1
|
Ruiz D, Uscátegui YL, Diaz L, Arrieta-Pérez RR, Gómez-Tejedor JA, Valero MF. Obtention and Study of Polyurethane-Based Active Packaging with Curcumin and/or Chitosan Additives for Fruits and Vegetables-Part I: Analysis of Morphological, Mechanical, Barrier, and Migration Properties. Polymers (Basel) 2023; 15:4456. [PMID: 38006180 PMCID: PMC10674213 DOI: 10.3390/polym15224456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Several polyurethane-formulated films with curcumin and/or chitosan additives for food packaging have been previously obtained. The study examines the effect of the additives on the film's morphological, mechanical, barrier, and migration properties. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), water contact angle, thermogravimetric and differential thermal analysis (TGA and DTGA), differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), oxygen transmission rate (OTR), water vapor transmission rate (WVTR), and the overall and specific migration tests were conducted. The results show that the presence of chitosan significantly increased the overall migration and mechanical properties, such as the elongation at break, tensile strength, and Young's modulus of most polyurethane formulations, while curcumin had a minor influence on the mechanical performance. Based on the results, formulations with curcumin but without chitosan are suitable for food packaging.
Collapse
Affiliation(s)
- David Ruiz
- Energy, Materials and Environment Group GEMA, School of Engineering, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá., Chía 140013, Colombia; (D.R.); (Y.L.U.); (R.R.A.-P.); (M.F.V.)
| | - Yomaira L. Uscátegui
- Energy, Materials and Environment Group GEMA, School of Engineering, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá., Chía 140013, Colombia; (D.R.); (Y.L.U.); (R.R.A.-P.); (M.F.V.)
| | - Luis Diaz
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá., Chía 140013, Colombia
| | - Rodinson R. Arrieta-Pérez
- Energy, Materials and Environment Group GEMA, School of Engineering, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá., Chía 140013, Colombia; (D.R.); (Y.L.U.); (R.R.A.-P.); (M.F.V.)
| | - José A. Gómez-Tejedor
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 Valencia, Spain;
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain
| | - Manuel F. Valero
- Energy, Materials and Environment Group GEMA, School of Engineering, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá., Chía 140013, Colombia; (D.R.); (Y.L.U.); (R.R.A.-P.); (M.F.V.)
| |
Collapse
|
2
|
Hou T, Ma S, Wang F, Wang L. A comprehensive review of intelligent controlled release antimicrobial packaging in food preservation. Food Sci Biotechnol 2023; 32:1459-1478. [PMID: 37637837 PMCID: PMC10449740 DOI: 10.1007/s10068-023-01344-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 08/29/2023] Open
Abstract
Intelligent responsive packaging provides informative feedback or control the release of active substances like antimicrobial agents in response to stimuli in food or the environment to ensure food safety. This paper provides an overview of two types of intelligent packaging, information-responsive and intelligent controlled-release, focusing on the recent research progress of intelligent controlled-release antimicrobial packaging with enzyme, pH, relative humidity, temperature, and light as triggering factors. It also summarizes the current status of application in different food categories, as well as the challenges and future prospects. Intelligent controlled-release technology aims to optimize the antimicrobial effect and ensure the quality of food products by synchronizing the release of active substances with food preservation needs through sensing stimuli, which is an innovative and challenging packaging technology. The paper seeks to provide a reference for the research and industrial development of responsive intelligent packaging and controlled-release packaging applications in food.
Collapse
Affiliation(s)
- Tianmeng Hou
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122 China
| | - Shufeng Ma
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Feijie Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122 China
| | - Liqiang Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
3
|
Hu J, Zhu H, Feng Y, Yu M, Xu Y, Zhao Y, Zheng B, Lin J, Miao W, Zhou R, Cullen PJ. Emulsions containing composite (clove, oregano, and cinnamon) essential oils: Phase inversion preparation, physicochemical properties and antibacterial mechanism. Food Chem 2023; 421:136201. [PMID: 37105117 DOI: 10.1016/j.foodchem.2023.136201] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/05/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Natural essential oils (EOs), especially those combining different individual EOs (also termed composite EOs) with enhanced performance, are becoming healthy, market-sought food preservatives/additives. This study aims to provide insights into the challenge regarding EOs processing due to their low solubility and the elusive mechanism under the enhanced bio-reactivity of composite EOs. A unique oil/water interacting network was created by phase-inversion processing, which enhances EO solubilization and emulsification to form composite EO formulations (EOFs) containing ordinary cinnamon, oregano and clove EOs. These EOFs mainly contained cinnamaldehyde, carvacrol and eugenol and exhibited excellent post-storage stability. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging ability of EOFs (at 15.880 μL/mL) was > 88%, and the Ferric reducing antioxidant power (FRAP) was 1.8 mM FeSO4·7H2O. The minimum inhibitory concentration (MIC) of EOFs against E. coli and S. aureus was ∼7.940 μL/mL. The EOFs could cause quick deterioration of bacterial structures, demonstrating high efficacy in bacteria-killing and anti-biofilm formation.
Collapse
Affiliation(s)
- Jiajie Hu
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Hangxin Zhu
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Yuwei Feng
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Mijia Yu
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Yueqiang Xu
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Yadong Zhao
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Bin Zheng
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Jiheng Lin
- Zhoushan Institute for Food and Drug Control, 316022 Zhoushan, China
| | - Wenhua Miao
- Department of Food Science and Pharmaceutics, Zhejiang Ocean University, 316022 Zhoushan, China.
| | - Rusen Zhou
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW 2006, Australia.
| | - Patrick J Cullen
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Manzoor A, Khan S, Dar AH, Pandey VK, Shams R, Ahmad S, Jeevarathinam G, Kumar M, Singh P, Pandiselvam R. Recent insights into green antimicrobial packaging towards food safety reinforcement: A review. J Food Saf 2023. [DOI: 10.1111/jfs.13046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- Arshied Manzoor
- Department of Post‐Harvest Engineering and Technology Faculty of Agricultural Sciences Aligarh India
| | - Sadeeya Khan
- Department of Food Science, Faculty of Food Science and Technology University Putra Malaysia Serdang Malaysia
| | - Aamir Hussain Dar
- Department of Food Technology Islamic University of Science and Technology Awantipora Kashmir India
| | - Vinay Kumar Pandey
- Department of Biotechnology Axis Institute of Higher Education Kanpur Uttar Pradesh India
- Department of Bioengineering Integral University Lucknow Uttar Pradesh India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition Lovely Professional University Phagwara Punjab India
| | - Saghir Ahmad
- Department of Post‐Harvest Engineering and Technology Faculty of Agricultural Sciences Aligarh India
| | - G. Jeevarathinam
- Department of Food Technology Hindusthan College of Engineering and Technology Coimbatore India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division ICAR ‐ Central Institute for Research on Cotton Technology Mumbai India
| | - Punit Singh
- Institute of Engineering and Technology, Department of Mechanical Engineering GLA University Mathura Mathura India
| | - R. Pandiselvam
- Physiology, Biochemistry and Post‐Harvest Technology Division ICAR –Central Plantation Crops Research Institute Kasaragod Kerala India
| |
Collapse
|
5
|
Self-assembled all-polysaccharide hydrogel film for versatile paper-based food packaging. Carbohydr Polym 2021; 271:118425. [PMID: 34364566 DOI: 10.1016/j.carbpol.2021.118425] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022]
Abstract
Paper-based packaging generally has poor performances in the gas/oil barriers. This work reports a paper-based packaging material prepared via the modification of conventional papers with TEMPO-oxidized cellulose nanofibers (TOCN)/cationic guar gum (CGG) hydrogel film. Specifically, the hydrogel film modification was realized through a layer-by-layer deposition on paper. The hydrogel film modification significantly improved the mechanical and barrier properties of the paper. Specifically, the 4-layer hydrogel film modified paper showed a tensile strength of 34.03 MPa and a burst strength of 510 kPa, respectively. In contrast, the unmodified paper exhibited a tensile strength of 26.78 MPa and a bursting strength of 388 kPa. The packaging performance of this TOCN/CGG hydrogel film modified paper was demonstrated via the fresh mooncake packaging test. Such hydrogel film not only provided the oil resistance, but also maintained the mooncake's freshness. This material can serve as a green and sustainable food packaging.
Collapse
|
6
|
Ilhan I, Kaya M, Turan D, Gunes G, Guner FS, Kılıç A. Thermoresponsive polyurethane films for packaging applications: Effects of film formulation on their properties. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Ahari H, Soufiani SP. Smart and Active Food Packaging: Insights in Novel Food Packaging. Front Microbiol 2021; 12:657233. [PMID: 34305829 PMCID: PMC8299788 DOI: 10.3389/fmicb.2021.657233] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/05/2021] [Indexed: 12/02/2022] Open
Abstract
The demand for more healthy foods with longer shelf life has been growing. Food packaging as one of the main aspects of food industries plays a vital role in meeting this demand. Integration of nanotechnology with food packaging systems (FPSs) revealed promising promotion in foods’ shelf life by introducing novel FPSs. In this paper, common classification, functionalities, employed nanotechnologies, and the used biomaterials are discussed. According to our survey, FPSs are classified as active food packaging (AFP) and smart food packaging (SFP) systems. The functionality of both systems was manipulated by employing nanotechnologies, such as metal nanoparticles and nanoemulsions, and appropriate biomaterials like synthetic polymers and biomass-derived biomaterials. “Degradability and antibacterial” and “Indicating and scavenging” are the well-known functions for AFP and SFP, respectively. The main purpose is to make a multifunctional FPS to increase foods’ shelf life and produce environmentally friendly and smart packaging without any hazard to human life.
Collapse
Affiliation(s)
- Hamed Ahari
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Solmaz P Soufiani
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Xing J, Dang W, Li J, Huang J. Photo/thermal response of polypyrrole-modified calcium alginate/gelatin microspheres based on helix-coil structural transition and the controlled release of agrochemicals. Colloids Surf B Biointerfaces 2021; 204:111776. [PMID: 33930732 DOI: 10.1016/j.colsurfb.2021.111776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 02/04/2023]
Abstract
Responsive controlled-release systems can not only improve the efficiency of agrochemical utilization but also increase crop yield and reduce environmental pollution caused by excessive use of agrochemicals. In this paper, the helix-coil structural transition of gelatin was adopted to construct a novel stimuli-responsive controlled-release system called polypyrrole/Ca-alginate/gelatin (PPy/Ca-alginate/Gel). In PPy/Ca-alginate/Gel, Ca-alginate and gelatin form a semi-interpenetrating network in which uncross-linked gelatin can undergo a free helix-coil structural transition due to the photothermal effect of PPy. The structural transition of gelatin will lead to changes in the functional groups and microstructure of semi-interpenetrating hydrogels and furthermore achieve the release of template agrochemical molecules embedded in hydrogels. By using carbendazim as a template molecule, the photothermal conversion and controlled release of PPy/Ca-alginate/Gel were systematically studied. After 600 s of light irradiation, its temperature could be increased by 17 ℃. The release of carbendazim in microspheres reached 91.8 % after 8 h of light irradiation, while it was only 13.3 % in the dark. The results indicated that PPy/Ca-alginate/Gel have excellent controlled-release and sustained-release properties and broad application potential in agriculture.
Collapse
Affiliation(s)
- Jianyu Xing
- School of Water and Environment, Chang'an University, Xi'an, Shaanxi, 710054, PR China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Xi'an, 710054, PR China.
| | - Wenwen Dang
- School of Water and Environment, Chang'an University, Xi'an, Shaanxi, 710054, PR China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Xi'an, 710054, PR China
| | - Jingchang Li
- School of Water and Environment, Chang'an University, Xi'an, Shaanxi, 710054, PR China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Xi'an, 710054, PR China
| | - Jumei Huang
- School of Water and Environment, Chang'an University, Xi'an, Shaanxi, 710054, PR China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Xi'an, 710054, PR China
| |
Collapse
|
9
|
Brzeska J, Tercjak A, Sikorska W, Mendrek B, Kowalczuk M, Rutkowska M. Degradability of Polyurethanes and Their Blends with Polylactide, Chitosan and Starch. Polymers (Basel) 2021; 13:polym13081202. [PMID: 33917712 PMCID: PMC8068122 DOI: 10.3390/polym13081202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 01/12/2023] Open
Abstract
One of the methods of making traditional polymers more environmentally friendly is to modify them with natural materials or their biodegradable, synthetic equivalents. It was assumed that blends with polylactide (PLA), polysaccharides: chitosan (Ch) and starch (St) of branched polyurethane (PUR) based on synthetic poly([R,S]-3-hydroxybutyrate) (R,S-PHB) would degrade faster in the processes of hydrolysis and oxidation than pure PUR. For the sake of simplicity in the publication, all three modifiers: commercial PLA, Ch created by chemical modification of chitin and St are called bioadditives. The samples were incubated in a hydrolytic and oxidizing environment for 36 weeks and 11 weeks, respectively. The degradation process was assessed by observation of the chemical structure as well as the change in the mass of the samples, their molecular weight, surface morphology and thermal properties. It was found that the PUR samples with the highest amount of R,S-PHB and the lowest amount of polycaprolactone triol (PCLtriol) were degraded the most. Moreover, blending with St had the greatest impact on the susceptibility to degradation of PUR. However, the rate of weight loss of the samples was low, and after 36 weeks of incubation in the hydrolytic solution, it did not exceed 7% by weight. The weight loss of Ch and PLA blends was even smaller. However, a significant reduction in molecular weight, changes in morphology and changes in thermal properties indicated that the degradation of the samples should occur quickly after this time. Therefore, when using these polyurethanes and their blends, it should be taken into account that they should decompose slowly in their initial life. In summary, this process can be modified by changing the amount of R,S-PHB, the degree of cross-linking, and the type and amount of second blend component added (bioadditives).
Collapse
Affiliation(s)
- Joanna Brzeska
- Department of Industrial Product Quality and Chemistry, Gdynia Maritime University, 83 Morska Street, 81-225 Gdynia, Poland;
- Correspondence:
| | - Agnieszka Tercjak
- Group ‘Materials+Technologies’ (GMT), Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 Donostia-San Sebastián, Spain;
| | - Wanda Sikorska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Street, 41-819 Zabrze, Poland; (W.S.); (B.M.); (M.K.)
| | - Barbara Mendrek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Street, 41-819 Zabrze, Poland; (W.S.); (B.M.); (M.K.)
| | - Marek Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Street, 41-819 Zabrze, Poland; (W.S.); (B.M.); (M.K.)
| | - Maria Rutkowska
- Department of Industrial Product Quality and Chemistry, Gdynia Maritime University, 83 Morska Street, 81-225 Gdynia, Poland;
| |
Collapse
|
10
|
Chen X, Long Q, Zhu L, Lu LX, Sun LN, Pan L, Lu LJ, Yao WR. A Double-Switch Temperature-Sensitive Controlled Release Antioxidant Film Embedded with Lyophilized Nanoliposomes Encapsulating Rosemary Essential Oils for Solid Food. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E4011. [PMID: 31816839 PMCID: PMC6926696 DOI: 10.3390/ma12234011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 11/23/2022]
Abstract
In order to match the solid food oxidation during logistics and storage process under severe high temperature, a double-switch temperature-sensitive controlled release antioxidant film embedded with lyophilized nanoliposomes encapsulating rosemary essential oils (REOs) was prepared. The double switch temperature at 35.26 and 56.98 °C was achieved by development of a temperature sensitive polyurethane (TSPU) film. With biaxially oriented polyethylene terephthalate (BOPET) as a barrier layer, the intelligent complex film was prepared via coating the TSPU embedded with lyophilized nanoliposomes encapsulating REOs on BOPET. The results indicate that the REO is well encapsulated in nanoliposomes with encapsulation efficiency (EE) of 67.3%, high stability and lasting antioxidant effect during 60 days. The incorporation of lyophilized nanoliposomes containing REOs into TSPU remains the double-switch temperature-sensitive characteristic of the prepared TSPU. In agreement with porosity and WVTR results, the diffusion coefficient (D) of the antioxidant complex film sharply increases respectively at two switching temperatures, indicating that the intelligent double-switch temperature-sensitive controlled release property is functioning. Furthermore, compared with films directly added with REO, the lower Ds of films added with lyophilized nanoliposomes encapsulating REOs provides a longer-lasting antioxidant activity. Thus, the acquired controlled release antioxidant film sensitive to temperature at 39.56 and 56.00 °C can be potentially applied for protection of solid food during distribution and storage process under severe high temperatures.
Collapse
Affiliation(s)
- Xi Chen
- Department of Packaging Engineering, Jiangnan University, Wuxi 214122, China (L.-N.S.); (L.P.)
| | - Qing Long
- Department of Packaging Engineering, Jiangnan University, Wuxi 214122, China (L.-N.S.); (L.P.)
| | - Lei Zhu
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Li-Xin Lu
- Department of Packaging Engineering, Jiangnan University, Wuxi 214122, China (L.-N.S.); (L.P.)
- Key Laboratory of Advanced Food Manufacturing Equipment and Technology of Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Li-Nan Sun
- Department of Packaging Engineering, Jiangnan University, Wuxi 214122, China (L.-N.S.); (L.P.)
| | - Liao Pan
- Department of Packaging Engineering, Jiangnan University, Wuxi 214122, China (L.-N.S.); (L.P.)
- Key Laboratory of Advanced Food Manufacturing Equipment and Technology of Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Li-Jing Lu
- Department of Packaging Engineering, Jiangnan University, Wuxi 214122, China (L.-N.S.); (L.P.)
- Key Laboratory of Advanced Food Manufacturing Equipment and Technology of Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Wei-Rong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| |
Collapse
|