1
|
Cubero-Leon E, Madsen CB, Scherf KA, Colgrave ML, Nørgaard JV, Anthoni M, Rizou K, Walker MJ, Sollid LM. Barley based gluten free beer - A blessing or an uncontrollable risk? Food Chem Toxicol 2024; 193:115019. [PMID: 39307344 PMCID: PMC11581983 DOI: 10.1016/j.fct.2024.115019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Recent reports have highlighted that beer labelled "gluten-free", crafted with enzymatic treatments to remove gluten, may contain polypeptides that could be immunotoxic to individuals with coeliac disease. As strict adherence to a gluten-free diet is the only way to manage this condition, accurate labelling is crucial to those with coeliac disease. This paper aims to discuss the presence, levels and immunogenicity of gluten peptides found in gluten-reduced barley beers. While advances have been made in the detection and quantification of gluten peptides in beer, there are still challenges to the interpretation of gluten measurements as well as to assess whether peptides are immunotoxic in vivo. To make progress, future efforts should involve a combination of in vivo toxicity assessment of the degraded proteins, development of standardised gluten-free production strategies to minimise variability in gluten fragment presence, guidance on how to control the outcome as well as to develop appropriate reference materials and calibrators.
Collapse
Affiliation(s)
| | - Charlotte B Madsen
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Katharina A Scherf
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany; Technical University of Munich, TUM School of Life Sciences, Professorship of Food Biopolymer Systems, Freising, Germany
| | | | | | - Minna Anthoni
- Finnish Food Authority, Mustialankatu 3, 00790, Helsinki, Finland
| | - Katerina Rizou
- General Chemical State Laboratory (GCSL), Athens, Greece
| | - Michael J Walker
- Institute for Global Food Security, The Queen's University of Belfast, Belfast, BT9 5HN, Northern Ireland, UK
| | - Ludvig M Sollid
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Norway and Department of Immunology, Oslo, University Hospital - Rikshospitalet, Oslo, Norway
| |
Collapse
|
2
|
Jiang B, Yue H, Fu X, Wang J, Feng Y, Li D, Liu C, Feng Z. One-step high efficiency separation of prolyl endopeptidase from Aspergillus niger and its application. Int J Biol Macromol 2024; 271:132582. [PMID: 38801849 DOI: 10.1016/j.ijbiomac.2024.132582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Prolyl endopeptidase from Aspergillus niger (An-PEP) is an enzyme that recognizes C-terminal peptide bonds of amino acid chains and cleaves them by hydrolysis. An aqueous two-phase system (ATPS) was used to separate An-PEP from fermentation broth. Through single factor experiments, the ATPS containing 16 % (w/w) PEG2000 and 15 % (w/w) (NH4)2SO4 at pH 6.0 obtained the recovery of 79.74 ± 0.16 % and the purification coefficient of 7.64 ± 0.08. It was then used to produce soy protein isolate peptide (SPIP) by hydrolysis of soy protein isolate (SPI), and SPIP-Ferrous chelate (SPIP-Fe) was prepared with SPIP and Fe2+. The chelation conditions were optimized by RSM, as the chelation time was 30 min, chelation temperature was 25 °C, SPIP mass to VC mass was two to one and pH was 6.0. The obtained chelation rate was 82.56 ± 2.30 %. The change in the structures and functional features of SPIP before and after chelation were investigated. The FTIR and UV-Vis results indicated that the chelation of Fe2+ and SPIP depended mainly on the formation of amide bonds. The fluorescence, SEM and amino acid composition analysis results indicated that Fe2+ could induce and stabilize the surface conformation and change the amino acid distribution on the surfaces of SPIP. The chelation of SPIP and Fe2+ resulted in the enhancement of radical scavenging activities and ACE inhibitory activities. This work provided a new perspective for the further development of peptide-Fe chelates for iron supplement.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Hongshen Yue
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Xinhao Fu
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Jiaming Wang
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Yu Feng
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Dongmei Li
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Chunhong Liu
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Zhibiao Feng
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Almeida TCD, Santos SFDM, Santos ESD. Production of the prolyl endoprotease (PEP) from Aspergillus sp. FSDE 16 by solid-state fermentation (SSF) and use for producing a gluten-free beer. Biotechnol Appl Biochem 2024; 71:460-476. [PMID: 38212282 DOI: 10.1002/bab.2552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 11/10/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024]
Abstract
Beer is a beverage that contains gluten and cannot be consumed by people with celiac disease. In this context, the enzyme prolyl endoprotease (PEP) can be used to reduce the gluten content in beer. The present study aimed to produce the PEP from Aspergillus sp. FSDE 16 using solid-state fermentation with 5 conditions and comparing with a similar commercial enzyme produced from Aspergillus niger in the production of a gluten-free beer. The results of the performed cultures showed that during the culture, the most increased protease activity (54.46 U/mL) occurred on the 4th day. In contrast, for PEP, the highest activity (0.0356 U/mL) was obtained on the 3rd day of culture in condition. Regarding beer production, cell growth, pH, and total soluble solids showed similar behavior over the 7 days for beers produced without enzyme addition or with the addition of commercial enzyme and with the addition of the enzyme extract produced. The addition of the enzyme and the enzyme extract did not promote changes, and all the beers produced showed similar and satisfactory results, with acid pH between 4 and 5, total soluble solids ranging from 4.80 to 5.05, alcohol content ranging from 2.83% to 3.08%, and all beers having a dark character with deep amber and light copper color. Gluten removal was effectively using the commercial enzyme and the enzyme produced according to condition (v) reaching gluten concentrations equal to 17 ± 5.31 and 21.19 ± 11.28 ppm, respectively. In this way, the production of the enzyme by SSF and its application in the removal of gluten in beer was efficient.
Collapse
Affiliation(s)
- Thaís Cartaxo de Almeida
- Laboratory of Biochemical Engineering, Chemical Engineering Department, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | | | - Everaldo Silvino Dos Santos
- Laboratory of Biochemical Engineering, Chemical Engineering Department, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| |
Collapse
|
4
|
Cela N, Galgano F, Di Cairano M, Condelli N, Scarpa T, Marconi O, Alfeo V, Perretti G. Development of gluten-free craft beer: Impact of brewing process on quality attributes and consumer expectations for sensory properties. J Food Sci 2023; 88:5203-5215. [PMID: 37876285 DOI: 10.1111/1750-3841.16786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/18/2023] [Accepted: 09/14/2023] [Indexed: 10/26/2023]
Abstract
To date, few studies investigated the differences between the two main gluten-free (GF) brewing techniques, such as the use of enzymes and the use of unconventional GF grains in brewing, by consumer perspective. In this study a GF beer brewed with sorghum and quinoa, as brewing adjuncts, was compared to the enzymatic-treated counterpart, in order to evaluate the effect of deglutinization treatment on physicochemical, volatile, and sensory characteristics of final beer. Moreover, the influence of brewing process and raw materials information on consumers' sensory perceptions, willingness to buy (WTB) and willingness to pay (WTP) was also investigated (n = 105 consumers), under blind (B), expected (E), and informed (I) conditions. The enzymatic-treated sample showed comparable physicochemical attributes with the untreated counterpart, except for a significant reduction in color and foam stability (p < 0.05). Non-significant difference between samples was found in the overall liking, WTB, and WTP mean scores in all three sensory test conditions (p > 0.05). The information about the deglutinization treatment had a negative impact on overall liking (p < 0.01), although WTP for both samples was significantly higher in the informed test than in blind condition (p < 0.05). Overall, Check-All-That-Apply test results confirmed that the deglutinization treatment does not affect the beer sensory profile, even if the information about brewing ingredients and technologies may slightly influence the consumers' sensory perception. Therefore, this result proves that it is possible to produce a marketable GF beer, simply by partially replacing 40% of barley malt with unconventional GF grains, without using enzymes for gluten reduction purpose.
Collapse
Affiliation(s)
| | - Fernanda Galgano
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Potenza, Italy
| | - Maria Di Cairano
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Potenza, Italy
| | - Nicola Condelli
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Potenza, Italy
| | - Teresa Scarpa
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Potenza, Italy
| | - Ombretta Marconi
- Italian Brewing Research Centre, University of Perugia, Perugia, Italy
| | - Vincenzo Alfeo
- Italian Brewing Research Centre, University of Perugia, Perugia, Italy
| | - Giuseppe Perretti
- Department of Agricultural, Food and Environmental Science, University of Perugia, Perugia, Italy
| |
Collapse
|
5
|
Ye L, Zheng W, Li X, Han W, Shen J, Lin Q, Hou L, Liao L, Zeng X. The Role of Gluten in Food Products and Dietary Restriction: Exploring the Potential for Restoring Immune Tolerance. Foods 2023; 12:4179. [PMID: 38002235 PMCID: PMC10670377 DOI: 10.3390/foods12224179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Wheat is extensively utilized in various processed foods due to unique proteins forming from the gluten network. The gluten network in food undergoes morphological and molecular structural changes during food processing, affecting the final quality and digestibility of the food. The present review introduces the formation of the gluten network and the role of gluten in the key steps of the production of several typical food products such as bread, pasta, and beer. Also, it summarizes the factors that affect the digestibility of gluten, considering that different processing conditions probably affect its structure and properties, contributing to an in-depth understanding of the digestion of gluten by the human body under various circumstances. Nevertheless, consumption of gluten protein may lead to the development of celiac disease (CD). The best way is theoretically proposed to prevent and treat CD by the inducement of oral tolerance, an immune non-response system formed by the interaction of oral food antigens with the intestinal immune system. This review proposes the restoration of oral tolerance in CD patients through adjunctive dietary therapy via gluten-encapsulated/modified dietary polyphenols. It will reduce the dietary restriction of gluten and help patients achieve a comprehensive dietary intake by better understanding the interactions between gluten and food-derived active products like polyphenols.
Collapse
Affiliation(s)
- Li Ye
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Wenyu Zheng
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xue Li
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Wenmin Han
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Jialing Shen
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Qiuya Lin
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Liyan Hou
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Lan Liao
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Xin’an Zeng
- Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.Y.); (W.Z.); (X.L.); (W.H.); (J.S.); (Q.L.); (L.H.)
- Department of Food Science, Foshan University, Foshan 528000, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
6
|
Liu M, Hu M, Zhou H, Dong Z, Chen X. High-level production of Aspergillus niger prolyl endopeptidase from agricultural residue and its application in beer brewing. Microb Cell Fact 2023; 22:93. [PMID: 37143012 PMCID: PMC10161650 DOI: 10.1186/s12934-023-02087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/10/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Prolyl endopeptidase from Aspergillus niger (AN-PEP) is a prominent serine proteinase with various potential applications in the food and pharmaceutical industries. However, the availability of efficient and low-cost AN-PEP remains a challenge owing to its low yield and high fermentation cost. RESULTS Here, AN-PEP was recombinantly expressed in Trichoderma reesei (rAN-PEP) under the control of the cbh1 promoter and its secretion signal. After 4 days of shaking flask cultivation with the model cellulose Avicel PH101 as the sole carbon source, the extracellular prolyl endopeptidase activity reached up to 16.148 U/mL, which is the highest titer reported to date and the secretion of the enzyme is faster in T. reesei than in other eukaryotic expression systems including A. niger and Komagataella phaffii. Most importantly, when cultivated on the low-cost agricultural residue corn cob, the recombinant strain was found to secret a remarkable amount of rAN-PEP (37.125 U/mL) that is twice the activity under the pure cellulose condition. Furthermore, treatment with rAN-PEP during beer brewing lowered the content of gluten below the ELISA kit detection limit (< 10 mg/kg) and thereby, reduced turbidity, which would be beneficial for improving the non-biological stability of beer. CONCLUSION Our research provides a promising approach for industrial production of AN-PEP and other enzymes (proteins) from renewable lignocellulosic biomass, which provides a new idea with relevant researchers for the utilization of agricultural residues.
Collapse
Affiliation(s)
- Minglu Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hui Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiyang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiuzhen Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
7
|
A Comprehensive Comparison of Gluten-Free Brewing Techniques: Differences in Gluten Reduction Ability, Analytical Attributes, and Hedonic Perception. BEVERAGES 2023. [DOI: 10.3390/beverages9010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
This study provides a comprehensive comparison among the most common gluten-free (GF) brewing practices, with a focus on the impact of each treatment on physicochemical parameters and consumer acceptability of the final beer. In addition, the influence of a longer cold maturation on the natural reduction of the gluten content was investigated. Prolyl endopeptidase addition was found to be the most effective treatment in reducing gluten levels (−75.93%), followed by silica gel (−53.09%), longer cold maturation (−4.32%), and tannins (−1.85%). Nonetheless, none of the treated beer samples was gluten-free (gluten content > 20 ppm) due to the high nitrogen content of the original wort. The silica gel application treatment affected the physicochemical and sensory characteristics of the final beer the least. According to the difference from control test results, no significant difference in terms of overall liking, appearance, odor/aroma, or taste was observed between the silica gel-treated sample and control beer (p > 0.05). On the other hand, the application of enzymes and tannins significantly affected the appearance and the beer odor/aroma. Nevertheless, all beer samples received positive sensory acceptance scores.
Collapse
|
8
|
A Highly Sensitive Method for the Detection of Hydrolyzed Gluten in Beer Samples Using LFIA. Foods 2022; 12:foods12010160. [PMID: 36613374 PMCID: PMC9818069 DOI: 10.3390/foods12010160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Most gluten analysis methods have been developed to detect intact gluten, but they have shown limitations in certain foods and beverages in which gluten proteins are hydrolyzed. Methods based on G12/A1 moAbs detect the sequences of gluten immunogenic peptides (GIP), which are the main contributors to the immune response of celiac disease (CD). Immunogenic sequences with tandem epitopes for G12/A1 have been found in beers with <20 mg/kg gluten, which could be consumed by CD patients according to the Codex Alimentarius. Therefore, an accurate method for the estimation of the immunogenicity of a beer is to use two moAbs that can recognize celiac T cell epitopes comprising most of the immunogenic response. Here, a specific and sensitive method based on G12/A1 LFIA was developed to detect GIP in beers labeled gluten-free or with low gluten content, with an LOD of 0.5 mg/kg. A total of 107 beers were analyzed, of those 6.5% showed levels higher than 20 mg/kg gluten and 29% showed levels above the LOD. In addition, G12/A1 LFIA detected gluten in 15 more beer samples than competitive ELISA with another antibody. Despite their labeling, these beers contained GIP which may cause symptoms and/or intestinal damage in CD patients.
Collapse
|
9
|
Shan P, Ho CT, Zhang L, Gao X, Lin H, Xu T, Wang B, Fu J, He R, Zhang Y. Degradation Mechanism of Soybean Protein B 3 Subunit Catalyzed by Prolyl Endopeptidase from Aspergillus niger during Soy Sauce Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5869-5878. [PMID: 35511597 DOI: 10.1021/acs.jafc.2c01796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Soy sauce secondary precipitate formed due to the B3 subunit seriously affects soy sauce's appearance quality. In this study, a prolyl endopeptidase (APE) from Aspergillus niger, which could degrade approximately 50% of the B3 subunit and increase proline content by 24% in soy sauce, was isolated and identified. The results showed that APE was an acidic salt-tolerant serine protease (62 kDa), which was optimally active at 40 °C and pH 4.0, and retained more than 69% activity in 3 M NaCl solution over 10 days. As a potential substrate of APE, the B3 subunit contains 10 proline residues. High salinity could not damage the hydrogen bonds, salt bridges, and interior hydrophobicity of APE; thus, the spatial structures and activity of APE in 3 M NaCl solution were stable within 3 days and decreased thereafter. High salinity made the B3 subunit more rigid and lowered the catalytic activity of APE on the B3 subunit, hindering complete hydrolysis of the B3 subunit. This was the first report about the APE capable of degrading the B3 subunit and reducing the secondary precipitate of soy sauce, providing a new possibility to solve the secondary precipitate of soy sauce.
Collapse
Affiliation(s)
- Pei Shan
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Lei Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xianli Gao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Hong Lin
- Guangdong Meiweixian Flavoring Foods Co., Ltd., 1 Chubang Road, Zhongshan 528437, China
| | - Ting Xu
- Guangdong Meiweixian Flavoring Foods Co., Ltd., 1 Chubang Road, Zhongshan 528437, China
| | - Bo Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Jiangyan Fu
- Guangdong Meiweixian Flavoring Foods Co., Ltd., 1 Chubang Road, Zhongshan 528437, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yaqiong Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
10
|
Watson HG, Decloedt AI, Hemeryck LY, Van Landschoot A, Prenni J. Peptidomics of an industrial gluten-free barley malt beer and its non-gluten-free counterpart: Characterisation and immunogenicity. Food Chem 2021; 355:129597. [PMID: 33878557 DOI: 10.1016/j.foodchem.2021.129597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/30/2022]
Abstract
Recent research suggests that gluten-free beers by prolyl-endopeptidase treatment may not be safe for coeliac disease (CD) patients. Therefore, the gluten peptidome of an industrial gluten-free prolyl-endopeptidase treated malt beer (<10 ppm gluten) was compared to its untreated counterpart (58 ppm gluten) as a reference. NanoLC-HRMS analysis revealed the presence of 155 and 158 gluten peptides in the treated and reference beer, respectively. Characterisation of the peptides in treated beer showed that prolyl-endopeptidase activity was not complete with many peptides containing (multiple) internal proline-residues. Yet, prolyl-endopeptidase treatment did eliminate complete CD-immunogenic motifs, however, 18 peptides still contained partial, and potentially unsafe, motifs. In the reference beer respectively 7 and 37 gluten peptides carried (multiple) complete and/or partial CD-immunogenic motifs. Worrying is that many of these partial immunogenic gluten peptides do not contain a recognition epitope for the R5-antibody and would be overlooked in the current ELISA analysis for gluten quantification.
Collapse
Affiliation(s)
- Hellen G Watson
- Ghent University, Faculty of Bioscience Engineering, Department of Biotechnology, Valentin Vaerwyckweg 1, Ghent 9000, Belgium.
| | - Anneleen I Decloedt
- Ghent University, Faculty of Veterinary Medicine, Laboratory of Chemical Analysis, Salisburylaan 133, Merelbeke 9820, Belgium
| | - Lieselot Y Hemeryck
- Ghent University, Faculty of Veterinary Medicine, Laboratory of Chemical Analysis, Salisburylaan 133, Merelbeke 9820, Belgium
| | - Anita Van Landschoot
- Ghent University, Faculty of Bioscience Engineering, Department of Biotechnology, Valentin Vaerwyckweg 1, Ghent 9000, Belgium
| | - Jessica Prenni
- Colorado State University, Proteomics & Metabolomics Facility, 2021 Campus Delivery, Fort Collins, CO 80523, USA
| |
Collapse
|
11
|
Abstract
Celiac disease (CD) is an immune-mediated gluten-sensitive enteropathy. Currently, it affects around 1% of world population, but it is constantly growing. Celiac patients have to follow a strict gluten-free (GF) diet. Beer is one of the most consumed beverages worldwide, but it is not safe for people with CD. It has a gluten content usually above the safe threshold (20 ppm), determined by the official method for hydrolyzed foods (R5-competitive-ELISA). The demand on the market for GF beers is increasingly growing. This review aims to provide a comprehensive overview of different strategies to produce GF beer, highlighting strengths and weaknesses of each approach and taking into account technological and sensory issues. GF cereals or pseudocereals have poor brewing attitudes (if used as main raw material) and give the beer unusual flavour. Instead, enzymatic treatments allow traditional brewing process followed by gluten content reduction. A survey on 185 GF-producing breweries (both industrial and craft) from all over the world have been considered to assess which approach is most used. Beers brewed with GF cereals and pseudocereals (used in well-balanced proportions) are more common than gluten-removed (GR) beers, obtained by enzymatic treatment.
Collapse
|
12
|
Prolyl endopeptidase from Aspergillus niger immobilized on a food-grade carrier for the production of gluten-reduced beer. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106987] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Fiedler KL, Cao W, Zhang L, Naziemiec M, Bedford B, Yin L, Smith N, Arbuckle M, Lopez-Hernandez A, Jackson LS. Detection of gluten in a pilot-scale barley-based beer produced with and without a prolyl endopeptidase enzyme. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:1151-1162. [DOI: 10.1080/19440049.2019.1616830] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Wanying Cao
- Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, IL, USA
| | - Liyun Zhang
- Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, IL, USA
| | - Magdalena Naziemiec
- Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, IL, USA
| | - Binaifer Bedford
- Center for Food Safety and Applied Nutrition, US FDA, Bedford Park, IL, USA
| | - Lanlan Yin
- Center for Food Safety and Applied Nutrition, US FDA, College Park, MD, USA
| | - Nicholas Smith
- Department of Food Science, University of Wisconsin, Madison, WI, USA
| | - Matthew Arbuckle
- Department of Food Science, University of Wisconsin, Madison, WI, USA
| | | | - Lauren S. Jackson
- Center for Food Safety and Applied Nutrition, US FDA, Bedford Park, IL, USA
| |
Collapse
|
14
|
Ceccaroni D, Marconi O, Sileoni V, Wray E, Perretti G. Rice malting optimization for the production of top-fermented gluten-free beer. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2726-2734. [PMID: 30350474 DOI: 10.1002/jsfa.9440] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/04/2018] [Accepted: 10/15/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND A safe method to obtain gluten-free beer led to the use of naturally gluten-free grains, such as rice, but the specific malting program for rice is long and requires a large amount of water, and the resulting beer showed a flat flavour profile. In this study, an optimization of the malting and brewing procedure is proposed to overcome the aforementioned issues. Different steeping conditions and kilning temperatures are considered, and a top-fermented beverage from rice malt is obtained for the first time. RESULTS The malting procedure has been optimized by assessing the use of short-time steeping as an alternate to long air rest to obtain sufficient moisture content in the green malt, saving water consumption. The malt obtained allowed a regular fermentation, as confirmed by the sensorial analysis, which did not reveal any off-flavours. The use of a top-fermenting yeast formed high content of higher alcohol and relatively low amount of esters. CONCLUSION This study confirms the potential of rice for the production of malt and beer. The optimized malting programme allowed water saving. The production of a top-fermented rice malt beer was a successful attempt to introduce a new flavoured product for consumption by individuals affected by coeliac disease. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dayana Ceccaroni
- University of Perugia, Department of Agricultural, Food and Environmental Science, via San Costanzo s.n.c., Perugia, Italy
- University of Perugia, Italian Brewing Research Centre, via San Costanzo s.n.c., Perugia, Italy
| | - Ombretta Marconi
- University of Perugia, Department of Agricultural, Food and Environmental Science, via San Costanzo s.n.c., Perugia, Italy
- University of Perugia, Italian Brewing Research Centre, via San Costanzo s.n.c., Perugia, Italy
| | - Valeria Sileoni
- University of Perugia, Department of Agricultural, Food and Environmental Science, via San Costanzo s.n.c., Perugia, Italy
- University of Perugia, Italian Brewing Research Centre, via San Costanzo s.n.c., Perugia, Italy
| | | | - Giuseppe Perretti
- University of Perugia, Department of Agricultural, Food and Environmental Science, via San Costanzo s.n.c., Perugia, Italy
- University of Perugia, Italian Brewing Research Centre, via San Costanzo s.n.c., Perugia, Italy
| |
Collapse
|
15
|
Watson H, Vanderputten D, Van Landschoot A, Decloedt A. Applicability of different brewhouse technologies and gluten-minimization treatments for the production of gluten-free (barley) malt beers: Pilot- to industrial-scale. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Ceccaroni D, Sileoni V, Marconi O, De Francesco G, Lee EG, Perretti G. Specialty rice malt optimization and improvement of rice malt beer aspect and aroma. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.09.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
De Francesco G, Sannino C, Sileoni V, Marconi O, Filippucci S, Tasselli G, Turchetti B. Mrakia gelida in brewing process: An innovative production of low alcohol beer using a psychrophilic yeast strain. Food Microbiol 2018; 76:354-362. [DOI: 10.1016/j.fm.2018.06.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023]
|
18
|
Niu C, Han Y, Wang J, Zheng F, Liu C, Li Y, Li Q. Malt derived proteins: Effect of protein Z on beer foam stability. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2018.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Fanari M, Forteschi M, Sanna M, Zinellu M, Porcu MC, Pretti L. Comparison of enzymatic and precipitation treatments for gluten-free craft beers production. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2018.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Fiedler KL, Panda R, Croley TR. Analysis of Gluten in a Wheat-Gluten-Incurred Sorghum Beer Brewed in the Presence of Proline Endopeptidase by LC/MS/MS. Anal Chem 2018; 90:2111-2118. [DOI: 10.1021/acs.analchem.7b04371] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Katherine L. Fiedler
- Center for Food Safety and
Applied Nutrition, U.S. Food and Drug Administration, 5001 Campus Drive, College Park, Maryland 20740, United States
| | - Rakhi Panda
- Center for Food Safety and
Applied Nutrition, U.S. Food and Drug Administration, 5001 Campus Drive, College Park, Maryland 20740, United States
| | - Timothy R. Croley
- Center for Food Safety and
Applied Nutrition, U.S. Food and Drug Administration, 5001 Campus Drive, College Park, Maryland 20740, United States
| |
Collapse
|
21
|
Colgrave ML, Byrne K, Howitt CA. Liquid Chromatography-Mass Spectrometry Analysis Reveals Hydrolyzed Gluten in Beers Crafted To Remove Gluten. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9715-9725. [PMID: 29047268 DOI: 10.1021/acs.jafc.7b03742] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
During brewing, gluten proteins may be solubilized, modified, complexed, hydrolyzed, and/or precipitate. Gluten fragments that persist in conventional beers render them unsuitable for people with celiac disease (CD) or gluten intolerance. Barley-based beers crafted to remove gluten using proprietary precipitation and/or application of enzymes, e.g. prolyl endopeptidases (PEP) that degrade the proline-rich gluten molecules, are available commercially. Gluten measurement in fermented products remains controversial. The industry standard, a competitive ELISA, may indicate gluten values <20 mg/kg, which is deemed safe for people with CD. However, in this study, liquid chromatography-mass spectrometry analyses revealed gluten peptides derived from hydrolyzed fragments, many >30 kDa in size. Barley gluten (hordeins) were detected in all beers analyzed with peptides representing all hordein classes detected in conventional beers but also, alarmingly, in many gluten-reduced beers. It is evident that PEP digestion was incomplete in several commercial beers, and peptides comprising missed cleavages were identified, warranting further optimization of PEP application in an industrial setting.
Collapse
Affiliation(s)
- Michelle L Colgrave
- CSIRO Agriculture and Food , 306 Carmody Road, St. Lucia, QLD 4067, Australia
| | - Keren Byrne
- CSIRO Agriculture and Food , 306 Carmody Road, St. Lucia, QLD 4067, Australia
| | - Crispin A Howitt
- CSIRO Agriculture and Food , GPO Box 1700, Canberra, ACT 2601, Australia
| |
Collapse
|
22
|
Di Ghionno L, Sileoni V, Marconi O, De Francesco G, Perretti G. Comparative study on quality attributes of gluten-free beer from malted and unmalted teff [Eragrostis tef (zucc.) trotter]. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.06.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|