1
|
Alias AHD, Shafie MH. Star anise (Illicium verum Hook. F.) polysaccharides: Potential therapeutic management for obesity, hypertension, and diabetes. Food Chem 2024; 460:140533. [PMID: 39053285 DOI: 10.1016/j.foodchem.2024.140533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
This study explores the extraction of polysaccharides from star anise (Illicium verum Hook. f.) with its anti-obesity, antihypertensive, antidiabetic, and antioxidant properties. The aim is to optimize the extraction conditions of star anise polysaccharides (SAP) utilizing propane alcohols-based deep eutectic solvents and microwave-assisted methods. The optimized conditions resulted in an extraction yield of 5.14%. The characteristics of acidic pectin-like SAP, including high viscosity (44.86 mPa s), high oil-holding capacity (14.39%), a high degree of esterification (72.53%), gel-like properties, highly amorphous, a high galacturonic acid concentration, and a highly branching size polysaccharide structure, significantly contribute to their potent inhibition of pancreatic lipase (86.67%), angiotensin-converting enzyme (73.47%), and α-glucosidase (82.33%) activities as well as to their antioxidant properties of azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS, 34.94%) and ferric ion reducing antioxidant power (FRAP, 0.56 mM FeSO4). Therefore, SAP could be used as a potential therapeutic agent for obesity, hypertension, and diabetes mellitus management.
Collapse
Affiliation(s)
- Abu Hurairah Darwisy Alias
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, University Innovation Incubator Building, SAINS@USM Campus, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Muhammad Hakimin Shafie
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, University Innovation Incubator Building, SAINS@USM Campus, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia..
| |
Collapse
|
2
|
Chik MAW, Yusof R, Shafie MH, Hanaphi RM. Extraction optimisation and characterisation of Artocarpus integer peel pectin by malonic acid-based deep eutectic solvents using response surface methodology. Int J Biol Macromol 2024:135737. [PMID: 39293618 DOI: 10.1016/j.ijbiomac.2024.135737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Traditional pectin extraction methods involve strong acids, which are environmentally harmful. This study explores an innovative approach using Malonic Acid (MA)-based Deep Eutectic Solvents (DES) to extract pectin from Artocarpus integer Peel (AIPP), optimised through Response Surface Methodology (RSM). The extracted AIPP-A and AIPP-B from ChCl-MA and ChDHCit-MA DES, respectively, were characterised for yield, pH, solubility, Degree of Esterification (DE), Water and Oil Holding Capacity (WHC and OHC). The experimental values aligned with RSM model predictions, with low standard deviations: 0.7300 for ChCl-MA and 0.1531 for ChDHCit-MA. Optimal extraction conditions for AIPP-A were 3.27 % ChCl-MA, 1.28 h extraction time, 50.44 °C temperature, and a 1:40 g/mL solid-to-liquid ratio. For AIPP-B, the conditions were 4.95 % ChDHCit-MA, 2.04 h extraction time, 79.65 °C temperature, and a 1:50 g/mL solid-to-liquid ratio. ChCl-MA yielded 30.97 % AIPP, which was higher than that of ChDHCit-MA (27.99 %). Both AIPP demonstrated desirable properties such as low pH, high solubility, and significant DE. AIPP-A exhibited a greater DE (58.40 %) compared to AIPP-B (32.4 %) contributed to its lower WHC and higher OHC. In conclusion, RSM-based optimisation of AIPP extraction with DES is effective in producing pectin that is suitable for use as a gelling agent, preservative, and stabiliser in the food industry.
Collapse
Affiliation(s)
- Mohammad Amin Wan Chik
- Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Perlis, Kampus Arau, 02600 Arau, Perlis, Malaysia
| | - Rizana Yusof
- Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Perlis, Kampus Arau, 02600 Arau, Perlis, Malaysia.
| | - Muhammad Hakimin Shafie
- Analytical Biochemistry Research Centre (ABrC), University Innovation Incubator (I(2)U), sains@usm Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Roziana Mohamed Hanaphi
- Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Perlis, Kampus Arau, 02600 Arau, Perlis, Malaysia
| |
Collapse
|
3
|
Wu DT, Li J, Wang J, Lei J, Gan RY, Qin P, Hu YC, Wu XY, Zou L. Comparison of soluble dietary fibers from various quinoa microgreens: Structural characteristics and bioactive properties. Food Res Int 2024; 181:114108. [PMID: 38448108 DOI: 10.1016/j.foodres.2024.114108] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
Quinoa (Chenopodium quinoa Willd.) microgreens are widely consumed as healthy vegetables around the world. Although soluble dietary fibers exist as the major bioactive macromolecules in quinoa microgreens, their structural characteristics and bioactive properties are still unclear. Therefore, the structural characteristics and bioactive properties of soluble dietary fibers from various quinoa microgreens (QMSDFs) were investigated in this study. The yields of QMSDFs ranged from 38.82 to 52.31 mg/g. Indeed, all QMSDFs were predominantly consisted of complex pectic-polysaccharides, e.g., homogalacturonan (HG) and rhamnogalacturonan I (RG I) pectic domains, with the molecular weights ranged from 2.405 × 104 to 5.538 × 104 Da. In addition, the proportions between RG I and HG pectic domains in all QMSDFs were estimated in the range of 1: 2.34-1: 4.73 (ratio of galacturonic acid/rhamnose). Furthermore, all QMSDFs exhibited marked in vitro antioxidant, antiglycation, prebiotic, and immunoregulatory effects, which may be partially correlated to their low molecular weights and low esterification degrees. These findings are helpful for revealing the structural and biological properties of QMSDFs, which can offer some new insights into further development of quinoa microgreens and related QMSDFs as value-added healthy products.
Collapse
Affiliation(s)
- Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China; Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Jie Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China; Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jin Wang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China; Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jing Lei
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China; Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore 138669, Singapore
| | - Peiyou Qin
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yi-Chen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Xiao-Yong Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China.
| |
Collapse
|
4
|
Wu DT, Geng JL, Li J, Deng W, Zhang Y, Hu YC, Zou L, Xia Y, Zhuang QG, Liu HY, Gan RY. Efficient extraction of pectic polysaccharides from thinned unripe kiwifruits by deep eutectic solvent-based methods: Chemical structures and bioactivities. Food Chem X 2024; 21:101083. [PMID: 38187948 PMCID: PMC10770586 DOI: 10.1016/j.fochx.2023.101083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024] Open
Abstract
To promote the potentially industrial applications of thinned unripe kiwifruits, two deep eutectic solvent-based methods, including deep eutectic solvent-assisted extraction (DAE) and microwave-assisted deep eutectic solvent extraction (MDE), were optimized for the extraction of polysaccharides from thinned unripe kiwifruits (YKP). Results showed that the yields of YKP-D prepared by DAE and YKP-DM prepared by MDE were extremely higher than YKP-H prepared by hot water extraction. Furthermore, YKP-H, YKP-D, and YKP-DM were mainly composed of pectic polysaccharides, including homogalacturonan (HG) and rhamnogalacturonan I (RG I) domains. Besides, both YKP-D and YKP-DM exhibited stronger antioxidant, anti-glycosylation, and immunomodulatory effects than those of YKP-H, and their higher contents of uronic acids and bound polyphenols as well as lower molecular weights could partially contribute to their bioactivities. Overall, these results revealed that the developed MDE method could be utilized as a promising method for highly efficient extraction of YKP with superior beneficial effects.
Collapse
Affiliation(s)
- Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jin-Lei Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Jie Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Wen Deng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Yao Zhang
- China-New Zealand Belt and Road Joint Laboratory on Kiwifruit, Kiwifruit Breeding and Utilization Key Laboratory of Sichuan Province, Sichuan Provincial Academy of Natural Resources Sciences, Chengdu 610015, China
| | - Yi-Chen Hu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Yu Xia
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Qi-Guo Zhuang
- China-New Zealand Belt and Road Joint Laboratory on Kiwifruit, Kiwifruit Breeding and Utilization Key Laboratory of Sichuan Province, Sichuan Provincial Academy of Natural Resources Sciences, Chengdu 610015, China
| | - Hong-Yan Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore 138669, Singapore
| |
Collapse
|
5
|
Bhat MI, Rashid SJ, Ahmad MI, Rafiq S, Fayaz I, Mir MJ, Amin T, Majid D, Dar BN, Makroo HA. Comparative study on thermo-mechanical, structural and functional properties of pectin extracted from immature wasted apples and commercial pectin. Int J Biol Macromol 2024; 254:127658. [PMID: 37898241 DOI: 10.1016/j.ijbiomac.2023.127658] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/27/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
Pectin yield of 22.22 ± 0.98 % (dry basis) was achieved from prematurely dropped Golden Delicious apples, having a light orange hue (hue value: 78.08 ± 0.04) and an overall color difference (ΔE) of 9.92 ± 0.01 compared to commercial pectin (CP). Extracted AP exhibited a lower equivalent weight (725.24 ± 29.73) and higher methoxy content (8.36 ± 0.28 %) in contrast to CP. However, a similar degree of esterification of 71.57 ± 0.79 and 70.55 ± 0.59 %, was observed in AP and CP respectively. Apple pectin demonstrated slight lower galacturonic acid (GalA) content of 68.10 ± 3.94 % in comparison to 72.31 ± 4.62 % of CP, which was further corroborated by reduced intensity in FTIR fingerprint region (912-1025 cm-1). Morphology revealed a sheet-like cloudy appearance indicating a significant presence of associated sugars whereas X-ray diffraction highlighted the highly amorphous nature of AP. AP and CP solutions (3-9 %) displayed a shear-thinning flow and viscoelastic behavior where the loss (G') moduli dominated over the storage moduli (G"). Owing to high degree of esterification, galacturonic acid content (>65 %) that aligns with commercial standards and viscoelastic behavior, the extracted AP holds promise for potential utilization in commercial applications. This study underscores the potential for sustainable utilization of prematurely dropped apples through pectin extraction, contributing to valorization of the wasted bioresource.
Collapse
Affiliation(s)
| | | | | | - Shafiya Rafiq
- Department of Food Technology, IUST, Kashmir 192122, India
| | - Insha Fayaz
- Department of Food Technology, IUST, Kashmir 192122, India
| | - M J Mir
- Department of Mechanical Engineering, IUST, Kashmir 192122, India
| | - Tawheed Amin
- Division of Food Science and Technology, SKUAST, Kashmir 190025, India
| | | | - B N Dar
- Department of Food Technology, IUST, Kashmir 192122, India.
| | - H A Makroo
- Department of Food Technology, IUST, Kashmir 192122, India.
| |
Collapse
|
6
|
Liu Y, Chen H, Chen S, Zhang Y, Zhang J, Zhu X, Li W, Liu J, Jiang Y, Li D. Pectin-rich dragon fruit peel extracts: An environmentally friendly emulsifier of natural origin. Food Chem 2023; 429:136955. [PMID: 37490817 DOI: 10.1016/j.foodchem.2023.136955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/28/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023]
Abstract
Pectin extraction is generally an energy-intensive industrial process, while on the other hand their extraction methods vary from different sources. Starting with that perspective, pectin (WSP) containing ultra-low degree of methylation (31.08 ± 1.27%) from dragon fruit peel (DFP) was extracted by using pure water at room temperature. WSP, dominant in DFP (17.13 ± 1.01%), showed both a high molecular weight and a wide molecular weight distribution, while the yield of the rest acid-soluble pectin (HAP) from DFP residue was only 5.22 ± 0.76%. Furthermore, WSP can stabilize emulsions over a wide range of concentrations and oil phases, especially HIPE. Therefore, the hypothesis was verified that the pectin-rich extract from dragon fruit peel with excellent emulsifying properties could be simply extracted by pure water. This environmentally-friendly and energy-saving extraction method provides a new insight to increase the additional value of dragon fruit peel produced in food processing.
Collapse
Affiliation(s)
- Yiyan Liu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Hongru Chen
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Shufan Chen
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Yuehan Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Jingkai Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Xiaoqi Zhu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Wenxuan Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Jialu Liu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Yang Jiang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China.
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China.
| |
Collapse
|
7
|
Tigunova O, Bratishko V, Shulga S. Apple pomace as an alternative substrate for butanol production. AMB Express 2023; 13:138. [PMID: 38055129 DOI: 10.1186/s13568-023-01649-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/26/2023] [Indexed: 12/07/2023] Open
Abstract
Butanol-producing strains Clostridium sp. UCM B-7570 and C. acetobutylicum UCM B-7407 were used for research from "Collection of strains of microorganisms and plant lines for food and agricultural biotechnology" of the Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine, glycerol (BASF, Germany) and apple pomace (total moisture 4%) after apple juice production. The aim of this work was to study the possibility of using apple pomace by domestic butanol-producing strains of Clostridium sp. UCM B-7570 and C. acetobutylicum UCM B-7407 as a substrate. Producers were cultured on medium with different concentrations of apple pomace, glycerol was used for the inoculation. The presence of ethanol, acetone, and butanol in the culture liquid was determined using a gas chromatograph. It was determined that a significant part of the macrocomponent composition of the extracts can be used in bioconversion by producing strains of the genus Clostridium. It was determined that the highest concentration of butanol (10 g/dm3) was at a concentration of 120 g/dm3 in the extracts. The obtained data showed the possibility of using apple pomace as a substrate in biobutanol technology.
Collapse
Affiliation(s)
- Olena Tigunova
- Institute of Food Biotechnology and Genomics NAS of Ukraine, Laboratory of Food and Industrial Biotechnology, 2a, Baida Vyshnevetskyi Str, Kyiv, 04123, Ukraine.
| | - Viacheslav Bratishko
- National University of Life and Environmental Science of Ukraine, 15, Heroes Oborony str, Kyiv, 03041, Ukraine
| | - Sergiy Shulga
- Institute of Food Biotechnology and Genomics NAS of Ukraine, Laboratory of Food and Industrial Biotechnology, 2a, Baida Vyshnevetskyi Str, Kyiv, 04123, Ukraine
| |
Collapse
|
8
|
Ma K, Zhang L, Sun X, Chen F, Zhu T. Correlationship between self-assembly behavior and emulsion stabilization of pea protein-high methoxyl pectin complexes treated with ultrasound at pH 2.0. ULTRASONICS SONOCHEMISTRY 2023; 100:106596. [PMID: 37722249 PMCID: PMC10511478 DOI: 10.1016/j.ultsonch.2023.106596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023]
Abstract
This study investigated the effects of ultrasound on the self-assembly behavior of pea protein (PP)-high methoxyl pectin (HMP) complexes at pH 2.0 through transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and intrinsic fluorescence analysis. The emulsion stabilization mechanism of PP-HMP treated with ultrasound (PP-HMP-US) was also elucidated. The results indicated that ultrasound increased the emulsifying activity index (EAI) and emulsifying stability index (ESI) of PP-HMP. Moreover, PP-HMP-US-based emulsions formed small, dispersed oil drops, which were stable during storage. PP-HMP- and PP-HMP-US-based emulsions did not demonstrate any creaming. The TEM results revealed that ultrasound can regulate the self-assembly behavior of PP and HMP to form spherical particles with a core-shell structure. This structure possessed low turbidity, a small particle size, and high absolute zeta potential values. The FTIR and intrinsic fluorescence spectra demonstrated that ultrasound increased the α-helix and β-sheet contents and exposed the tryptophan groups to more hydrophilic environments. Ultrasound also promoted the PP-HMP self-assembly through electrostatic interaction and improved its oil-water interfacial behavior, as indicated by the EAI and ESI values of PP-HMP-US-based emulsions. The current results provide a reference for the development of an innovative emulsifier prepared by ultrasound-treated protein-pectin complexes at low pH.
Collapse
Affiliation(s)
- Kaiyuan Ma
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Lifen Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, Henan, China.
| | - Xiaoyang Sun
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, Henan, China
| | - Fusheng Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Tingwei Zhu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, Henan, China
| |
Collapse
|
9
|
Santra S, Das M, Karmakar S, Banerjee R. NADES assisted integrated biorefinery concept for pectin recovery from kinnow (Citrus reticulate) peel and strategic conversion of residual biomass to L(+) lactic acid. Int J Biol Macromol 2023; 250:126169. [PMID: 37558023 DOI: 10.1016/j.ijbiomac.2023.126169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/18/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
The present study aims to establish an integrated strategy for valorization of kinnow peel waste. A total of ten natural deep eutectic solvents (NADESs) were exploited for extraction of pectin. The highest yield of pectin enriched material was reported 35.66 % w/dw using choline chloride-Maltose based NADES. The extraction process parameters and chemical composition of NADES influenced the yield and different associated physico-chemical attributes of the pectin enriched material. All the recovered pectin enriched materials found to be composed of low methoxy pectin (degree of methylation: 18.41-40.26 %) and galacturonic acid (GalA) content was in range of 67.56-78.22 %. The Principal Component Analysis (PCA) was used to categorise isolated pectin enriched materials based on similarities and differences. The liquid fraction upon pectin extraction presented a considerable amount of fermentable sugar which was further utilized for lactic acid production by microbial intervention. The microbial strain Lactobacillus amylophilus GV6 was exploited for lactic acid fermentation where the highest yield reached 55.59 g/L. A sustainable and straight-forward biorefinery concept was developed for extraction of pectin enriched material and lactic acid production from kinnow peel waste with potential application in food and biotechnological sectors.
Collapse
Affiliation(s)
- Sayantan Santra
- Microbial Biotechnology and Downstream Processing Laboratory, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Mohan Das
- Microbial Biotechnology and Downstream Processing Laboratory, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sandipan Karmakar
- Xavier Institute of Management, Xavier University, Xavier Square, Jayadev Vihar, Bhubaneswar 751013, India
| | - Rintu Banerjee
- Microbial Biotechnology and Downstream Processing Laboratory, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
10
|
Nawaz A, Irshad S, Walayat N, Khan MR, Iqbal MW, Luo X. Fabrication and Characterization of Apple-Pectin-PVA-Based Nanofibers for Improved Viability of Probiotics. Foods 2023; 12:3194. [PMID: 37685127 PMCID: PMC10486385 DOI: 10.3390/foods12173194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
In the current study, apple-pectin-based novel nanofibers were fabricated by electrospinning. Polyvinyl alcohol (PVA) and apple pectin (PEC) solution were mixed to obtain an optimized ratio for the preparation of electrospun nanofibers. The obtained nanofibers were characterized for their physiochemical, mechanical and thermal properties. The nanofibers were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). Furthermore, an assay of the in vitro viability of free and encapsulated probiotics was carried out under simulated gastrointestinal conditions. The results of TGA revealed that the PVA/PEC nanofibers had good thermal stability. The probiotics encapsulated by electrospinning showed a high survival rate as compared to free cells under simulated gastrointestinal conditions. Furthermore, encapsulated probiotics and free cells showed a 3 log (cfu/mL) and 10 log (cfu/mL) reduction, respectively, from 30 to 120 min of simulated digestion. These findings indicate that the PVA/PEC-based nanofibers have good barrier properties and could potentially be used for the improved viability of probiotics under simulated gastrointestinal conditions and in the development of functional foods.
Collapse
Affiliation(s)
- Asad Nawaz
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yangzhou 425199, China;
| | - Sana Irshad
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China;
| | - Noman Walayat
- College of Tea Science and Tea Culture, Zhejiang Agriculture and Forestry University, Hangzhou 310007, China;
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muhammad Waheed Iqbal
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Xiaofang Luo
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yangzhou 425199, China;
| |
Collapse
|
11
|
Orqueda ME, Zampini IC, Torres S, Isla MI. Functional Characterization and Toxicity of Pectin from Red Chilto Fruit Waste (Peels). PLANTS (BASEL, SWITZERLAND) 2023; 12:2603. [PMID: 37514218 PMCID: PMC10384730 DOI: 10.3390/plants12142603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Food and agricultural wastes constitute a rich source of functional ingredients for the food, pharmaceutical, and cosmetic industries. In this context, by-products from the red variety of Solanum betaceum fruits (chilto) from Northwestern Argentina are suitable sources for pectin extraction. METHODS In this study, pectin from the peels of red chilto fruits was extracted and characterized. RESULTS The recovery yield of red chilto peel pectin was about 24%, and it was co-extracted with 40.0 mg phenolic compounds, 6.5 mg anthocyanins, and 4.7 g proteins per 100 g of pectin. The pectin obtained from red chilto showed proper technological functionality displaying water and oil holding capacities of 4.2 and 2.0%, respectively, an emulsifying capacity of 83%, emulsion stability of 87.5%, foaming capacity of 21.1%, and foaming stability of 79.1%. The pectin displayed antioxidant activity with the ability to scavenge ABTS radical, superoxide anion, and H2O2. The polysaccharide exhibited in vitro hypoglycemic potential and inhibited the α-amylase enzyme, retarded glucose diffusion, and improved the cellular uptake of glucose in a Saccharomyces cerevisiae model. The extract was non-toxic on acute toxicity tests. CONCLUSIONS Red chilto pectin showed potential as a new and safe functional ingredient for the design of foods, health products, and cosmetics.
Collapse
Affiliation(s)
- María Eugenia Orqueda
- Natural Products Research Laboratory (LIPRON), Institute of Bioprospecting and Plant Physiology (INBIOFIV-CONICET-UNT), Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Lorenzo, 1469, San Miguel de Tucumán T4000, Argentina
- Biolates Network for Sustainable Use of Ibero-American Vegetable Biomass Resources in Cosmetics (Biolates CYTED), San Miguel de Tucumán T4000, Argentina
- Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Miguel de Tucumán T4000, Argentina
| | - Iris Catiana Zampini
- Natural Products Research Laboratory (LIPRON), Institute of Bioprospecting and Plant Physiology (INBIOFIV-CONICET-UNT), Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Lorenzo, 1469, San Miguel de Tucumán T4000, Argentina
- Biolates Network for Sustainable Use of Ibero-American Vegetable Biomass Resources in Cosmetics (Biolates CYTED), San Miguel de Tucumán T4000, Argentina
- Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Miguel de Tucumán T4000, Argentina
| | - Sebastian Torres
- Natural Products Research Laboratory (LIPRON), Institute of Bioprospecting and Plant Physiology (INBIOFIV-CONICET-UNT), Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Lorenzo, 1469, San Miguel de Tucumán T4000, Argentina
- Biolates Network for Sustainable Use of Ibero-American Vegetable Biomass Resources in Cosmetics (Biolates CYTED), San Miguel de Tucumán T4000, Argentina
- Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Miguel de Tucumán T4000, Argentina
| | - María Inés Isla
- Natural Products Research Laboratory (LIPRON), Institute of Bioprospecting and Plant Physiology (INBIOFIV-CONICET-UNT), Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Lorenzo, 1469, San Miguel de Tucumán T4000, Argentina
- Biolates Network for Sustainable Use of Ibero-American Vegetable Biomass Resources in Cosmetics (Biolates CYTED), San Miguel de Tucumán T4000, Argentina
- Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Miguel de Tucumán T4000, Argentina
| |
Collapse
|
12
|
Cossignani L, Ianni F, Blasi F, Pollini L, Di Michele A, Pagano C, Ricci M, Perioli L. Effect of Different Drying Treatments and Sieving on Royal Gala Apple Pomace, a Thickening Agent with Antioxidant Properties. PLANTS (BASEL, SWITZERLAND) 2023; 12:906. [PMID: 36840253 PMCID: PMC9967744 DOI: 10.3390/plants12040906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Currently, there is an increasing interest in the search of natural derived materials as valuable substitutes for microplastics. One of the categories investigated, represented by thickening agents deriving from agri-food waste and apple pomace (AP), was considered of interest. In this study AP was submitted to three different treatments and drying conditions (oven drying at 55 °C for 12 h; homogenization and oven drying at 55 °C for 12 h; homogenization and freeze-drying), and then grinded and sieved obtaining three different dimensional fractions (>400 µm, 250-400 µm and <250 µm). The hydroalcoholic extracts of these fractions, obtained by ultrasound-assisted extraction, were analyzed to compare their total phenol content (TPC), antioxidant properties, and phenol profile. Correlation studies between the above-indicated parameters were also carried out. The highest values of TPC, antioxidant capacity, and phenol content (determined by liquid chromatography) were found for oven dried AP (250-400 μm) or homogenized and freeze-dried (>400 μm) samples. Both samples were most suitable to form stable hydrogels and the sample obtained after drying at 55 °C showed the best performances in terms of ability to form a stable hydrogel. Among the studied treatments and drying conditions, the oven dried AP was demonstrated to be an interesting stabilizing material with potential applications in many fields (such as food, cosmetics, and nutraceuticals) showing both antioxidant activity and thickening capacity.
Collapse
Affiliation(s)
- Lina Cossignani
- Section of Food Sciences and Nutrition, Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Federica Ianni
- Section of Food Sciences and Nutrition, Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Francesca Blasi
- Section of Food Sciences and Nutrition, Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Luna Pollini
- Section of Food Sciences and Nutrition, Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | | | - Cinzia Pagano
- Section of Pharmaceutical Chemistry and Technology, Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | - Maurizio Ricci
- Section of Pharmaceutical Chemistry and Technology, Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | - Luana Perioli
- Section of Pharmaceutical Chemistry and Technology, Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
13
|
Zhang S, Waterhouse GI, Du Y, Fu Q, Sun Y, Wu P, Ai S, Sun-Waterhouse D. Structural, rheological and emulsifying properties of RG-I enriched pectins from sweet and sour cherry pomaces. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Li W, Li J, Wang J, He Y, Hu YC, Wu DT, Zou L. Effects of various degrees of esterification on antioxidant and immunostimulatory activities of okra pectic-polysaccharides. Front Nutr 2022; 9:1025897. [PMID: 36337617 PMCID: PMC9630948 DOI: 10.3389/fnut.2022.1025897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/06/2022] [Indexed: 01/05/2024] Open
Abstract
Pectic-polysaccharides are considered as one of the most abundant bioactive components in okra, which possess various promising health-promoting effects. However, the knowledge regarding the structure-bioactivity relationship of okra pectic-polysaccharides (OPP) is still limited. In this study, effects of various degrees of esterification (DEs) on in vitro antioxidant and immunostimulatory activities of OPP were analyzed. Results displayed that OPP with high (42.13%), middle (25.88%), and low (4.77%) DE values were successfully prepared by mild alkaline de-esterification, and their primary chemical structures (compositional monosaccharide and glycosidic linkage) and molecular characteristics (molecular weight distribution, particle size, and rheological property) were overall stable. Additionally, results showed that the notable decrease of DE value did not significantly affect antioxidant activities [2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) and nitric oxide (NO) radical scavenging abilities as well as ferric reducing antioxidant power (FRAP)] of OPP, suggesting that the DE was not closely related to its antioxidant activity. In fact, the slight decrease of antioxidant activity of OPP after the alkaline de-esterification might be attributed to the slight decrease of uronic acid content. Nevertheless, the immunostimulatory effect of OPP was closely related to its DE, and a suitable degree of acetylation was beneficial to its in vitro immunostimulatory effect. Besides, the complete de-acetylation resulted in a remarkable reduction of immune response. The findings are beneficial to better understanding the effect of DE value on antioxidant and immunomodulatory activities of OPP, which also provide theoretical foundations for developing OPP as functional foods or health products.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
- School of Preclinical Medicine, Chengdu University, Chengdu, Sichuan, China
| | - Jie Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Jin Wang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Yuan He
- Sichuan Institute of Food Inspection, Chengdu, Sichuan, China
| | - Yi-Chen Hu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
The Disposition of Bioactive Compounds from Fruit Waste, Their Extraction, and Analysis Using Novel Technologies: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10102014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fruit waste contains several bioactive components such as polyphenols, polysaccharides, and numerous other phytochemicals, including pigments. Furthermore, new financial opportunities are created by using fruit ‘leftovers’ as a basis for bioactivities that may serve as new foods or food ingredients, strengthening the circular economy’s properties. From a technical standpoint, organic phenolic substances have become more appealing to industry, in addition to their application as nutritional supplements or functional meals. Several extraction methods for recovering phenolic compounds from fruit waste have already been published, most of which involve using different organic solvents. However, there is a growing demand for eco-friendly and sustainable techniques that result in phenolic-rich extracts with little ecological impact. Utilizing these new and advanced green extraction techniques will reduce the global crisis caused by fruit waste management. Using modern techniques, fruit residue is degraded to sub-zero scales, yielding bio-based commodities such as bioactive elements. This review highlights the most favorable and creative methods of separating bioactive materials from fruit residue. Extraction techniques based on environmentally friendly technologies such as bioreactors, enzyme-assisted extraction, ultrasound-assisted extraction, and their combination are specifically covered.
Collapse
|
16
|
High-Intensity Ultrasound-Assisted Extraction of Pectin from Mango Wastes at Different Maturity. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:4606024. [PMID: 35873805 PMCID: PMC9307332 DOI: 10.1155/2022/4606024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022]
Abstract
Valorisation of food processing by-products is a welcome and developing area. The mango processing industry produces 40% to 60% of the fruit as solid waste, in which components of industrial interest, such as pectin, are lost. This study reports on energy-efficient high-intensity ultrasound-assisted extraction (HIUAE) to extract pectin from mango peels. The analysis considered the ripening stage of the fruit (0, 2, and 4), HIUAE frequency (37 kHz and 80 kHz), and extraction time (20 min, 25 min, and 30 min). Extractions of pectin from mango peels with HIUAE have been fairly studied. However, this work differs from those studies in including mango maturity grade as a factor. Pectin extraction yields ranged from 13% to 30%, with no influence (p > 0.05) of time, and the highest yields were obtained at the lowest maturity stage (0) and lowest frequency (37 kHz). This latest condition (37 kHz) also yielded pectin with the highest gel strength, purity, and quality. This work demonstrated that the mango maturity stage influenced pectin extraction yield. Ultrasound-assisted extraction of pectin from mango peels could be an efficient approach toward waste valorisation and extraction of pectin with high yield and good quality attributes for the food industry.
Collapse
|
17
|
Wang L, Huang J, Li Z, Liu D, Fan J. A review of the polyphenols extraction from apple pomace: novel technologies and techniques of cell disintegration. Crit Rev Food Sci Nutr 2022; 63:9752-9765. [PMID: 35522079 DOI: 10.1080/10408398.2022.2071203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Apple pomace, a solid waste produced during industrial processing of apple juice or cider, is a rich source of high value-added compounds such as polyphenols. This review summarizes present studies on the qualitative and quantitative methods, including Folin-Ciocalteu colorimetric, high pressure liquid chromatography (HPLC) and fluorescence spectrum, as well as enhanced extraction methods of polyphenols in apple pomace by different traditional and novel technologies, including ultrasounds (US), microwave (MW), pulsed electric fields (PEF), high voltage electrical discharges (HVED) and enzyme. The principles and characteristics of different effective enhanced extraction technologies of polyphenols in apple pomace were compared. In addition, the different cell disruption analysis methods, such as destructive detection method (electrical conductivity disintegration index, Zc), image analysis method (including scanning electron microscopy, SEM, and confocal laser scanning microscopy, CLSM), and nondestructive method (such as magnetic resonance imaging, MRI) are presented in this review. The study proved that there was a correlation between destructive detection method and image analysis method. However, each of the technologies reviewed in this study has some disadvantages to overcome, and some mechanisms need to be further substantiated. Therefore, more competitive techniques for polyphenols extraction and analysis of cell disintegration are needed to emerge in the future.
Collapse
Affiliation(s)
- Lu Wang
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
- bSorbonne Université, Université de Technologie de Compiègne, Laboratoire de Transformations Intégrées de la Matière Renouvelable, Compiègne Cedex, France
| | - Jingzhe Huang
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Zonghao Li
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Dan Liu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, People's Republic of China
| | - Jianhua Fan
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
18
|
Green Husk of Walnuts (Juglans regia L.) from Southern Italy as a Valuable Source for the Recovery of Glucans and Pectins. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Walnut green husk is an agricultural waste produced during the walnut (Juglans regia L.) harvest, that could be valued as a source of high-value compounds. In this respect, walnut green husks from two areas of Southern Italy (Montalto Uffugo and Zumpano), with different soil conditions, were investigated. Glucans and pectins were isolated from dry walnut husks by carrying out alkaline and acidic extractions, respectively, and then they were characterized by FT-IR, scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The colorimetric method for the enzymatic measurement of α- and β-glucans was performed. The maximum total glucan yield was recovered from Montalto walnut husks (4.6 ± 0.2 g/100 g DM) with a β-glucan percentage (6.3 ± 0.4) higher than that calculated for Zumpano walnut husks (3.6 ± 0.5). Thermal analysis (DSC) confirmed the higher degree of crystallinity of glucans from Zumpano. The pectin content for Montalto husks was found to be 2.6 times that of Zumpano husks, and the esterification degree was more than 65%. The results suggested that J. regia L. green husks could be a source of glucans and pectins, whose content and morphological and thermal characteristics were influenced by different soil and climate conditions.
Collapse
|