1
|
Córdova A, Catalán S, Carrasco V, Farias FO, Trentin J, López J, Salazar F, Mussagy CU. Sustainable assessment of ultrasound-assisted extraction of anthocyanins with bio-based solvents for upgrading grape pomace Cabernet Sauvignon derived from a winemaking process. ULTRASONICS SONOCHEMISTRY 2025; 112:107201. [PMID: 39705982 PMCID: PMC11718338 DOI: 10.1016/j.ultsonch.2024.107201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
This work assessed the efficiency and sustainability of ultrasound-assisted extraction (UAE) of anthocyanins from grape pomace using bio-based solvents: Ethanol, Isopropanol, Propylene-glycol, and Ethylene-glycol at different concentrations (50 and 100 % v/v) and temperatures (25 °C and 50 °C). Higher ultrasonic intensities (UI) were obtained at 50 °C and 50 % v/v by decreasing solvents viscosities. Under these conditions, anthocyanin extractions were performed with different combinations of solvent to liquid ratio (SLR) at 1:10 and 1:50 g/mL, and UI (3.9 and 13.9 W/cm2). Samples were taken from 0 to 40 min. Ultrasound induced a fast extraction of anthocyanins: a plateau was reached at 5 min and the continuation of the sonication only provoked a marginal increase which is transferred in lower Productivity (Pr) rand higher energy consumptions. The COSMO-SAC model validated solute-solvent interactions, providing robust predictive insights where ethanol showed the highest anthocyanin extraction and productivities (1.094 kg/hL). However, propylene-glycol showed the highest eco-scale scores (∼ 80) within the range defined as "Excellent" and antioxidant capacity (2758.34 ± 6.26 μmol TE/g DM) regardless of the UI, and with very low energy consumption when the extraction was performed at 3.9 W/cm2 and SLR of 1:10 g/mL. These results show that integration of UAE and bio-based solvents presented a sustainable and efficient method for valorizing wine making by-products, with significant improvements with respect to the conventional extraction, thus promoting eco-friendly practices for the food industry, and supporting the circular economy.
Collapse
Affiliation(s)
- Andrés Córdova
- School of Food Engineering, Pontificia Universidad Católica de Valparaíso, Waddington 716, Playa Ancha, Valparaíso 2360100, Chile.
| | - Sebastián Catalán
- School of Food Engineering, Pontificia Universidad Católica de Valparaíso, Waddington 716, Playa Ancha, Valparaíso 2360100, Chile
| | - Vinka Carrasco
- School of Food Engineering, Pontificia Universidad Católica de Valparaíso, Waddington 716, Playa Ancha, Valparaíso 2360100, Chile
| | - Fabiane O Farias
- Department of Chemical Engineering, Polytechnique Center, Federal University of Paraná, Curitiba, Brazil
| | - Julia Trentin
- Department of Chemical Engineering, Polytechnique Center, Federal University of Paraná, Curitiba, Brazil
| | - Jessica López
- School of Food Engineering, Pontificia Universidad Católica de Valparaíso, Waddington 716, Playa Ancha, Valparaíso 2360100, Chile
| | - Fernando Salazar
- School of Food Engineering, Pontificia Universidad Católica de Valparaíso, Waddington 716, Playa Ancha, Valparaíso 2360100, Chile
| | - Cassamo U Mussagy
- School of Agronomy, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile.
| |
Collapse
|
2
|
Pogorzelska-Nowicka E, Hanula M, Pogorzelski G. Extraction of polyphenols and essential oils from herbs with green extraction methods - An insightful review. Food Chem 2024; 460:140456. [PMID: 39084104 DOI: 10.1016/j.foodchem.2024.140456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024]
Abstract
The demand for polyphenols and essential oils (EOs) on the food market is high and grows every year. Its partially the result of the fact that these compounds can be used in formulation of clean label foods, a fast growing food sector. A significant share of polyphenols and EOs are extracted from herbs. The quality of the extracts is determined mainly by the extraction method. Conventional extraction techniques of phytochemicals are time-consuming, operate at high temperatures, and require usage of organic solvents and energy in large quantities. According to the United Nations Sustainability Development Plan, chemical processes should be replaced by green alternatives that would reduce the use of solvents and energy. Ultrasound-Assisted Extraction (UAE), Microwave-Assisted Extraction (MAE) and Cold Plasma-Assisted Extraction (CPAE) meets these criteria. The review shows that each of these techniques seems to be a great alternative for conventional extraction methods ensuring higher yields of bioactive compounds.
Collapse
Affiliation(s)
- Ewelina Pogorzelska-Nowicka
- Institute of Human Nutrition Sciences, Department of Technique and Food Product Development, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159 c street, 02-776 Warsaw, Poland.
| | - Monika Hanula
- Institute of Human Nutrition Sciences, Department of Technique and Food Product Development, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159 c street, 02-776 Warsaw, Poland.
| | - Grzegorz Pogorzelski
- The Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, Jastrzębiec, 05-552 Magdalenka, Poland.
| |
Collapse
|
3
|
Salee N, Naruenartwongsakul S, Chaiyana W, Yawootti A, Suthapakti K, Simapaisarn P, Chaisan W, Utama-Ang N. Enhancing catechins, antioxidant and sirtuin 1 enzyme stimulation activities in green tea extract through pulse electric field-assisted water extraction: Optimization by response surface methodology approach. Heliyon 2024; 10:e36479. [PMID: 39253176 PMCID: PMC11382074 DOI: 10.1016/j.heliyon.2024.e36479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
Green tea is an economic resource in Thailand because it is derived from smallholder agriculture and has expanded into food production. The purpose of this study is to optimize the parameters of pulsed electric field (PEF) assisted green tea extraction to produce a natural health product. A central composite design was involved to determine the effect of independent variables, including the intensity of electric field (I; 3-5 kV/cm), number of pulses (Np; 1000 to 3000 pulses) and green tea-to-water ratio (GT/W; 0.05-0.15 g/mL) on catechin (C), epicatechin (EC), epicatechin gallate (ECG), epigallocatechin (EGC) and epigallocatechin gallate (EGCG), total phenolic compound, antioxidant and sirtuin 1 enzyme stimulating activities. The results indicated that the Np had the most significant impact (p < 0.05) on the content of catechin and its derivatives and sirtuin 1 enzyme stimulating activity. The observations revealed that the I had a greater impact on antioxidant activities compared to the Np. The optimal conditions for PEF using the response surface method were determined to be I of 5 kV/cm, Np of 3000 pulses, GT/W of 0.14 g/mL and specific energy of 27 kJ/kg. Under the optimized conditions, the content of C, EC, ECG, EGC and EGCG were 7.34 ± 0.33, 11.26 ± 0.25, 3.75 ± 0.13, 7.53 ± 0.77 and 37.78 ± 0.58 mg/g extract, respectively. Furthermore, it was observed that green tea extract exhibited the ability to modulate the deacetylation activity of the sirtuin 1 enzyme, with a value of 22.63 ± 0.17 FIR. The results emphasized that the PEF led to achieving better responses compared to without pre-treatment using the PEF. Therefore, innovative technologies as PEF can be utilized for green tea extraction to produce natural ingredients, which can contribute to improved accessibility to healthcare. Additionally, the implementation of innovation techniques, such as PEF, in the extraction industry can enhance productivity growth and economic development.
Collapse
Affiliation(s)
- Nuttinee Salee
- Division of Product Development Technology, Faculty of Agro Industry, Chiang Mai University, Thailand
| | - Srisuwan Naruenartwongsakul
- Division of Food Engineering Development Technology, Faculty of Agro-Industry, Chiang Mai University, Thailand
| | - Wantida Chaiyana
- Department of Pharmaceutical Science, Faculty of Pharmacy, Chiang Mai University, Thailand
| | - Artit Yawootti
- Department of Electrical Engineering, Faculty of Engineering, Rajamangala University of Technology Lanna, Chiang Mai, Thailand
| | - Kanyarat Suthapakti
- Division of Product Development Technology, Faculty of Agro Industry, Chiang Mai University, Thailand
| | - Piyawan Simapaisarn
- Division of Product Development Technology, Faculty of Agro Industry, Chiang Mai University, Thailand
| | - Worrapob Chaisan
- Cluster of High Value Products from Thai Rice and Plants for Health, Chiang Mai University, Thailand
| | - Niramon Utama-Ang
- Division of Product Development Technology, Faculty of Agro Industry, Chiang Mai University, Thailand
- Cluster of High Value Products from Thai Rice and Plants for Health, Chiang Mai University, Thailand
| |
Collapse
|
4
|
Rrucaj E, Carpentieri S, Scognamiglio M, Siano F, Ferrari G, Pataro G. Sustainable Valorization of Industrial Cherry Pomace: A Novel Cascade Approach Using Pulsed Electric Fields and Ultrasound Assisted-Extraction. Foods 2024; 13:1043. [PMID: 38611349 PMCID: PMC11012044 DOI: 10.3390/foods13071043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
In this study, a two-stage cascade extraction process utilizing pulsed electric fields (PEF) (3 kV/cm, 10 kJ/kg) for initial extraction, followed by ultrasound (US) (200 W, 20 min)-assisted extraction (UAE) in a 50% (v/v) ethanol-water mixture (T = 50 °C, t = 60 min), was designed for the efficient release of valuable intracellular compounds from industrial cherry pomace. The extracted compounds were evaluated for total phenolic content (TPC), flavonoid content (FC), total anthocyanin content (TAC), and antioxidant activity (FRAP), and were compared with conventional solid-liquid extraction (SLE). Results showed that the highest release of bioactive compounds occurred in the first stage, which was attributed to the impact of PEF pre-treatment, resulting in significant increases in TPC (79%), FC (79%), TAC (83%), and FRAP values (80%) of the total content observed in the post-cascade PEF-UAE process. The integration of UAE into the cascade process further augmented the extraction efficiency, yielding 21%, 49%, 56%, and 26% increases for TPC, FC, TAC, and FRAP, respectively, as compared to extracts obtained through a second-stage conventional SLE. HPLC analysis identified neochlorogenic acid, 4-p-coumaroylquinic, and cyanidin-3-O-rutinoside as the predominant phenolic compounds in both untreated and cascade-treated cherry pomace extracts, and no degradation of the specific compounds occurred upon PEF and US application. SEM analysis revealed microstructural changes in cherry pomace induced by PEF and UAE treatments, enhancing the porosity and facilitating the extraction process. The study suggests the efficiency of the proposed cascade PEF-UAE extraction approach for phenolic compounds from industrial cherry pomace with potential applications to other plant-based biomasses.
Collapse
Affiliation(s)
- Ervehe Rrucaj
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy (S.C.); (M.S.); (G.F.)
- ProdAl Scarl, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Serena Carpentieri
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy (S.C.); (M.S.); (G.F.)
| | - Mariarosa Scognamiglio
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy (S.C.); (M.S.); (G.F.)
| | - Francesco Siano
- Institute of Food Science, National Research Council (CNR), Via Roma 64, 83100 Avellino, AV, Italy;
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy (S.C.); (M.S.); (G.F.)
- ProdAl Scarl, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Gianpiero Pataro
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy (S.C.); (M.S.); (G.F.)
- ProdAl Scarl, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| |
Collapse
|
5
|
Mrkonjić Ž, Kaplan M, Milošević S, Božović D, Sknepnek A, Miletić D, Lazarević Mrkonjić I, Rakić D, Zeković Z, Pavlić B. Green Extraction Approach for Isolation of Bioactive Compounds in Wild Thyme ( Thymus serpyllum L.) Herbal Dust-Chemical Profile, Antioxidant and Antimicrobial Activity and Comparison with Conventional Techniques. PLANTS (BASEL, SWITZERLAND) 2024; 13:897. [PMID: 38592878 PMCID: PMC10975124 DOI: 10.3390/plants13060897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/04/2024] [Accepted: 03/16/2024] [Indexed: 04/11/2024]
Abstract
The aim of this study was to provide a chemical profile and determine the antioxidant and antimicrobial activity of the essential oil (EO) and lipid extracts of Thymus serpyllum L. herbal dust obtained via conventional (hydrodistillation (HD) and Soxhlet extraction (SOX)) and novel extraction techniques (supercritical fluid extraction (SFE)). In addition, a comparative analysis of the chemical profiles of the obtained EO and extracts was carried out, as well as the determination of antioxidant, antibacterial and antifungal activity of the lipid extracts. According to the aforementioned antioxidant and antimicrobial activities and the monoterpene yield and selectivity, SFE provided significant advantages compared to the traditional techniques. In addition, SFE extracts could be considered to have great potential in terms of their utilization in the pharmaceutical and cosmetic industries, as well as appropriate replacements for synthetic additives in the food industry.
Collapse
Affiliation(s)
- Živan Mrkonjić
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (Ž.M.); (S.M.); (D.B.); (I.L.M.); (D.R.); (Z.Z.)
| | - Muammer Kaplan
- TUBITAK Marmara Research Centre, Institute of Chemical Technology, P.O. Box 21, 41470 Gebze, Kocaeli, Turkey
| | - Sanja Milošević
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (Ž.M.); (S.M.); (D.B.); (I.L.M.); (D.R.); (Z.Z.)
| | - Danica Božović
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (Ž.M.); (S.M.); (D.B.); (I.L.M.); (D.R.); (Z.Z.)
| | - Aleksandra Sknepnek
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, 11000 Belgrade, Serbia; (A.S.); (D.M.)
| | - Dunja Miletić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, 11000 Belgrade, Serbia; (A.S.); (D.M.)
| | - Ivana Lazarević Mrkonjić
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (Ž.M.); (S.M.); (D.B.); (I.L.M.); (D.R.); (Z.Z.)
| | - Dušan Rakić
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (Ž.M.); (S.M.); (D.B.); (I.L.M.); (D.R.); (Z.Z.)
| | - Zoran Zeković
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (Ž.M.); (S.M.); (D.B.); (I.L.M.); (D.R.); (Z.Z.)
| | - Branimir Pavlić
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (Ž.M.); (S.M.); (D.B.); (I.L.M.); (D.R.); (Z.Z.)
| |
Collapse
|
6
|
Athanasiadis V, Chatzimitakos T, Kotsou K, Kalompatsios D, Bozinou E, Lalas SI. Polyphenol Extraction from Food (by) Products by Pulsed Electric Field: A Review. Int J Mol Sci 2023; 24:15914. [PMID: 37958898 PMCID: PMC10650265 DOI: 10.3390/ijms242115914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Nowadays, more and more researchers engage in studies regarding the extraction of bioactive compounds from natural sources. To this end, plenty of studies have been published on this topic, with the interest in the field growing exponentially. One major aim of such studies is to maximize the extraction yield and, simultaneously, to use procedures that adhere to the principles of green chemistry, as much as possible. It was not until recently that pulsed electric field (PEF) technology has been put to good use to achieve this goal. This new technique exhibits many advantages, compared to other techniques, and they have successfully been reaped for the production of extracts with enhanced concentrations in bioactive compounds. In this advancing field of research, a good understanding of the existing literature is mandatory to develop more advanced concepts in the future. The aim of this review is to provide a thorough discussion of the most important applications of PEF for the enhancement of polyphenols extraction from fresh food products and by-products, as well as to discuss the current limitations and the prospects of the field.
Collapse
Affiliation(s)
| | - Theodoros Chatzimitakos
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera str., 43100 Karditsa, Greece; (V.A.); (K.K.); (D.K.); (E.B.); (S.I.L.)
| | | | | | | | | |
Collapse
|
7
|
A Comprehensive Overview of Tomato Processing By-Product Valorization by Conventional Methods versus Emerging Technologies. Foods 2022; 12:foods12010166. [PMID: 36613382 PMCID: PMC9818577 DOI: 10.3390/foods12010166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
The tomato processing industry can be considered one of the most widespread food manufacturing industries all over the world, annually generating considerable quantities of residue and determining disposal issues associated not only with the wasting of invaluable resources but also with the rise of significant environmental burdens. In this regard, previous studies have widely ascertained that tomato by-products are still rich in valuable compounds, which, once recovered, could be utilized in different industrial sectors. Currently, conventional solvent extraction is the most widely used method for the recovery of these compounds from tomato pomace. Nevertheless, several well-known drawbacks derive from this process, including the use of large quantities of solvents and the difficulties of utilizing the residual biomass. To overcome these limitations, the recent advances in extraction techniques, including the modification of the process configuration and the use of complementary novel methods to modify or destroy vegetable cells, have greatly and effectively influenced the recovery of different compounds from plant matrices. This review contributes a comprehensive overview on the valorization of tomato processing by-products with a specific focus on the use of "green technologies", including high-pressure homogenization (HPH), pulsed electric fields (PEF), supercritical fluid (SFE-CO2), ultrasounds (UAE), and microwaves (MAE), suitable to enhancing the extractability of target compounds while reducing the solvent requirement and shortening the extraction time. The effects of conventional processes and the application of green technologies are critically analyzed, and their effectiveness on the recovery of lycopene, polyphenols, cutin, pectin, oil, and proteins from tomato residues is discussed, focusing on their strengths, drawbacks, and critical factors that contribute to maximizing the extraction yields of the target compounds. Moreover, to follow the "near zero discharge concept", the utilization of a cascade approach to recover different valuable compounds and the exploitation of the residual biomass for biogas generation are also pointed out.
Collapse
|
8
|
Pulsed electric field as a promising technology for solid foods processing: A review. Food Chem 2022; 403:134367. [DOI: 10.1016/j.foodchem.2022.134367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 08/31/2022] [Accepted: 09/18/2022] [Indexed: 10/14/2022]
|
9
|
Carpentieri S, Augimeri G, Ceramella J, Vivacqua A, Sinicropi MS, Pataro G, Bonofiglio D, Ferrari G. Antioxidant and Anti-Inflammatory Effects of Extracts from Pulsed Electric Field-Treated Artichoke By-Products in Lipopolysaccharide-Stimulated Human THP-1 Macrophages. Foods 2022; 11:2250. [PMID: 35954020 PMCID: PMC9368542 DOI: 10.3390/foods11152250] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 01/01/2023] Open
Abstract
In this study, pulsed electric field (PEF-3 kV/cm; 5 kJ/kg) pretreatment was used to intensify the extractability of valuable intracellular compounds from artichoke by-products during a subsequent aqueous extraction (solid-liquid ratio = 1:10 g/mL, T = 20 °C; t = 120 min). Total phenolic content (TPC), antioxidant activity (DPPH, ABTS) and HPLC-PDA analysis of the artichoke extract (AE) and the biological effects on human cell lines were determined. Chlorogenic acid was found to be the most abundant phenolic compound (53% of the TPC) in the AE. The extract showed good antioxidant properties in a concentration-dependent manner. The potential biological effects of AE were investigated using THP-1 macrophages stimulated by lipopolysaccharides (LPS) as an in vitro model system of oxidative stress. Reduced reactive oxygen species production upon treatment with AE was found. Moreover, AE was able to reduce the secretion of the pro-inflammatory mediators Interleukin-6 and Monocyte Chemoattractant Protein-1 in LPS-stimulated macrophages, as determined by qRT-PCR and ELISA assays. These results highlighted the anti-inflammatory and antioxidant properties of the extracts from PEF-treated artichoke by-products, corroborating their potential application as a source of functional ingredients obtained through a feasible and sustainable process.
Collapse
Affiliation(s)
- Serena Carpentieri
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy; (S.C.); (G.P.)
| | - Giuseppina Augimeri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Rende (CS), Italy; (G.A.); (J.C.); (A.V.); (M.S.S.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Rende (CS), Italy; (G.A.); (J.C.); (A.V.); (M.S.S.)
| | - Adele Vivacqua
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Rende (CS), Italy; (G.A.); (J.C.); (A.V.); (M.S.S.)
- Centro Sanitario, University of Calabria, Via Pietro Bucci, 87036 Rende (CS), Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Rende (CS), Italy; (G.A.); (J.C.); (A.V.); (M.S.S.)
| | - Gianpiero Pataro
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy; (S.C.); (G.P.)
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Rende (CS), Italy; (G.A.); (J.C.); (A.V.); (M.S.S.)
- Centro Sanitario, University of Calabria, Via Pietro Bucci, 87036 Rende (CS), Italy
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy; (S.C.); (G.P.)
- ProdAl Scarl, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy
| |
Collapse
|
10
|
Zhan J, Liang Z, Li J, Zeng X, Ou G, Zhong C. Pulsed electric field‐ultrasonic assisted extraction combined with macroporous resin for the preparation of flavonoids from
Pericarpium Citri Reticulatae. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jinjing Zhan
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Guangdong Key Laboratory of Food Intelligent Manufacturing Foshan China
| | - Zijian Liang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences University of Melbourne Parkville VIC Australia
| | - Jian Li
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Guangdong Key Laboratory of Food Intelligent Manufacturing Foshan China
| | - Xinan Zeng
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Guangdong Key Laboratory of Food Intelligent Manufacturing Foshan China
| | - Guoliang Ou
- Jiangmen Palace International Food, Inc Jiangmen China
| | - Chuming Zhong
- Jiangmen Palace International Food, Inc Jiangmen China
| |
Collapse
|
11
|
Pulsed electric field (PEF): Avant-garde extraction escalation technology in food industry. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Carpentieri S, Režek Jambrak A, Ferrari G, Pataro G. Pulsed Electric Field-Assisted Extraction of Aroma and Bioactive Compounds From Aromatic Plants and Food By-Products. Front Nutr 2022; 8:792203. [PMID: 35155517 PMCID: PMC8829011 DOI: 10.3389/fnut.2021.792203] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/30/2021] [Indexed: 01/10/2023] Open
Abstract
In this work, the effect of pulsed electric field (PEF) pre-treatment on the extractability in green solvents (i. e., ethanol–water mixture and propylene glycol) of target aroma and bioactive compounds, such as vanillin from vanilla pods, theobromine and caffeine from cocoa bean shells, linalool from vermouth mixture, and limonene from orange peels, was investigated. The effectiveness of PEF as a cell disintegration technique in a wide range of field strength (1–5 kV/cm) and energy input (1–40 kJ/kg) was confirmed using impedance measurements, and results were used to define the optimal PEF conditions for the pre-treatment of each plant tissue before the subsequent solid–liquid extraction process. The extracted compounds from untreated and PEF-treated samples were analyzed via GC-MS and HPLC-PDA analysis. Results revealed that the maximum cell disintegration index was detected for cocoa bean shells and vanilla pods (Zp = 0.82), followed by vermouth mixture (Zp = 0.77), and orange peels (Zp = 0.55). As a result, PEF pre-treatment significantly enhanced the extraction yield of the target compounds in both solvents, but especially in ethanolic extracts of vanillin (+14%), theobromine (+25%), caffeine (+34%), linalool (+114%), and limonene (+33%), as compared with untreated samples. Moreover, GC-MS and HPLC-PDA analyses revealed no evidence of degradation of individual compounds due to PEF application. The results obtained in this work suggest that the application of PEF treatment before solid–liquid extraction with green solvents could represent a sustainable approach for the recovery of clean labels and natural compounds from aromatic plants and food by-products.
Collapse
Affiliation(s)
- Serena Carpentieri
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
- ProdAl Scarl, University of Salerno, Fisciano, Italy
| | - Gianpiero Pataro
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
- *Correspondence: Gianpiero Pataro
| |
Collapse
|