1
|
Han Z, Ye ZQ, Xu XD, Zeng XA, Liu JY, Woo MW, Luo DH. Mechanistic study on the effect of hydroxypropyl corn starch, guar gum and compound phosphates on the freeze-thaw quality of quick-frozen kuey teow. Int J Biol Macromol 2024; 279:135237. [PMID: 39218190 DOI: 10.1016/j.ijbiomac.2024.135237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/11/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Kuey teow is one of the delicacies of Guangdong, China and is a gluten-free noodle dish made from rice. It has a short storage period and extending the shelf life by quick freezing induces quality deterioration due to temperature fluctuations. To improve its freeze-thaw frozen storage quality, this paper examined the effects of hydroxypropyl corn starch (HCS), guar gum (GG), and compound phosphates (CP) on the quality of quick-frozen kuey teow during freeze-thaw cycles. The mechanism was investigated by identifying changes in the moisture status, aging degree of the starch, and textural and cooking characteristics. The results showed that all three additions improved the toughness, chewiness and steaming characteristics of the kuey teow, with CP significantly enhancing chewiness. XRD and FTIR results revealed that GG more significantly inhibited the decrease of starch crystallinity, while HCS inhibited starch aging. GG, HCS and CP all improved the hydration characteristics and water holding capacity of rice starch. GG enhances the ability of starch to bind more tightly with water, resulting in a more uniform water distribution and a more continuous and tight structure of the kuey teow. This study will provide a theoretical basis for compounding and optimizing the quick-freezing of kuey teow.
Collapse
Affiliation(s)
- Zhong Han
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory 6 (Hanjiang Laboratory), Chaozhou 521000, China; College of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Zi-Qi Ye
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xin-Dong Xu
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xin-An Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Jin-Yu Liu
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory 6 (Hanjiang Laboratory), Chaozhou 521000, China
| | - Meng-Wai Woo
- Department of Chemical and Materials Engineering, University of Auckland, Auckland, New Zealand
| | - Dong-Hui Luo
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory 6 (Hanjiang Laboratory), Chaozhou 521000, China; College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China.
| |
Collapse
|
2
|
Di Renzo T, Trivisonno MC, Nazzaro S, Reale A, Messia MC. Effect of Different Hydrocolloids on the Qualitative Characteristics of Fermented Gluten-Free Quinoa Dough and Bread. Foods 2024; 13:1382. [PMID: 38731756 PMCID: PMC11083858 DOI: 10.3390/foods13091382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
The aim of this research was to optimize the production process of fermented gluten-free quinoa bread. To this end, the effect of different hydrocolloids on the technological, fermentative, and nutritional properties of quinoa-based gluten-free doughs and breads was evaluated. For this purpose, 3% of four different hydrocolloids (sodium alginate, k-carrageenan, xanthan gum, and hydroxypropyl methylcellulose (HPMC)) were used in gluten-free doughs composed of 50% quinoa flour, 20% rice flour, and 30% potato starch. The rheological and fermentative properties of the doughs were evaluated, as well as the chemical composition, specific volume, crust and crumb color, and alveolar structure profile of gluten-free breads. The results highlighted the differences in dough rheology during mixing and fermentation of the doughs. In particular, HPMC showed a good gas retention (93%) during the fermentation of quinoa dough by registering the highest maximum dough development height (Hm). The gluten-free quinoa breads obtained were characterized by significantly different quality parameters (p < 0.05). The use of 3% HPMC resulted in breads with the lowest baking loss, the highest volume, and the most open crumb structure.
Collapse
Affiliation(s)
- Tiziana Di Renzo
- Institute of Food Sciences, National Research Council (ISA-CNR), Via Roma 64, 83100 Avellino, Italy; (T.D.R.); (S.N.)
| | - Maria Carmela Trivisonno
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (M.C.T.); (M.C.M.)
| | - Stefania Nazzaro
- Institute of Food Sciences, National Research Council (ISA-CNR), Via Roma 64, 83100 Avellino, Italy; (T.D.R.); (S.N.)
| | - Anna Reale
- Institute of Food Sciences, National Research Council (ISA-CNR), Via Roma 64, 83100 Avellino, Italy; (T.D.R.); (S.N.)
| | - Maria Cristina Messia
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (M.C.T.); (M.C.M.)
| |
Collapse
|
3
|
Maghsoud M, Heshmati A, Taheri M, Emamifar A, Esfarjani F. The influence of carboxymethyl cellulose and hydroxypropyl methylcellulose on physicochemical, texture, and sensory characteristics of gluten-free pancake. Food Sci Nutr 2024; 12:1304-1317. [PMID: 38370078 PMCID: PMC10867465 DOI: 10.1002/fsn3.3844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 02/20/2024] Open
Abstract
In this study, gluten-free pancakes were prepared using rice flour and potato starch at a ratio of 50:50. Due to a lack of gluten networks in these ingredients, the hydrocolloid gums including carboxymethyl cellulose (CMC) at 0.5%, 1%, and 1.5% and hydroxypropyl methylcellulose (HPMC) at 1%, 2%, and 3% were added to improve the quality of the final products. The effects of these hydrocolloid gums on the physicochemical, textural, and sensory properties of the gluten-free pancakes were evaluated. Pancakes prepared with wheat flour were used as a control sample. The results showed that the addition of both gums decreased the hardness and chewiness of the gluten-free pancakes while increasing the springiness and their moisture content. Increasing the concentration of the gums resulted in an L* value (lightness) reduction, which produced a darker crust on the pancakes. Moreover, the gluten-free pancakes containing CMC and HPMC had higher specific volumes than the gluten-free samples made without CMC and HPMC. From a sensory point of view, the samples containing 2%, 3% HPMC and 1% CMC received the highest overall acceptance score. Thus, CMC and HPMC can be used as improvers in gluten-free pancakes.
Collapse
Affiliation(s)
- Maryam Maghsoud
- Department of Nutrition and Food Hygiene, School of Medicine, Nutrition Health Research CenterHamadan University of Medical SciencesHamadanIran
| | - Ali Heshmati
- Department of Nutrition and Food Hygiene, School of Medicine, Nutrition Health Research CenterHamadan University of Medical SciencesHamadanIran
| | - Mehdi Taheri
- Department of Nutrition and Food Hygiene, School of Medicine, Nutrition Health Research CenterHamadan University of Medical SciencesHamadanIran
| | - Aryou Emamifar
- Department of Food Science and Technology, College of Food IndustryBu‐ Ali Sina UniversityHamedanIran
| | - Fatemeh Esfarjani
- Research Department of Food and Nutrition Policy and Planning, Faculty of Nutrition Sciences and Food Technology, National Nutrition & Food Technology Research Institute (NNFTRI)Shahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
4
|
Liang Y, Liu H, Li K, Liu M, Zhang X, Wu X, Chen S, He B, Wang J. Effect of sanxan gel on the quality of salt-free noodles during cooking. J Food Sci 2023; 88:1790-1799. [PMID: 36965112 DOI: 10.1111/1750-3841.16511] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 03/27/2023]
Abstract
The effect and mechanism of sanxan on the quality of salt-free noodles (SFNs) were investigated from different cooking stages (initial stage, 1 min; optimum cooking time, OCT; overcooked time, OT). The results showed significant changes in the cooking process with the addition of 1.2% sanxan. The OCT for noodles with 1.2% sanxan (experimental group, EG) was extended from 5 to 7 min compared to the non-added noodles (blank group, BG) and 1.5% salt-containing noodles (control group, CG). The hardness and adhesiveness of BG, EG, and CG all decreased significantly during cooking. In contrast, the springiness, maximum tensile strength, and tensile fracture distance trended first to increase and then to decrease. At OCT, EG had the highest hardness (3971.69 ± 94.49 g), adhesiveness (372.26 ± 33.56 g s), and maximum tensile strength (41.51 ± 2.76 g), which remained large even after overcooking. However, those in BG and CG showed a significant reduction (p < 0.05). The proportion of free water increased progressively as cooking progressed, with CG showing the largest increase, from 82.29% to 91.19%, whereas EG showed the smallest increase, from 78.34% to 86.02%. During the cooking process, the addition of sanxan delayed the water migration, whereas salt promoted it. Sensory evaluation showed that EG was smoother in appearance than BG and tasted malty with a slight stickiness. Moreover, EG had the smallest k1 and C∞ values. Thus, sanxan is an effective additive to enhance the quality of SFNs and can replace the role of salt in noodles in some properties, which is beneficial for the development of SFNs.
Collapse
Affiliation(s)
- Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Hao Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Kaifang Li
- Zhengzhou Synear Food Co., Ltd., Zhengzhou, China
| | - Mei Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Xia Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Xingquan Wu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Shihua Chen
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Baoshan He
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
5
|
Emadzadeh B, Naji-Tabasi S, Bostan A, Ghorani B. An insight into Iranian natural hydrocolloids: Applications and challenges in health-promoting foods. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
6
|
Mi X, Hao S, Zheng Y, Yang X. Effects of Addition of Inulin and β‐glucan on Selected Physicochemical and Thermal Properties of Ultrasonic Modified Potato Flour. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Xue Mi
- College of Food Science and Engineering Inner Mongolia Agricultural University Hohhot Inner Mongolia China
| | - Suying Hao
- College of Food Science and Engineering Inner Mongolia Agricultural University Hohhot Inner Mongolia China
| | - Ying Zheng
- College of Food Science and Engineering Inner Mongolia Agricultural University Hohhot Inner Mongolia China
| | - Xiaoqing Yang
- College of Food Science and Engineering Inner Mongolia Agricultural University Hohhot Inner Mongolia China
| |
Collapse
|
7
|
Tamilselvan T, Sharma S, Thomas PE, Goyal K, Prabhasankar P. Role of hydrocolloids in improving the rheology, quality characteristics and microstructure of gluten free proso millet bread. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- T. Tamilselvan
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Flour milling Baking and Confectionery Technology Department, CSIR‐Central Food Technological Research Institute Mysuru 570020 Karnataka India
| | - Shivani Sharma
- Flour milling Baking and Confectionery Technology Department, CSIR‐Central Food Technological Research Institute Mysuru 570020 Karnataka India
| | - Pinchu Elizabath Thomas
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Flour milling Baking and Confectionery Technology Department, CSIR‐Central Food Technological Research Institute Mysuru 570020 Karnataka India
| | - Kanchan Goyal
- Flour milling Baking and Confectionery Technology Department, CSIR‐Central Food Technological Research Institute Mysuru 570020 Karnataka India
| | - Pichan Prabhasankar
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Flour milling Baking and Confectionery Technology Department, CSIR‐Central Food Technological Research Institute Mysuru 570020 Karnataka India
| |
Collapse
|
8
|
Srikanlaya C, Zhou W, Therdthai N, Ritthiruangdej P. Effect of hydroxypropyl methylcellulose, protein and fat on predicted glycemic index and antioxidant property of gluten‐free bread from rice flour. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Weibiao Zhou
- Department of Food Science and Technology National University of Singapore, 2 Science Drive 2 Singapore
| | - Nantawan Therdthai
- Department of Product Development, Faculty of Agro‐Industry Kasetsart University Bangkok
| | | |
Collapse
|
9
|
Balbinot Filho CA, Teixeira RF, Azevedo ML, Gautério FGA. Obtaining and characterization of olive (
Olea europaea
L.) pomace flour: an investigation on its applicability in gluten‐free cake formulations added with xanthan. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Clóvis A. Balbinot Filho
- Faculdade de Engenharia de Alimentos, Universidade Federal do Pampa, 96460‐000 Bagé RS Brazil
- Present address: Departamento de Engenharia Química e de Alimentos, EQA, Universidade Federal de Santa Catarina, 88040‐900 Florianópolis SC Brazil
| | - Renata F. Teixeira
- Faculdade de Engenharia de Alimentos, Universidade Federal do Pampa, 96460‐000 Bagé RS Brazil
- Present address: Departamento de Engenharia Química e de Alimentos, EQA, Universidade Federal de Santa Catarina, 88040‐900 Florianópolis SC Brazil
| | - Miriane L. Azevedo
- Faculdade de Engenharia de Alimentos, Universidade Federal do Pampa, 96460‐000 Bagé RS Brazil
| | - Fernanda G. A. Gautério
- Faculdade de Engenharia de Alimentos, Universidade Federal do Pampa, 96460‐000 Bagé RS Brazil
| |
Collapse
|
10
|
Ari Akin P, Demirkesen I, Bean SR, Aramouni F, Boyaci IH. Sorghum Flour Application in Bread: Technological Challenges and Opportunities. Foods 2022; 11:foods11162466. [PMID: 36010465 PMCID: PMC9407531 DOI: 10.3390/foods11162466] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/13/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Sorghum has a long history of use in the production of different types of bread. This review paper discusses different types of bread and factors that affect the physicochemical, technological, rheological, sensorial, and nutritional properties of different types of sorghum bread. The main types of bread are unleavened (roti and tortilla), flatbread with a pre-ferment (injera and kisra), gluten-free and sorghum bread with wheat. The quality of sorghum flour, dough, and bread can be improved by the addition of different ingredients and using novel and traditional methods. Furthermore, extrusion, high-pressure treatment, heat treatment, and ozonation, in combination with techniques such as fermentation, have been reported for increasing sorghum functionality.
Collapse
Affiliation(s)
- Pervin Ari Akin
- Field Crops Central Research Institute, Ankara 06170, Turkey
- Department of Food Engineering, Hacettepe University, Beytepe, Ankara 06800, Turkey
- Correspondence:
| | - Ilkem Demirkesen
- Department of Animal Health, Food and Feed Research, General Directorate of Agricultural Research and Policies, Ministry of Agriculture and Forestry, Ankara 06800, Turkey or
| | - Scott R. Bean
- Center for Grain and Animal Health Research, USDA-ARS, 1515 College Ave., Manhattan, KS 66502, USA
| | - Fadi Aramouni
- Center for Grain and Animal Health Research, USDA-ARS, 1515 College Ave., Manhattan, KS 66502, USA
| | - Ismail Hakkı Boyaci
- Department of Food Engineering, Hacettepe University, Beytepe, Ankara 06800, Turkey
| |
Collapse
|
11
|
Megusar P, Stopar D, Poklar Ulrih N, Dogsa I, Prislan I. Thermal and Rheological Properties of Gluten-Free, Starch-Based Model Systems Modified by Hydrocolloids. Polymers (Basel) 2022; 14:3242. [PMID: 36015498 PMCID: PMC9415605 DOI: 10.3390/polym14163242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 12/05/2022] Open
Abstract
Obtaining good-quality gluten-free products represents a technological challenge; thus, it is important to understand how and why the addition of hydrocolloids influences the properties of starch-based products. To obtain insight into the physicochemical changes imparted by hydrocolloids on gluten-free dough, we prepared several suspensions with different corn starch/potato starch/hydroxpropyl methyl cellulose/xanthan gum/water ratios. Properties of the prepared samples were determined by differential scanning calorimetry and rheometry. Samples with different corn/potato starch ratios exhibited different thermal properties. Xanthan gum and HPMC (hydroxypropyl methyl cellulose) exhibited a strong influence on the rheological properties of the mixtures since they increased the viscosity and elasticity. HPMC and xanthan gum increased the temperature of starch gelatinization, as well as they increased the viscoelasticity of the starch model system. Although the two hydrocolloids affected the properties of starch mixtures in the same direction, the magnitude of their effects was different. Our results indicate that water availability, which plays a crucial role in the starch gelatinization process, could be modified by adding hydrocolloids such as, hydroxypropyl methyl cellulose and xanthan gum. By adding comparatively small amounts of the studied hydrocolloids to starch, one can achieve similar thermo-mechanical effects by the addition of gluten. Understanding these effects of hydrocolloids could contribute to the development of better quality gluten-free bread with optimized ingredient content.
Collapse
Affiliation(s)
- Polona Megusar
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - David Stopar
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Natasa Poklar Ulrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Iztok Dogsa
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Iztok Prislan
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Šmídová Z, Rysová J. Gluten-Free Bread and Bakery Products Technology. Foods 2022; 11:foods11030480. [PMID: 35159630 PMCID: PMC8834121 DOI: 10.3390/foods11030480] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Gluten, a protein fraction from wheat, rye, barley, oats, their hybrids and derivatives, is very important in baking technology. The number of people suffering from gluten intolerance is growing worldwide, and at the same time, the need for foods suitable for a gluten-free diet is increasing. Bread and bakery products are an essential part of the daily diet. Therefore, new naturally gluten-free baking ingredients and new methods of processing traditional ingredients are sought. The study discusses the use of additives to replace gluten and ensure the stability and elasticity of the dough, to improve the nutritional quality and sensory properties of gluten-free bread. The current task is to extend the shelf life of gluten-free bread and bakery products and thus extend the possibility of its distribution in a fresh state. This work is also focused on various technological possibilities of gluten-free bread and the preparation of bakery products.
Collapse
|
13
|
Sharma S, Sharma R, Singh B. Influence of bioprocessing treatments on phytochemical and functional properties,
in vitro
digestibility, protein secondary structure and morphological characteristics of Indian barnyard millet flour. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Savita Sharma
- Department of Food Science and Technology Punjab Agricultural University Ludhiana India
| | - Rajan Sharma
- Department of Food Science and Technology Punjab Agricultural University Ludhiana India
| | - Baljit Singh
- Department of Food Science and Technology Punjab Agricultural University Ludhiana India
| |
Collapse
|
14
|
Tu J, Brennan MA, Hui X, Wang R, Peressini D, Bai W, Cheng P, Brennan CS. Utilisation of dried shiitake, black ear and silver ear mushrooms into sorghum biscuits manipulates the predictive glycaemic response in relation to variations in biscuit physical characteristics. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Juncai Tu
- School of Science RMIT University GPO Box 2474 Melbourne VIC 3001 Australia
- Department of Wine, Food and Molecular Biosciences Lincoln University PO Box 84, Lincoln Christchurch 7647 New Zealand
| | - Margaret Anne Brennan
- Department of Wine, Food and Molecular Biosciences Lincoln University PO Box 84, Lincoln Christchurch 7647 New Zealand
| | - Xiaodan Hui
- Department of Wine, Food and Molecular Biosciences Lincoln University PO Box 84, Lincoln Christchurch 7647 New Zealand
| | - Ruibin Wang
- Department of Wine, Food and Molecular Biosciences Lincoln University PO Box 84, Lincoln Christchurch 7647 New Zealand
| | | | - Weidong Bai
- College of Light Industry and Food Sciences Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| | - Ping Cheng
- College of Light Industry and Food Sciences Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| | - Charles Stephen Brennan
- School of Science RMIT University GPO Box 2474 Melbourne VIC 3001 Australia
- Department of Wine, Food and Molecular Biosciences Lincoln University PO Box 84, Lincoln Christchurch 7647 New Zealand
| |
Collapse
|
15
|
Culetu A, Duta DE, Papageorgiou M, Varzakas T. The Role of Hydrocolloids in Gluten-Free Bread and Pasta; Rheology, Characteristics, Staling and Glycemic Index. Foods 2021; 10:foods10123121. [PMID: 34945672 PMCID: PMC8701227 DOI: 10.3390/foods10123121] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 11/25/2022] Open
Abstract
Hydrocolloids are important ingredients controlling the quality characteristics of the final bakery products. Hydrocolloids are frequently used in gluten-free (GF) recipes, mimicking some rheological properties of gluten, improving dough properties, delaying starch retrogradation and improving bread texture, appearance and stability. Hydrocolloids addition increases viscosity and incorporation of air into the GF dough/batter. Besides their advantages for the technological properties of the GF bread, hydrocolloids addition may impact the glycemic index (GI) of the final product, thus answering the demand of people requiring products with low GI. This review deals with the application of hydrocolloids in GF bread and pasta with a focus on their effect on dough rheology, bread hardness, specific volume, staling and GI.
Collapse
Affiliation(s)
- Alina Culetu
- National Institute of Research & Development for Food Bioresources, IBA Bucharest, 6 Dinu Vintila Street, 021102 Bucharest, Romania; (A.C.); (D.E.D.)
| | - Denisa Eglantina Duta
- National Institute of Research & Development for Food Bioresources, IBA Bucharest, 6 Dinu Vintila Street, 021102 Bucharest, Romania; (A.C.); (D.E.D.)
| | - Maria Papageorgiou
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, 57400 Thessaloniki, Greece;
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece
- Correspondence: ; Tel.: +30-2721045279
| |
Collapse
|
16
|
Krasina I, Kurakina A, Viktorova E, Strelkova A. The effect of dietary fibers on the viscoelastic properties of the gluten-free cookie dough. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213406010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The significance of inclusion of associated dietary fibres in various amounts to the formulations of gluten-free rice test mixtures based on rheological profile of hydrated fibrous-flour composite mixtures was investigated. To assess the viscoelasticity of fiber-enriched rice-based test matrices, dual fundamental (dynamic oscillatory and creep recovery tests) and empirical (consistency and viscometric profile) rheological approaches were adopted. The obtained functional variables were analyzed for the dependence on the hydration of the dough and dietary fibres, as well as for the correlations within the parameters of both small and large deformation tests. The aqueous competition of fiber macromolecules, exhibiting different water binding and gelling capacities, led to additive, synergistic and/or antagonistic effects on the basic rheological properties.
Collapse
|