1
|
Shah AA, Mirza R, Sattar A, Khan Y, Khan SA. "Unveiling onychomycosis: Pathogenesis, diagnosis, and innovative treatment strategies". Microb Pathog 2025; 198:107111. [PMID: 39522833 DOI: 10.1016/j.micpath.2024.107111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/17/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Onychomycosis, a widespread fungal nail infection, manifests as discoloration, thickening, and detachment of nails, often affecting the surrounding skin. While dermatophytes were historically considered the primary causative agents, recent studies reveal a rise in non-dermatophyte mold (NDM) infections, particularly in warmer climates. Dermatophytes dominate toenail infections, while yeasts and molds also contribute to fingernail infections, with certain molds like Fusarium spp. and Scytalidium spp being notable culprits. Diagnostic challenges arise from elevated false-negative rates in conventional methods like microscopy and culture, particularly with NDM infections. Histology and polymerase chain reaction (PCR) offers higher accuracy, albeit requiring multiple confirmations due to contamination risks. Treatment options encompass oral antifungals with higher cure rates but significant side effects and topical treatments with milder side effects but inferior efficacy. Several ongoing research aims to enhance transungual delivery through various approaches for the treatment of onychomycosis. Recurrence rates underscore the importance of prompt treatment, footwear hygiene, and preventive measures like topical treatments to mitigate the risk of reinfection. Understanding the evolving fungal landscape in onychomycosis is critical for effective management and recurrence prevention strategies.
Collapse
Affiliation(s)
- Amjad Ali Shah
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Rashna Mirza
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Ariba Sattar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Yousaf Khan
- Department of Chemistry, Faculty of Natural Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Shahid Ali Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
2
|
Bhusal CK, Beniwal P, Singh S, Kaur D, Kaur U, Kaur S, Sehgal R. Possibility of re-purposing antifungal drugs posaconazole & isavuconazole against promastigote form of Leishmania major. Indian J Med Res 2024; 160:466-478. [PMID: 39737513 DOI: 10.25259/ijmr_569_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/30/2024] [Indexed: 01/01/2025] Open
Abstract
Background & objectives The emergence of drug resistance in leishmaniasis has remained a concern. Even new drugs have been found to be less effective within a few years of their use. Coupled with their related side effects and cost-effectiveness, this has prompted the search for alternative therapeutic options. In this study, the Computer Aided Drug Design (CADD) approach was used to repurpose already existing drugs against Leishmania major. The enzyme lanosterol 14-alpha demethylase (CYP51), in L. major, was chosen as the drug target since it is a key enzyme involved in synthesizing ergosterol, a crucial component of the cell membrane. Methods A library of 1615 FDA-approved drugs was virtually screened and docked with modeled CYP51 at its predicted binding site. The drugs with high scores and high affinity were subjected to Molecular Dynamics (MD) simulations for 100 ns. Finally, the compounds were tested in vitro using an MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] assay against the promastigotes of L. major. Results Computational screening of FDA-approved drugs identified posaconazole and isavuconazole as promising candidates, as both drugs target the CYP51 enzyme in fungi. Molecular dynamics (MD) simulations demonstrated that both drugs form stable complexes with the target enzyme. In vitro studies of posaconazole and isavuconazole against promastigotes of L. major demonstrated significant efficacy, with IC50 values of 2.062±0.89 µg/ml and 1.202±0.47 µg/ml, respectively. Interpretation & conclusions The study showed that the existing FDA-approved drugs posaconazole and isavuconazole can successfully be repurposed for treating L. major by targeting the CYP51 enzyme, demonstrating significant efficacy against promastigotes.
Collapse
Affiliation(s)
- Chandra Kanta Bhusal
- Department of Microbiology, Aarupadai Veedu Medical College & Hospital, Puducherry, India
- Department of Medical Parasitology, Post Graduate Institute of Medical Education and Research, Chandigarh, Punjab, India
| | - Pooja Beniwal
- Department of Zoology, Panjab University, Chandigarh, Punjab, India
| | - Sarman Singh
- Department of Microbiology, Aarupadai Veedu Medical College & Hospital, Puducherry, India
| | - Davinder Kaur
- Department of Medical Parasitology, Post Graduate Institute of Medical Education and Research, Chandigarh, Punjab, India
| | - Upninder Kaur
- Department of Medical Parasitology, Post Graduate Institute of Medical Education and Research, Chandigarh, Punjab, India
| | - Sukhbir Kaur
- Department of Zoology, Panjab University, Chandigarh, Punjab, India
| | - Rakesh Sehgal
- Department of Microbiology, Aarupadai Veedu Medical College & Hospital, Puducherry, India
- Department of Medical Parasitology, Post Graduate Institute of Medical Education and Research, Chandigarh, Punjab, India
| |
Collapse
|
3
|
Zhang R, Song Z, Su X, Li T, Xu J, He X, Yang Y, Chang B, Kang Y. Molecular epidemiology and antifungal susceptibility of dermatophytes and Candida isolates in superficial fungal infections at a grade A tertiary hospital in Northern China. Med Mycol 2024; 62:myae087. [PMID: 39174486 DOI: 10.1093/mmy/myae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 08/24/2024] Open
Abstract
This study analyzed the prevalence and antifungal susceptibility of superficial fungal infections in 295 cases from 2019 to 2020 at a dermatology clinic. Dermatophytes were the predominant pathogens (69.5%), including Trichophytonrubrum, T. interdigitale, Microsporum canis, et al., followed by Candida spp. (29.5%), including Candidaalbicans, Ca. parapsilosis, and Ca. glabrata. The most common infections were onychomycosis (36.3%), tinea cruris (30.5%), and tinea corporis (18.6%). The distribution of SFI types showed variations based on gender, age, and season. Common antifungal agents, including terbinafine, voriconazole, ciclopiroxamine, amphotericin B, itraconazole, and ketoconazole have exhibited low minimum inhibitory concentrations against dermatophytes, especially terbinafine, which has been potent against superficial fungal infections caused by dermatophytes in the local area. Candida spp. strains were generally susceptible or classified as wild-type to 5-flucytosine and amphotericin B, with 92.0% being wild-type for itraconazole. However, resistance to fluconazole and voriconazole was observed in a small percentage of Ca. albicans and Ca. parapsilosis strains. The emergence of drug-resistant Candida underscores the importance of prudent antifungal use and continuous surveillance.
Collapse
Affiliation(s)
- Ruijun Zhang
- Department of Dermatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ziping Song
- Department of Dermatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Xiaorui Su
- Department of Dermatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting Li
- Department of Dermatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Juan Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiao He
- Department of Dermatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuanwen Yang
- Department of Dermatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bingmei Chang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030000, China
| | - Yuying Kang
- Department of Dermatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan 030032, China
| |
Collapse
|
4
|
Yang C, Li G, Zhang Q, Bai W, Li Q, Zhang P, Zhang J. Histone deacetylase Sir2 promotes the systemic Candida albicans infection by facilitating its immune escape via remodeling the cell wall and maintaining the metabolic activity. mBio 2024; 15:e0044524. [PMID: 38682948 PMCID: PMC11237532 DOI: 10.1128/mbio.00445-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024] Open
Abstract
Histone deacetylation affects Candida albicans (C. albicans) pathogenicity by modulating virulence factor expression and DNA damage. The histone deacetylase Sir2 is associated with C. albicans plasticity and maintains genome stability to help C. albicans adapt to various environmental niches. However, whether Sir2-mediated chromatin modification affects C. albicans virulence is unclear. The purpose of our study was to investigate the effect of Sir2 on C. albicans pathogenicity and regulation. Here, we report that Sir2 is required for C. albicans pathogenicity, as its deletion affects the survival rate, fungal burden in different organs and the extent of tissue damage in a mouse model of disseminated candidiasis. We evaluated the impact of Sir2 on C. albicans virulence factors and revealed that the Sir2 null mutant had an impaired ability to adhere to host cells and was more easily recognized by the innate immune system. Comprehensive analysis revealed that the disruption of C. albicans adhesion was due to a decrease in cell surface hydrophobicity rather than the differential expression of adhesion genes on the cell wall. In addition, Sir2 affects the distribution and exposure of mannan and β-glucan on the cell wall, indicating that Sir2 plays a role in preventing the immune system from recognizing C. albicans. Interestingly, our results also indicated that Sir2 helps C. albicans maintain metabolic activity under hypoxic conditions, suggesting that Sir2 contributes to C. albicans colonization at hypoxic sites. In conclusion, our findings provide detailed insights into antifungal targets and a useful foundation for the development of antifungal drugs. IMPORTANCE Candida albicans (C. albicans) is the most common opportunistic fungal pathogen and can cause various superficial infections and even life-threatening systemic infections. To successfully propagate infection, this organism relies on the ability to express virulence-associated factors and escape host immunity. In this study, we demonstrated that the histone deacetylase Sir2 helps C. albicans adhere to host cells and escape host immunity by mediating cell wall remodeling; as a result, C. albicans successfully colonized and invaded the host in vivo. In addition, we found that Sir2 contributes to carbon utilization under hypoxic conditions, suggesting that Sir2 is important for C. albicans survival and the establishment of infection in hypoxic environments. In summary, we investigated the role of Sir2 in regulating C. albicans pathogenicity in detail; these findings provide a potential target for the development of antifungal drugs.
Collapse
Affiliation(s)
- Chen Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Guanglin Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qiyue Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenhui Bai
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qingiqng Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Peipei Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiye Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Gupta AK, Talukder M, Shemer A, Galili E. Safety and efficacy of new generation azole antifungals in the management of recalcitrant superficial fungal infections and onychomycosis. Expert Rev Anti Infect Ther 2024; 22:399-412. [PMID: 38841996 DOI: 10.1080/14787210.2024.2362911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
INTRODUCTION Terbinafine is considered the gold standard for treating skin fungal infections and onychomycosis. However, recent reports suggest that dermatophytes are developing resistance to terbinafine and the other traditional antifungal agents, itraconazole and fluconazole. When there is resistance to terbinafine, itraconazole or fluconazole, or when these agents cannot used, for example, due to potential drug interactions with the patient's current medications, clinicians may need to consider off-label use of new generation azoles, such as voriconazole, posaconazole, fosravuconazole, or oteseconazole. It is essential to emphasize that we do not advocate the use of newer generation azoles unless traditional agents such as terbinafine, itraconazole, or fluconazole have been thoroughly evaluated as first-line therapies. AREAS COVERED This article reviews the clinical evidence, safety, dosage regimens, pharmacokinetics, and management algorithm of new-generation azole antifungals. EXPERT OPINION Antifungal stewardship should be the top priority when prescribing new-generation azoles. First-line antifungal therapy is terbinafine and itraconazole. Fluconazole is a consideration but is generally less effective and its use may be off-label in many countries. For difficult-to-treat skin fungal infections and onychomycosis, that have failed terbinafine, itraconazole and fluconazole, we propose consideration of off-label voriconazole or posaconazole.
Collapse
Affiliation(s)
- Aditya K Gupta
- Division of Dermatology, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Mediprobe Research Inc., London, Ontario, Canada
| | - Mesbah Talukder
- Mediprobe Research Inc., London, Ontario, Canada
- School of Pharmacy, BRAC University, Dhaka, Bangladesh
| | - Avner Shemer
- Department of Dermatology, Sheba Medical Center, Ramat-Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eran Galili
- Department of Dermatology, Sheba Medical Center, Ramat-Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Jadach B, Nowak A, Długaszewska J, Kordyl O, Budnik I, Osmałek T. Coated Microneedle System for Delivery of Clotrimazole in Deep-Skin Mycoses. Gels 2024; 10:264. [PMID: 38667683 PMCID: PMC11048890 DOI: 10.3390/gels10040264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Mycoses of the skin are infectious diseases caused by fungal microorganisms that are generally treated with topical agents. However, such therapy is often ineffective and has to be supported by oral use of active substances, which, in turn, can cause many side effects. A good alternative for the treatment of deep-skin mycoses seems to be microneedles (MNs). The aim of this research was to fabricate and evaluate the properties of innovative MNs coated with a hydrogel as potential carriers for clotrimazole (CLO) in the treatment of deep fungal skin infections. A 3D printing technique using a photo-curable resin was employed to produce MNs, which were coated with hydrogels using a dip-coating method. Hydrogels were prepared with carbopol EZ-3 Polymer (Lubrizol) in addition to glycerol and triisopropanolamine. Clotrimazole was introduced into the gel as the solution in ethanol or was suspended. In the first step of the investigation, a texture analysis of hydrogels was prepared with a texture analyzer, and the drug release studies were conducted with the use of automatic Franz diffusion cells. Next, the release profiles of CLO for coated MNs were checked. The last part of the investigation was the evaluation of the antifungal activity of the prepared systems, and the inhibition of the growth of Candida albicans was checked with the diffusion and suspended-plate methods. The texture profile analysis (TPA) for the tested hydrogels showed that the addition of ethanol significantly affects the following studied parameters: hardness, adhesiveness and gumminess, causing a decrease in their values. On the other hand, for the gels with suspended CLO, better spreadability was seen compared to gels with dissolved CLO. The presence of the active substance did not significantly affect the values of the tested parameters. In the dissolution study, the results showed that higher amounts of CLO were released for MNs coated with a hydrogel containing dissolved CLO. Also, microbiological tests proved its efficacy against fungal cultures. Qualitative tests carried out using the diffusion method showed that circular zones of inhibition of fungal growth on the plate were obtained, confirming the hypothesis of effectiveness. The suspension-plate technique confirmed the inhibitory effect of applied CLO on the growth of Candida albicans. From the analysis of the data, the MNs coated with CLO dissolved in hydrogel showed better antifungal activity. All received results seem to be helpful in developing further studies for MNs as carriers of antifungal substances.
Collapse
Affiliation(s)
- Barbara Jadach
- Division of Industrial Pharmacy, Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznan, Poland
| | - Agata Nowak
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznan, Poland (T.O.)
| | - Jolanta Długaszewska
- Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznan, Poland;
| | - Oliwia Kordyl
- Division of 3D Printing, Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznan, Poland; (O.K.); (I.B.)
| | - Irena Budnik
- Division of 3D Printing, Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznan, Poland; (O.K.); (I.B.)
| | - Tomasz Osmałek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznan, Poland (T.O.)
| |
Collapse
|
7
|
Axler E, Lipner SR. Antifungal Selection for the Treatment of Onychomycosis: Patient Considerations and Outcomes. Infect Drug Resist 2024; 17:819-843. [PMID: 38463386 PMCID: PMC10922011 DOI: 10.2147/idr.s431526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/24/2024] [Indexed: 03/12/2024] Open
Abstract
Onychomycosis, a common fungal nail infection, affects >20% of adults over age 60 and >50% of people over age 70. Onychomycosis may cause pain, psychosocial problems, and secondary infections, therefore meriting treatment. This review describes the range of treatment modalities, including FDA-approved systemic drugs and topical therapies. Additionally, new and emerging oral and topical therapies are discussed. We emphasize the importance of tailoring onychomycosis therapy to individual patient characteristics, comorbidities, preferences, extent of nail involvement, and fungal species, such that physicians may optimize treatment outcomes, patient satisfaction, and safety.
Collapse
Affiliation(s)
- Eden Axler
- Weill Cornell Medicine, Department of Dermatology, New York, NY, 10021, USA
| | - Shari R Lipner
- Weill Cornell Medicine, Department of Dermatology, New York, NY, 10021, USA
| |
Collapse
|
8
|
Kolarczyková D, Lysková P, Švarcová M, Kuklová I, Dobiáš R, Mallátová N, Kolařík M, Hubka V. Terbinafine resistance in Trichophyton mentagrophytes and Trichophyton rubrum in the Czech Republic: A prospective multicentric study. Mycoses 2024; 67:e13708. [PMID: 38404204 DOI: 10.1111/myc.13708] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Terbinafine, an allylamine antifungal, is crucial for treating dermatophytosis by inhibiting squalene epoxidase (SQLE) in the ergosterol biosynthetic pathway. However, resistance is emerging, particularly in India and Southeast Asia, but reports of resistance spread worldwide. Despite this, comprehensive studies on terbinafine resistance in Trichophyton are still limited. OBJECTIVES This research aimed to determine the prevalence of terbinafine resistance in the Czech Republic, with a focus on Trichophyton rubrum and Trichophyton mentagrophytes, and investigate the underlying molecular mechanisms. PATIENTS/METHODS A total of 514 clinical strains of T. rubrum and 240 T. mentagrophytes collected from four Czech clinical institutions were screened for terbinafine resistance. Molecular investigations included DNA sequencing, specifically the ITS rDNA region and SQLE gene, as well as antifungal susceptibility testing following EUCAST guidelines. RESULTS While no resistance was observed in T. rubrum, 2.5% of T. mentagrophytes strains exhibited resistance, marked by the F397L mutation in SQLE. Notably, resistance surged from 1.2% in 2019 to 9.3% in 2020 but reverted to 0% in 2021. All resistant strains were identified as T. mentagrophytes var. indotineae. Resistant strains exhibited high MICs for terbinafine (≥4 mg L-1 ) but low MICs to the other seven antifungals tested except for fluconazole. CONCLUSIONS This study highlights the emergence of terbinafine-resistant T. mentagrophytes strains in the Czech Republic, with the F397L mutation being pivotal. Due to the relatively low resistance level, the current guidelines for dermatomycosis treatment in the Czech Republic remain effective, but ongoing surveillance is essential for timely adaptations if resistance patterns change.
Collapse
Affiliation(s)
- Daniela Kolarczyková
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavlína Lysková
- Department of Medical Microbiology Prague and Kladno, Public Health Institute in Ústí nad Labem, Prague, Czech Republic
| | - Michaela Švarcová
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ivana Kuklová
- Department of Dermatology and Venereology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Radim Dobiáš
- Department of Bacteriology and Mycology, Public Health Institute Ostrava, Ostrava, Czech Republic
- Institute of Laboratory Medicine, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Naďa Mallátová
- Laboratory of Mycology and Parasitology, Hospital České Budějovice, České Budějovice, Czech Republic
| | - Miroslav Kolařík
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Vit Hubka
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
9
|
Yuan S, Shen DD, Jia R, Sun JS, Song J, Liu HM. New drug approvals for 2022: Synthesis and clinical applications. Med Res Rev 2023; 43:2352-2391. [PMID: 37211904 DOI: 10.1002/med.21976] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/23/2023]
Abstract
The U.S. Food and Drug Administration has approved a total of 37 new drugs in 2022, which are composed of 20 chemical entities and 17 biologics. In particular, 20 chemical entities, including 17 small molecule drugs, 1 radiotherapy, and 2 diagnostic agents, provide privileged scaffolds, breakthrough clinical benefits, and a new mechanism of action for the discovery of more potent clinical candidates. The structure-based drug development with clear targets and fragment-based drug development with privileged scaffolds have always been the important modules in the field of drug discovery, which could easily bypass the patent protection and bring about improved biological activity. Therefore, we summarized the relevant valuable information about clinical application, mechanism of action, and chemical synthesis of 17 newly approved small molecule drugs in 2022. We hope this timely and comprehensive review could bring about creative and elegant inspiration on the synthetic methodologies and mechanism of action for the discovery of new drugs with novel chemical scaffolds and extended clinical indications.
Collapse
Affiliation(s)
- Shuo Yuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, China
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Dan-Dan Shen
- Department of Obstetrics and Gynecology, Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment Zhengzhou China, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Jia
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Ju-Shan Sun
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Jian Song
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, China
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, China
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Gupta AK, Talukder M, Carviel JL, Cooper EA, Piguet V. Combatting antifungal resistance: Paradigm shift in the diagnosis and management of onychomycosis and dermatomycosis. J Eur Acad Dermatol Venereol 2023; 37:1706-1717. [PMID: 37210652 DOI: 10.1111/jdv.19217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/26/2023] [Indexed: 05/22/2023]
Abstract
Antifungal resistance has become prevalent worldwide. Understanding the factors involved in spread of resistance allows the formulation of strategies to slow resistance development and likewise identify solutions for the treatment of highly recalcitrant fungal infections. To investigate the recent explosion of resistant strains, a literature review was performed focusing on four main areas: mechanisms of resistance to antifungal agents, diagnosis of superficial fungal infections, management, and stewardship. The use of traditional diagnostic tools such as culture, KOH analysis and minimum inhibitory concentration values on treatment were investigated and compared to the newer techniques such as molecular methods including whole genome sequencing, and polymerase chain reaction. The management of terbinafine-resistant strains is discussed. We have emphasized the need for antifungal stewardship including increasing surveillance for resistant infection.
Collapse
Affiliation(s)
- Aditya K Gupta
- Mediprobe Research Inc., London, Ontario, Canada
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mesbah Talukder
- Mediprobe Research Inc., London, Ontario, Canada
- School of Pharmacy, BRAC University, Dhaka, Bangladesh
| | | | | | - Vincent Piguet
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Dermatology, Women's College Hospital, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Gupta AK, Venkataraman M, Bamimore MA. Relative impact of traditional vs. newer oral antifungals for dermatophyte toenail onychomycosis: a network meta-analysis study. Br J Dermatol 2023; 189:12-22. [PMID: 37253047 DOI: 10.1093/bjd/ljad070] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/09/2023] [Accepted: 03/08/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND There is a paucity of evidence regarding the relative therapeutic efficacy of treatments for onychomycosis. OBJECTIVES We determined the relative efficacy of monotherapies for dermatophyte toenail onychomycosis with Bayesian network meta-analyses (NMAs). METHODS We searched PubMed, Scopus, EMBASE (Ovid) and CINAHL to identify studies that investigated the efficacy of monotherapy with oral antifungals for dermatophyte toenail onychomycosis in adults. In this paper, 'regimen' corresponds to a given agent and its dosage. The relative effects and surface under the cumulative ranking curve (SUCRA) values of the various regimens were estimated; evidence quality was assessed at the study level and across networks. RESULTS Data from 21 studies were used. Our two efficacy-related endpoints were: (i) mycological and (ii) complete cure at 1 year; safety--related endpoints were: (i) 1-year count of any adverse event (AE), (ii) 1-year odds of discontinuation due to any AE, (iii) 1-year odds of discontinuation due to liver issues. Thirty-five regimens were identified; the newer agents among these included posaconazole and oteseconazole. We compared the efficacy of newer regimens with traditional ones like 'terbinafine 250 mg daily for 12 weeks' and 'itraconazole 200 mg daily for 12 weeks. We found that an agent's dosage was associated with its efficacy; for example, the 1-year odds of mycological cure with terbinafine 250 mg daily for 24 weeks (SUCRA = 92.4%) were significantly greater than those of terbinafine 250 mg daily for 12 weeks (SUCRA = 66.3%) (odds ratio 2.62, 95% credible interval 1.57-4.54). We also found that booster regimens can increase efficacy. Our results showed that some triazoles could be more effective than terbinafine. CONCLUSIONS This is the first NMA study of monotherapeutic antifungals - and their various dosages - for dermatophyte toenail onychomycosis. Our findings could provide guidance for the selection of the most appropriate antifungal agent, especially amid the growing concerns about terbinafine resistance.
Collapse
Affiliation(s)
- Aditya K Gupta
- Mediprobe Research Inc., London, ON, Canada
- Division of Dermatology, Department of Medicine, University of Toronto School of Medicine, Toronto, ON, Canada
| | | | | |
Collapse
|
12
|
Post-Traumatic Single-Digit Onychomycosis. J Fungi (Basel) 2023; 9:jof9030313. [PMID: 36983481 PMCID: PMC10051499 DOI: 10.3390/jof9030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Onychomycoses are a group of fungal nail infections commonly classified either according to the pathogenic fungus, to the duration of the disease or to the mode of fungal invasion. Most cases are diagnosed clinically, although there is a general consensus that the pathogen should be identified prior to initiating a treatment. However, this is often difficult as the classical mycologic methods of direct microscopy and culture frequently remain negative. We came across a particular subset of onychomycoses, which posed extreme diagnostic and therapeutic challenges. Over a period of 15 years, 44 patients were seen in specialized nail clinics with a single nail dystrophy that was examined and treated in vain by many practitioners and dermatologists prior to their consultation. Of the forty-four cases, thirty-nine patients had a fingernail affected and five had a toenail affected. The nail was almost completely onycholytic, the nail bed visibly keratotic, the proximal nail fold smooth and shiny and slightly swollen. All patients except five brought the results of negative mycologic cultures. Thirty-four patients had received antifungal therapy, mostly topical, as a single nail would not qualify for systemic treatment according to most national and international guidelines. The diagnosis was finally confirmed by histopathology of the nail plate showing an invasive onychomycosis in all cases. After nail avulsion and combined topical and systemic antifungal therapy, thirty-six patients were cured, three were lost from follow-up, and five showed improved nails but not a complete clinical and mycologic cure. A single-digit nail disease raises the suspicion of a tumor or a trauma; although, in rare cases, diseases normally affecting several nails may only affect a single nail. Such a case should prompt the clinician to ask for a previous trauma to this digit and to intensify the search for a specific pathogen. This study also underlines the importance of histopathology for the diagnosis of onychomycoses.
Collapse
|
13
|
Falotico JM, Lipner SR. Updated Perspectives on the Diagnosis and Management of Onychomycosis. Clin Cosmet Investig Dermatol 2022; 15:1933-1957. [PMID: 36133401 PMCID: PMC9484770 DOI: 10.2147/ccid.s362635] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022]
Abstract
Onychomycosis is the most common nail disease encountered in clinical practice and can cause pain, difficulty with ambulation, and psycho-social problems. A thorough history and physical examination, including dermoscopy, should be performed for each patient presenting with nail findings suggestive of onychomycosis. Several approaches are available for definitive diagnostic testing, including potassium hydroxide and microscopy, fungal culture, histopathology, polymerase chain reaction, or a combination of techniques. Confirmatory testing should be performed for each patient prior to initiating any antifungal therapies. There are several different therapeutic options available, including oral and topical medications as well as device-based treatments. Oral antifungals are generally recommended for moderate to severe onychomycosis and have higher cure rates, while topical antifungals are recommended for mild to moderate disease and have more favorable safety profiles. Oral terbinafine, itraconazole, and griseofulvin and topical ciclopirox 8% nail lacquer, efinaconazole 10% solution, and tavaborole 5% solution are approved by the Food and Drug Administration for treatment of onychomycosis in the United States and amorolfine 5% nail lacquer is approved in Europe. Laser treatment is approved in the United States for temporary increases in clear nail, but clinical results are suboptimal. Oral fluconazole is not approved in the United States for onychomycosis treatment, but is frequently used off-label with good efficacy. Several novel oral, topical, and over-the-counter therapies are currently under investigation. Physicians should consider the disease severity, infecting pathogen, medication safety, efficacy and cost, and patient age, comorbidities, medication history, and likelihood of compliance when determining management plans. Onychomycosis is a chronic disease with high recurrence rates and patients should be counseled on an appropriate plan to minimize recurrence risk following effective antifungal therapy.
Collapse
Affiliation(s)
- Julianne M Falotico
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Shari R Lipner
- Weill Cornell Medicine, Department of Dermatology, New York, NY, USA
| |
Collapse
|