1
|
Asimakopoulou E, Goudoulas T, Andreadis II, Fatouros DG, Ahmad M, Vasiliadou C, Theocharidou A, Ritzoulis C. Analytical rheology as a tool for the structural investigation of citrus pectin. J Texture Stud 2024; 55:e12828. [PMID: 38486415 DOI: 10.1111/jtxs.12828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/19/2024]
Abstract
Rheological analysis of citrus pectin at pH 3 and 7 elucidates its structural dynamics, revealing distinct behaviors influenced by pH. At pH 3, pectin exhibits shear-thinning, with solvent-independent unified rheological profiles identifying three concentration regimes: 0.5%-1.5%, 2%-3%, and 3.5%-4%. These regimes, alongside Cox-Merz superpositions, outline the semi-dilute (c*) and concentrated (c**) transitions at 1.5%-2% and 3%-3.5%, respectively. Moreover, a Morris equation exponent of 0.65 indicates flexible, mobility-restricted macromolecules. Conversely, at pH 7, increased viscosities and Morris plot linearity for p = .1 suggest rigid chain behavior due to electrostatic repulsion among ionized acidic groups. This rigidity leads to concentration-dependent self-assembly structures that diverge from expected unified rheological profiles, a deviation amplified by heating-cooling cycles. This study clarifies the impact of pH on citrus pectin's rheology and emphasizes the intricate relationship between polymeric chain rigidity, self-assembly, and viscosity. By providing a refined understanding of these mechanisms, our findings contribute to the broader field of polysaccharide research, offering insights critical for developing and optimizing pectin-based applications in various industries.
Collapse
Affiliation(s)
- Evdoxia Asimakopoulou
- Department of Food Science and Technology, International Hellenic University, Thessaloniki, Greece
| | - Thomas Goudoulas
- TUM School of Life Sciences, Weihenstephan, Lehrstuhl für Brau- und Getränketechnologie, Gregor-Mendel-Str. 4, Freising, Germany
| | - Ioannis I Andreadis
- School of Health, Faculty of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios G Fatouros
- School of Health, Faculty of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mehraj Ahmad
- Department of Food Science and Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, China
- Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing, China
| | | | - Athina Theocharidou
- Department of Food Science and Technology, International Hellenic University, Thessaloniki, Greece
| | - Christos Ritzoulis
- Department of Food Science and Technology, International Hellenic University, Thessaloniki, Greece
| |
Collapse
|
2
|
Yang Y, Gupta VK, Du Y, Aghbashlo M, Show PL, Pan J, Tabatabaei M, Rajaei A. Potential application of polysaccharide mucilages as a substitute for emulsifiers: A review. Int J Biol Macromol 2023; 242:124800. [PMID: 37178880 DOI: 10.1016/j.ijbiomac.2023.124800] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/08/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
Mucilages are natural compounds consisting mainly of polysaccharides with complex chemical structures. Mucilages also contain uronic acids, proteins, lipids, and bioactive compounds. Because of their unique properties, mucilages are used in various industries, including food, cosmetics, and pharmaceuticals. Typically, commercial gums are composed only of polysaccharides, which increase their hydrophilicity and surface tension, reducing their emulsifying ability. As a result of the presence of proteins in combination with polysaccharides, mucilages possess unique emulsifying properties due to their ability to reduce surface tension. In recent years, various studies have been conducted on using mucilages as emulsifiers in classical and Pickering emulsions because of their unique emulsifying feature. Studies have shown that some mucilages, such as yellow mustard, mutamba, and flaxseed mucilages, have a higher emulsifying capacity than commercial gums. A synergistic effect has also been shown in some mucilages, such as Dioscorea opposita mucilage when combined with commercial gums. This review article investigates whether mucilages can be used as emulsifiers and what factors affect their emulsifying properties. A discussion of the challenges and prospects of using mucilages as emulsifiers is also presented in this review.
Collapse
Affiliation(s)
- Yadong Yang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Vijai Kumar Gupta
- Centre for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Yating Du
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, University of Nottingham, Malaysia, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Junting Pan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Department of Biomaterials, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India.
| | - Ahmad Rajaei
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran.
| |
Collapse
|
3
|
Zhu W, Obara H. The pre-shearing effect on the rheological properties of okra mucilage. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Koliastasi A, Kompothekra V, Giotis C, Moustakas AK, Skotti EP, Gerakis A, Kalogianni EP, Petridis D, Ritzoulis C. Extraction of surface‐active polymers from the compost of olive processing waste. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.13799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Aikaterini Koliastasi
- Department of Food Science and Technology International Hellenic University Thessaloniki Greece
| | | | - Charilaos Giotis
- Department of Food Science and Technology Ionian University Argostoli Greece
| | | | - Efstathia P. Skotti
- Department of Food Science and Technology Ionian University Argostoli Greece
| | - Argyrios Gerakis
- Department of Food Science and Technology Ionian University Argostoli Greece
| | - Eleni P. Kalogianni
- Department of Food Science and Technology International Hellenic University Thessaloniki Greece
| | - Dimitris Petridis
- Department of Food Science and Technology International Hellenic University Thessaloniki Greece
| | - Christos Ritzoulis
- Department of Food Science and Technology International Hellenic University Thessaloniki Greece
| |
Collapse
|
5
|
|
6
|
Mokhtar N, Chang LS, Soon Y, Wan Mustapha WA, Sofian-Seng NS, Rahman HA, Mohd Razali NS, Shuib S, Abdul Hamid A, Lim SJ. Harvesting Aurantiochytrium sp. SW1 using organic flocculants and characteristics of the extracted oil. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Grafting modification of okra mucilage: Recent findings, applications, and future directions. Carbohydr Polym 2020; 246:116653. [DOI: 10.1016/j.carbpol.2020.116653] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/08/2020] [Accepted: 06/14/2020] [Indexed: 01/16/2023]
|
8
|
Koliastasi A, Kompothekra V, Giotis C, Moustakas AK, Skotti EP, Gerakis A, Kalogianni EP, Georgiou D, Ritzoulis C. Novel emulsifiers from olive mill compost. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Savouré T, Dornier M, Vachoud L, Collignan A. Clustering of instrumental methods to characterize the texture and the rheology of slimy okra (Abelmoschus esculentus) suspensions. J Texture Stud 2020; 51:426-443. [PMID: 31955423 DOI: 10.1111/jtxs.12505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/04/2020] [Accepted: 01/11/2020] [Indexed: 01/13/2023]
Abstract
Okra (Abelmoschus esculentus) is one of the ingredients widely used in African gastronomy because of the unique slimy texture it gives to sauces. However, processing and formulation can affect the textural and rheological properties of these sauces, leading to unacceptable quality for the African consumer. The aim of this study was to select the instrumental measurements best enabling (a) characterization of the rheology and texture of slimy sauces prepared from okra and (b) monitoring its evolution during the preservation process. Thirty-seven slimy suspensions (sauces and purées) were measured with 16 rheological and textural parameters. A principal component analysis revealed that flow consistency index K and flow behavior index n were well correlated with visco-elastic, adhesive, and shear thinning properties, and that stringiness was well correlated with elongational, cohesive, and ductile properties. These two sets of measurement methods are sufficient to characterize their rheological and textural properties, and necessary to discriminate them according to their process and formulation.
Collapse
Affiliation(s)
- Timoty Savouré
- AS Food International, Grenoble, France.,Qualisud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de La Réunion, Montpellier, France
| | - Manuel Dornier
- Qualisud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de La Réunion, Montpellier, France
| | - Laurent Vachoud
- Qualisud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de La Réunion, Montpellier, France
| | - Antoine Collignan
- Qualisud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de La Réunion, Montpellier, France
| |
Collapse
|
10
|
Koliastasi A, Kompothekra V, Giotis C, Moustakas AK, Skotti EP, Gerakis A, Kalogianni E, Ritzoulis C. Emulsifiers from Partially Composted Olive Waste. Foods 2019; 8:E271. [PMID: 31330775 PMCID: PMC6678798 DOI: 10.3390/foods8070271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 11/30/2022] Open
Abstract
Partial (one month) composting of solid olive processing waste is shown to produce extractable emulsifiers. Size exclusion chromatography (SEC) and Fourier-transform infra-red spectroscopy (FTIR) show that these consist of polysaccharides and proteins from the composted waste. Aqueous extraction at pH 5, pH 7, and pH 9 all yield extracts rich in oligosacchrides and oligopeptides which derive from the break-down of the macromolecules under composting, with the extract obtained at pH 5 being the richer in such components. Fourier-transform infra-red (FTIR) spectroscopy also confirms that these materials consist of proteinic and poly/oligosaccharidic populations. These materials can emulsify stable oil-in-water emulsions at pH 3 for a few days, while the same emulsions collapse in less than 24 h at pH 7. Confocal microscopy and droplet size distribution data suggest that Ostwald ripening, rather than coalescence, is the major course of emulsion instability. The above point to a short-process alternative to full composting in producing a high added value product from solid olive processing waste.
Collapse
Affiliation(s)
- Aikaterini Koliastasi
- Department of Food Science and Technology, International Hellenic University, Sindos Campus, 57400 Thessaloniki, Greece
| | - Vasiliki Kompothekra
- Department of Food Science and Technology, Ionian University, Vergoti Avenue, 28100 Argostoli, Greece
| | - Charilaos Giotis
- Department of Food Science and Technology, Ionian University, Vergoti Avenue, 28100 Argostoli, Greece.
| | - Antonis K Moustakas
- Department of Food Science and Technology, Ionian University, Vergoti Avenue, 28100 Argostoli, Greece
| | - Efstathia P Skotti
- Department of Food Science and Technology, Ionian University, Vergoti Avenue, 28100 Argostoli, Greece
| | - Argyrios Gerakis
- Department of Food Science and Technology, Ionian University, Vergoti Avenue, 28100 Argostoli, Greece
| | - Eleni Kalogianni
- Department of Food Science and Technology, International Hellenic University, Sindos Campus, 57400 Thessaloniki, Greece
| | - Christos Ritzoulis
- Department of Food Science and Technology, International Hellenic University, Sindos Campus, 57400 Thessaloniki, Greece
| |
Collapse
|
11
|
Yuan B, Ritzoulis C, Chen J. Extensional and shear rheology of okra polysaccharides in the presence of artificial saliva. NPJ Sci Food 2018; 2:20. [PMID: 31304270 PMCID: PMC6550210 DOI: 10.1038/s41538-018-0029-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 09/22/2018] [Accepted: 10/10/2018] [Indexed: 12/02/2022] Open
Abstract
Extensional and shear viscosities were studied for mixtures comprising artificial saliva and okra mucilage, the latter acting as a model thick-liquid food. These experiments aimed to obtain information on the flow-behavior information of the systems, underpinning the texture sensation of foods as perceived by dysphagic and xerostomic populations. Mixing okra mucilage with artificial saliva dramatically increases the shear viscosity of artificial saliva throughout the studied ranges of concentrations and deformation rates. Particle tracking does not suggest direct interactions between the components of artificial saliva and of okra mucilage. The rheology of the okra polymer (OP)–artificial saliva (AS) mixture is dominated by its extensional viscosity: Trouton ratios are in the order of tens to hundreds, while they decrease with increasing okra-mucilage concentration; this highlighs the dominance of the extensional rheology and the increasing importance of the shear mechanics with increasing okra content. The relaxation times and extensional moduli are also reported for the systems under study. Extensional and shear flows are of equal importance concerning the elastic behavior. Artificial saliva is usually formulated to help people with dysphagia or xerostomia. Their mouth feels of food textures are largely dependent on the flow behaviors of the food–artificial saliva mixtures. Christos Ritzoulis and coworkers from Zhejiang Gongshang University now studied the rheological and structural properties of artificial saliva when mixed with okra mucilage. They found the shear viscosity and storage modulus of the artificial saliva were much higher in the presence of okra polysaccharide, suggesting the formation of a macromolecular-interacting network. Moreover, it was found the overall rheological behaviors of the mixtures were always dominated by the extensional viscosity, though the shear behavior became more and more obvious with the increasing amount of okra polymer. Together with the data obtained with real saliva, these on artificial saliva could guide the future formulation of artificial saliva.
Collapse
Affiliation(s)
- Bo Yuan
- 1School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang, 310018 China
| | - Christos Ritzoulis
- 1School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang, 310018 China.,2Department of Food Technology, ATEI of Thessaloniki, 57400 Thessaloniki, Greece
| | - Jianshe Chen
- 1School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang, 310018 China
| |
Collapse
|
12
|
Yuan B, Ritzoulis C, Chen J. Extensional and shear rheology of okra hydrocolloid–saliva mixtures. Food Res Int 2018; 106:204-212. [DOI: 10.1016/j.foodres.2017.12.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 11/29/2022]
|
13
|
|
14
|
|