1
|
Chen Y, Zheng Y, Wen X, Huang J, Song Y, Cui Y, Xie X. Anti-inflammatory effects of Olive (olea europaea L.) fruit extract in LPS-stimulated RAW264.7 cells via MAPK and NF-κB signal pathways. Mol Biol Rep 2024; 51:774. [PMID: 38904794 DOI: 10.1007/s11033-024-09661-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Olive is an evergreen tree of Oleaceae Olea with numerous bioactive components. While the anti-inflammatory properties of olive oil and the derivatives are well-documented, there remains a dearth of in-depth researches on the immunosuppressive effects of olive fruit water extract. This study aimed to elucidate the dose-effect relationship and underlying molecular mechanisms of olive fruit extract in mediating anti-inflammatory responses. METHODS AND RESULTS The impacts of olive fruit extract on the release of nitric oxide (NO), tumor necrosis factor (TNF-α), interleukins-6 (IL-6) and reactive oxygen species (ROS) were assessed in RAW264.7 cells induced by lipopolysaccharide (LPS). For deeper understanding, the expression of genes encoding inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), TNF-α and IL-6 was quantitatively tested. Additionally, the expression patterns of MAPK and NF-κB pathways were further observed to analyze the action mechanisms. Results suggested that olive fruit extract (200, 500, 1000 µg/mL) markedly exhibited a dose-dependent reduction in the generation of NO, TNF-α, IL-6 and ROS, as well as the expression of correlative genes studied. The activation of ERK, JNK, p38, IκB-α and p65 were all suppressed when p65 nuclear translocation was further restricted by olive fruit extract in NF-κB and MAPK signal pathways. CONCLUSIONS Olive fruit extract targeted imposing restrictions on the signal transduction of key proteins in NF-κB and MAPK pathways, and thereby lowered the level of inflammatory mediators, which put an enormous hindrance to inflammatory development. Accordingly, it is reasonable to consider olive fruit as a potent ingredient in immunomodulatory products.
Collapse
Affiliation(s)
- Yiwen Chen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong Detection Center of Microbiology, Guangzhou, 510070, China
| | - Yali Zheng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong Detection Center of Microbiology, Guangzhou, 510070, China
| | - Xia Wen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong Detection Center of Microbiology, Guangzhou, 510070, China
| | - Jiancong Huang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong Detection Center of Microbiology, Guangzhou, 510070, China
| | - Yafeng Song
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yinhua Cui
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xiaobao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong Detection Center of Microbiology, Guangzhou, 510070, China.
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
2
|
Laveriano-Santos EP, Vallverdú-Queralt A, Bhat R, Tresserra-Rimbau A, Gutiérrez-Alcalde E, Campins-Machado FM, Lamuela-Raventós RM, Pérez M. Unlocking the potential of olive residues for functional purposes: update on human intervention trials with health and cosmetic products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3816-3822. [PMID: 38456790 DOI: 10.1002/jsfa.13451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Olive mill waste (OMW) is a promising source of valuable compounds such as polyphenols, terpenes, sterols, and other bioactive compounds, which are of interest to the pharmaceuticals and cosmeceutical industries. This review examines the potential of OMW extracts for health and beauty applications based on evidence reports from human clinical trials. The results achieved to date indicate health-enhancing properties, but little is known about the underlying mechanisms of action, dose-response relationships, and long-term impacts. Therefore, while olive by-products, extracted using eco-friendly methods, present opportunities for the development of high-value health and cosmetic products, further studies are necessary to determine the full range of their effects and establish specific therapeutic strategies. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Emily P Laveriano-Santos
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Anna Vallverdú-Queralt
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Rajeev Bhat
- ERA-Chair for Food (By-)Products Valorization Technologies (VALORTECH), Estonian University of Life Sciences, Tartu, Estonia
| | - Anna Tresserra-Rimbau
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Eulàlia Gutiérrez-Alcalde
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
| | - Francesc M Campins-Machado
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
| | - Rosa M Lamuela-Raventós
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Maria Pérez
- Polyphenol Research Group, Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Brennan CS. Regenerative Food Innovation: The Role of Agro-Food Chain By-Products and Plant Origin Food to Obtain High-Value-Added Foods. Foods 2024; 13:427. [PMID: 38338562 PMCID: PMC10855700 DOI: 10.3390/foods13030427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Food losses in the agri-food sector have been estimated as representing between 30 and 80% of overall yield. The agro-food sector has a responsibility to work towards achieving FAO sustainable goals and global initiatives on responding to many issues, including climate pressures from changes we are experiencing globally. Regenerative agriculture has been discussed for many years in terms of improving our land and water. What we now need is a focus on the ability to transform innovation within the food production and process systems to address the needs of society in the fundamental arenas of food, health and wellbeing in a sustainable world. Thus, regenerative food innovation presents an opportunity to evaluate by-products from the agriculture and food industries to utilise these waste streams to minimise the global effects of food waste. The mini-review article aims to illustrate advancements in the valorisation of foods from some of the most recent publications published by peer-reviewed journals during the last 4-5 years. The focus will be applied to plant-based valorised food products and how these can be utilised to improve food nutritional components, texture, sensory and consumer perception to develop the foods for the future.
Collapse
|
4
|
Albini A, Albini F, Corradino P, Dugo L, Calabrone L, Noonan DM. From antiquity to contemporary times: how olive oil by-products and waste water can contribute to health. Front Nutr 2023; 10:1254947. [PMID: 37908306 PMCID: PMC10615083 DOI: 10.3389/fnut.2023.1254947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023] Open
Abstract
Since antiquity, numerous advantages of olive oil and its by-products have been recognized in various domains, including cooking, skincare, and healthcare. Extra virgin olive oil is a crucial component of the Mediterranean diet; several of its compounds exert antioxidant, anti-proliferative, anti-angiogenic and pro-apoptotic effects against a variety of cancers, and also affect cellular metabolism, targeting cancer cells through their metabolic derangements. Numerous olive tree parts, including leaves, can contribute metabolites useful to human health. Olive mill waste water (OMWW), a dark and pungent liquid residue produced in vast amounts during olive oil extraction, contains high organic matter concentrations that may seriously contaminate the soil and surrounding waters if not managed properly. However, OMWW is a rich source of phytochemicals with various health benefits. In ancient Rome, the farmers would employ what was known as amurca, a mulch-like by-product of olive oil production, for many purposes and applications. Several studies have investigated anti-angiogenic and chemopreventive activities of OMWW extracts. The most prevalent polyphenol in OMWW extracts is hydroxytyrosol (HT). Verbascoside and oleuperin are also abundant. We assessed the impact of one such extract, A009, on endothelial cells (HUVEC) and cancer cells. A009 was anti-angiogenic in several in vitro assays (growth, migration, adhesion) and inhibited angiogenesis in vivo, outperforming HT alone. A009 inhibited cells from several tumors in vitro and in vivo and showed potential cardioprotective effects mitigating cardiotoxicity induced by chemotherapy drugs, commonly used in cancer treatment, and reducing up-regulation of pro-inflammatory markers in cardiomyocytes. Extracts from OMWW and other olive by-products have been evaluated for biological activities by various international research teams. The results obtained make them promising candidates for further development as nutraceutical and cosmeceutical agents or dietary supplement, especially in cancer prevention or even in co-treatments with anti-cancer drugs. Furthermore, their potential to offer cardioprotective benefits opens up avenues for application in the field of cardio-oncology.
Collapse
Affiliation(s)
- Adriana Albini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), European Institute of Oncology IEO, Milan, Italy
| | - Francesca Albini
- Royal Society for the Encouragement of Arts, Manufactures and Commerce, London, United Kingdom
| | - Paola Corradino
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), European Institute of Oncology IEO, Milan, Italy
| | - Laura Dugo
- Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, Roma, Italy
| | | | - Douglas M. Noonan
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
5
|
Mohamed Abdoul-Latif F, Ainane A, Hachi T, Abbi R, Achira M, Abourriche A, Brulé M, Ainane T. Materials Derived from Olive Pomace as Effective Bioadsorbents for the Process of Removing Total Phenols from Oil Mill Effluents. Molecules 2023; 28:4310. [PMID: 37298784 PMCID: PMC10254907 DOI: 10.3390/molecules28114310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
This work investigates olive pomace from olive mill factories as an adsorbent for the removal of total phenols from olive mill effluent (OME). This pathway of valorization of olive pomace reduces the environmental impact of OME while providing a sustainable and cost-effective wastewater treatment approach for the olive oil industry. Olive pomace was pretreated with water washing, drying (60 °C) and sieving (<2 mm) to obtain the raw olive pomace (OPR) adsorbent material. Olive pomace biochar (OPB) was obtained via carbonization of OPR at 450 °C in a muffle furnace. The adsorbent materials OPR and OPB were characterized using several basic analyzes (Scanning Electron Microscopy-Energy-Dispersive X-ray SEM/EDX, X-ray Diffraction XRD, thermal analysis DTA and TGA, Fourier transform infrared FTIR and Brunauer, Emmett and Teller surface BET). The materials were subsequently tested in a series of experimental tests to optimize the sorption of polyphenols from OME, investigating the effects of pH and adsorbent dose. Adsorption kinetics showed good correlation with a pseudo-second-order kinetic model as well as Langmuir isotherms. Maximum adsorption capacities amounted to 21.27 mg·g-1 for OPR and 66.67 mg·g-1 for OPB, respectively. Thermodynamic simulations indicated spontaneous and exothermic reaction. The rates of total phenol removal were within the range of 10-90% following 24 h batch adsorption in OME diluted at 100 mg/L total phenols, with the highest removal rates observed at pH = 10. Furthermore, solvent regeneration with 70% ethanol solution yielded partial regeneration of OPR at 14% and of OPB at 45% following the adsorption, implying a significant rate of recovery of phenols in the solvent. The results of this study suggest that adsorbents derived from olive pomace may be used as economical materials for the treatment and potential capture of total phenols from OME, also suggesting potential further applications for pollutants in industrial wastewaters, which can have significant implications in the field of environmental technologies.
Collapse
Affiliation(s)
- Fatouma Mohamed Abdoul-Latif
- Medicinal Research Institute, Centre d’Etudes et de Recherche de Djibouti, IRM-CERD, Route de l’Aéroport, Haramous B.P. 486, Djibouti City 77101, Djibouti
| | - Ayoub Ainane
- Superior School of Technology of Khenifra, University of Sultan Moulay Slimane, BP 170, Khenifra 54000, Morocco
| | - Touria Hachi
- Superior School of Technology of Khenifra, University of Sultan Moulay Slimane, BP 170, Khenifra 54000, Morocco
| | - Rania Abbi
- Superior School of Technology of Khenifra, University of Sultan Moulay Slimane, BP 170, Khenifra 54000, Morocco
| | - Meryem Achira
- Superior School of Technology of Khenifra, University of Sultan Moulay Slimane, BP 170, Khenifra 54000, Morocco
| | - Abdelmjid Abourriche
- ENSAM Casablanca, University of Hassan II, 150 Bd du Nil, Casablanca 20670, Morocco
| | - Mathieu Brulé
- Laboratory of Biochemical Engineering and Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., 26504 Patras, Greece
| | - Tarik Ainane
- Superior School of Technology of Khenifra, University of Sultan Moulay Slimane, BP 170, Khenifra 54000, Morocco
| |
Collapse
|
6
|
Exploring Olive Pomace for Skincare Applications: A Review. COSMETICS 2023. [DOI: 10.3390/cosmetics10010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The cosmetic industry is continuously searching for new active ingredients in an effort to attend to consumer demands which, in recent years, are focused on more natural and environmentally friendly products, obtained from sustainable resources. Nevertheless, they are required to provide cosmetologically appealing skincare products, ultimately with the purpose of improving skin appearance. The olive oil industry generates a large amount of liquid and semi-solid by-products such as olive pomace. Their phytotoxicity impairs safe disposal, so valorization strategies that promote by-product reuse are needed, which may include skincare products. Hydroxytyrosol is the main phenolic compound present in olive pomace and possesses biological effects that make it a desirable active compound for cosmetic formulations such as antioxidant and anti-aging activities as well as photoprotector, depigmenting, antimicrobial and anti-inflammatory actions. Other compounds present in olive pomace can also have functional properties and skin-related benefits. However, the application of this by-product can be a challenge in terms of formulation’s design, stability, and proven efficacy, so appropriate methodologies should be used to validate its incorporation and may include extraction and further encapsulation of bioactive compounds in order to achieve effective and aesthetic appealing skincare products.
Collapse
|
7
|
Colella MF, Marino N, Oliviero Rossi C, Seta L, Caputo P, De Luca G. Triacylglycerol Composition and Chemical-Physical Properties of Cocoa Butter and Its Derivatives: NMR, DSC, X-ray, Rheological Investigation. Int J Mol Sci 2023; 24:ijms24032090. [PMID: 36768417 PMCID: PMC9916945 DOI: 10.3390/ijms24032090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
In recent years, the food industry has become increasingly involved in researching vegetable fats and oils with appropriate mechanical properties (ease of transport, processing, and storage) and a specific lipidic composition to ensure healthy products for consumers. The chemical-physical behavior of these matrices depends on their composition in terms of single fatty acids (FA). However, as we demonstrate in this work, these properties, as well as the absorption, digestion and uptake in humans of specific FAs, are also largely determined by their regiosomerism within the TriAcylGlycerols (TAG) moieties (sn-1,2,3 positions). The goal of this work is to study for the first time vegetable fats obtained directly from a sample of natural cocoa butter (CB) through a process that manipulates the distribution of FAs but not their nature. Even if the initial percentage of each FA in the mixture remains the same, CB derivatives seem to show improved chemical-physical features. In order to understand which factors account for their physical and chemical characteristics, and to check whether or not the obtained new matrices could be considered as valid alternatives to other vegetable fats (e.g., palm oil (PO)), we carried out an experimental investigation at both the macroscopic and molecular level including: (i) Differential Scanning Calorimetry (DSC) analyses to examine thermal features; (ii) rheological testing to explore mechanical properties; (iii) powder X-ray diffraction (PXRD) to evaluate the solid-state phases of the obtained fats; and (iv) 1H and 13C Nuclear Magnetic Resonance (NMR, 1D and 2D) spectroscopy to rapidly analyze fatty acid composition including regioisomeric distribution on the glycerol backbone. These last results open up the possibility of using NMR spectroscopy as an alternative to the chromatographic techniques routinely employed for the investigation of similar matrices.
Collapse
Affiliation(s)
- Maria Francesca Colella
- Department of Chemistry and Chemical Technologies (CTC), University of Calabria—UNICAL, Via P. Bucci, Arcavacata di Rende, 87036 Rende, Italy
| | - Nadia Marino
- Department of Chemistry and Chemical Technologies (CTC), University of Calabria—UNICAL, Via P. Bucci, Arcavacata di Rende, 87036 Rende, Italy
| | - Cesare Oliviero Rossi
- Department of Chemistry and Chemical Technologies (CTC), University of Calabria—UNICAL, Via P. Bucci, Arcavacata di Rende, 87036 Rende, Italy
| | - Lucia Seta
- Reolì S.r.l., Zona Industriale, Settore 3, 87064 Corigliano-Rossano, Italy
| | - Paolino Caputo
- Department of Chemistry and Chemical Technologies (CTC), University of Calabria—UNICAL, Via P. Bucci, Arcavacata di Rende, 87036 Rende, Italy
- Correspondence: (P.C.); (G.D.L.)
| | - Giuseppina De Luca
- Department of Chemistry and Chemical Technologies (CTC), University of Calabria—UNICAL, Via P. Bucci, Arcavacata di Rende, 87036 Rende, Italy
- Correspondence: (P.C.); (G.D.L.)
| |
Collapse
|
8
|
Extra Virgin Olive Oil Secoiridoids Modulate the Metabolic Activity of Dacarbazine Pre-Treated and Treatment-Naive Melanoma Cells. Molecules 2022; 27:molecules27103310. [PMID: 35630786 PMCID: PMC9146374 DOI: 10.3390/molecules27103310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 01/27/2023] Open
Abstract
Nowadays, many individuals, whether healthy or diagnosed with disease, tend to expose themselves to various easily accessible natural products in hopes of benefiting their health and well-being. Mediterranean populations have traditionally used olive oil not only in nutrition but also in cosmetics, including skincare. In this study, the phenolic profile—composed of twelve compounds altogether, including the secoiridoids oleocanthal (OCAL) and oleacein (OCEIN)—of extra virgin olive oil (EVOO) from autochthonous cultivars from Croatia was determined using 1H qNMR spectroscopy and HPLC-DAD analysis, and its biological activity was investigated in melanoma cell lines. The EVOO with the highest OCEIN content had the strongest anti-cancer activity in A375 melanoma cells and the least toxic effect on the non-cancerous keratocyte cell line (HaCaT). On the other hand, pure OCAL was shown to be more effective and safer than pure OCEIN. Post-treatment with any of the EVOO phenolic extracts (EVOO-PEs) enhanced the anti-cancer effect of the anti-cancerous drug dacarbazine (DTIC) applied in pre-treatment, while they did not compromise the viability of non-cancerous cells. The metastatic melanoma A375M cell line was almost unresponsive to the EVOO-PEs themselves, as well as to pure OCEIN and OCAL. Our results demonstrate that olive oils and/or their compounds may have a potentially beneficial effect on melanoma treatment. However, their usage can be detrimental or futile, especially in healthy cells, due to inadequately applied concentrations/combinations or the presence of resistant cells.
Collapse
|
9
|
Chen L, Wu W. Optimization of hydration method for efficiently separating high quality oils from macadamia seed kernels. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ling Chen
- College of Food Science Southwest University Chongqing People's Republic of China
| | - Wenbiao Wu
- College of Food Science Southwest University Chongqing People's Republic of China
| |
Collapse
|