lausanne) 2023; 10:1187937. [PMID: 37457584 PMCID: PMC10338933 DOI: 10.3389/fmed.2023.1187937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Drug reaction with eosinophilia and systemic symptoms or drug-induced hypersensitivity syndrome (DRESS/DIHS) is one type of severe cutaneous adverse reaction (SCAR). It is featured by fever, widespread skin lesions, protracted clinical course, internal organ involvement, and possibly long-term autoimmune sequelae. The presence of high-risk human leukocyte antigen (HLA) alleles, hypersensitivity reaction after culprit drug ingestion, and human herpesvirus reactivation may all contribute to its complex clinical manifestations. Some recent studies focusing on the roles of involved cytokines/chemokines and T cells co-signaling pathways in DRESS/DIHS were conducted. In addition, some predictors of disease severity and prognosis were also reported. In this review, we provided an update on the current understanding of the pathogenesis, potential biomarkers, and the relevant therapeutic rationales of DRESS/DIHS.
Collapse
Affiliation(s)
- Chun-Bing Chen
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, China
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Wei-Kai Hung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chuang-Wei Wang
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, China
| | - Chih-Chun Lee
- Department of Medical Education, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Shuen-Iu Hung
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Wen-Hung Chung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, China
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Dermatology, Beijing Tsinghua Chang Gung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
5
|
Gibson A, Deshpande P, Campbell CN, Krantz MS, Mukherjee E, Mockenhaupt M, Pirmohamed M, Palubinsky AM, Phillips EJ. Updates on the immunopathology and genomics of severe cutaneous adverse drug reactions. J Allergy Clin Immunol 2023; 151:289-300.e4. [PMID: 36740326 PMCID: PMC9976545 DOI: 10.1016/j.jaci.2022.12.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 02/05/2023]
Abstract
Severe cutaneous adverse reactions (SCARs) such as Stevens-Johnson syndrome, toxic epidermal necrolysis (SJS/TEN), and drug reaction with eosinophilia and systemic symptoms (DRESS)/drug-induced hypersensitivity syndrome (DIHS) cause significant morbidity and mortality and impede new drug development. HLA class I associations with SJS/TEN and drug reaction with eosinophilia and systemic symptoms/drug-induced hypersensitivity syndrome have aided preventive efforts and provided insights into immunopathogenesis. In SJS/TEN, HLA class I-restricted oligoclonal CD8+ T-cell responses occur at the tissue level. However, specific HLA risk allele(s) and antigens driving this response have not been identified for most drugs. HLA risk alleles also have incomplete positive and negative predictive values, making truly comprehensive screening currently challenging. Although, there have been key paradigm shifts in knowledge regarding drug hypersensitivity, there are still many open and unanswered questions about SCAR immunopathogenesis, as well as genetic and environmental risk. In addition to understanding the cellular and molecular basis of SCAR at the single-cell level, identification of the MHC-restricted drug-reactive self- or viral peptides driving the hypersensitivity reaction will also be critical to advancing premarketing strategies to predict risk at an individual and drug level. This will also enable identification of biologic markers for earlier diagnosis and accurate prognosis, as well as drug causality and targeted therapeutics.
Collapse
Affiliation(s)
- Andrew Gibson
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Pooja Deshpande
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Chelsea N Campbell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Matthew S Krantz
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Eric Mukherjee
- Department of Dermatology, Vanderbilt University Medical Center, Nashville; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Maja Mockenhaupt
- Dokumentationszentrum schwerer Hautreaktionen Department of Dermatologie, Medical Center and Medical Faculty, University of Freiburg, Freiberg, Germany
| | - Munir Pirmohamed
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Amy M Palubinsky
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Elizabeth J Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia; Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tenn; Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tenn; Department of Dermatology, Vanderbilt University Medical Center, Nashville; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tenn.
| |
Collapse
|
6
|
Liu F, Cocker ATH, Pugh JL, Djaoud Z, Parham P, Guethlein LA. Natural LILRB1 D1-D2 variants show frequency differences in populations and bind to HLA class I with various avidities. Immunogenetics 2022; 74:513-525. [PMID: 35562487 PMCID: PMC9103611 DOI: 10.1007/s00251-022-01264-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/02/2022] [Indexed: 11/27/2022]
Abstract
Leukocyte immunoglobulin-like receptor B1 (LILRB1) is widely expressed on various immune cells and the engagement of LILRB1 to HLA class I and pathogen-derived proteins can modulate the immune response. In the current study, 108 LILRB1 alleles were identified by screening the LILRB1 locus from the 1000 Genomes Phase 3 database. Forty-six alleles that occurred in three or more individuals encode 28 LILRB1 allotypes, and the inferred LILRB1 allotypes were then grouped into 9 LILRB1 D1-D2 variants for further analysis. We found that variants 1, 2, and 3 represent the three most frequent LILRB1 D1-D2 variants and the nine variants show frequency differences in populations. The binding assay demonstrated that variant 1 bound to HLA class I with the highest avidity, and all tested LILRB1 D1-D2 variants bound to HLA-C with lower avidity than to HLA-A and -B. Locus-specific polymorphisms at positions 183, 189, and 268 in HLA class I and dimorphisms in HLA-A (positions 207 and 253) and in HLA-B (position 194) affect their binding to LILRB1. Notably, the electrostatic interaction plays a critical role in the binding of LILRB1 to HLA class I as revealed by electrostatic analysis and by comparison of different binding avidities caused by polymorphisms at positions 72 and 103 of LILRB1. In this paper, we present a comprehensive study of the population genetics and binding abilities of LILRB1. The data will help us better understand the LILRB1-related diversity of the immune system and lay a foundation for functional studies.
Collapse
Affiliation(s)
- Fuguo Liu
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA, 94305, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA
| | - Alexander T H Cocker
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA, 94305, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA
| | - Jason L Pugh
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA, 94305, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA
| | - Zakia Djaoud
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA, 94305, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA
| | - Peter Parham
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA, 94305, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA
| | - Lisbeth A Guethlein
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA, 94305, USA.
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|