1
|
Almutairi M, Almutairi B, Almutairi M, Parine NR, Alrefaei A, Alanazi M, Semlali A. Human beta-defensin-1 rs2738047 polymorphism is associated with shisha smoking risk among Saudi population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:42916-42933. [PMID: 33826097 PMCID: PMC8025738 DOI: 10.1007/s11356-021-13660-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Human β-defensin (HBD), a member of the antimicrobial peptides, is essential for respiratory epithelial cells' microbial defense, and is affected by cigarette smoking (CS). Its expression is upregulated by stimulation from microbes or inflammation. Genetic polymorphisms in the HBD-1 gene have been implicated in the development of various smoking-related diseases, including chronic obstructive pulmonary disease and asthma. Thus, we sought to analyze possible associations between HBD-1 single-nucleotide polymorphism (SNP) in HBD-1 gene and CS in ethnic Saudi Arabian subjects. Variants rs1047031 (C/T), rs1799946 (C/T), rs2738047 (C/T), and rs11362 (C/T) were investigated by genotyping 575 blood specimens from males and females, smokers/non-smokers: 288/287. The CT and CT+TT genotypes of rs1799946 presented an ~5-fold increased correlation with CS among the female smokers, compared with the female controls (OR = 5.473, P = 0.02003; and OR = 5.211, P = 0.02028, respectively), an observation similar to rs11362 SNP in female smokers, but with protective effects in TT genotype, compared with the CC reference allele (OR = 0.143, P = 0.04368). In shisha smokers, the heterozygous CT and the CT/TT genotype of rs2738047 polymorphism showed the same results with ~3-fold increased correlation with CS (OR = 2.788; P = 0.03448), compared with the cigarette smokers category. No significant association was shown in genotypic distributions and allelic frequencies of rs1047031. Further investigations, including large study samples, are required to investigate the effects of shisha on human beta-defensin expression and protein levels.
Collapse
Affiliation(s)
- Mikhlid Almutairi
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia.
| | - Bader Almutairi
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad Almutairi
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia
| | - Narasimha Reddy Parine
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdulwahed Alrefaei
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad Alanazi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Département de stomatologie, Faculté de Médecine Dentaire, Université Laval, Québec, Québec, Canada
| |
Collapse
|
2
|
Mehlotra RK. Human Genetic Variation and HIV/AIDS in Papua New Guinea: Time to Connect the Dots. Curr HIV/AIDS Rep 2019; 15:431-440. [PMID: 30218255 DOI: 10.1007/s11904-018-0417-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Human genetic polymorphisms known to influence HIV acquisition and disease progression occur in Papua New Guinea (PNG). However, no genetic association study has been reported so far. In this article, we review research findings, with a view to stimulate genotype-to-phenotype research. RECENT FINDINGS PNG, a country in Oceania, has a high prevalence of HIV and many sexually transmitted infections. While limited data is available from this country regarding the distribution of human genetic polymorphisms known to influence clinical outcomes of HIV/AIDS, genetic association studies are lacking. Our studies, in the past decade, have revealed that polymorphisms in chemokine receptor-ligand (CCR2-CCR5, CXCL12), innate immune (Toll-like receptor, β-defensin), and antiretroviral drug-metabolism enzyme (CYP2B6, UGT2B7) genes are prevalent in PNG. Although our results need to be validated in further studies, it is urgent to pursue large-scale, comprehensive genetic association studies that include these as well as additional genetic polymorphisms.
Collapse
Affiliation(s)
- Rajeev K Mehlotra
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Biomedical Research Building, #409A, 2109 Adelbert Rd., Cleveland, OH, 44106, USA.
| |
Collapse
|
3
|
Association between Periodontitis and Gene polymorphisms of hBD-1 and CD14: a meta-analysis. Arch Oral Biol 2019; 104:141-149. [DOI: 10.1016/j.archoralbio.2019.05.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/19/2019] [Accepted: 05/27/2019] [Indexed: 02/05/2023]
|
4
|
Silva ON, Porto WF, Ribeiro SM, Batista I, Franco OL. Host-defense peptides and their potential use as biomarkers in human diseases. Drug Discov Today 2018; 23:1666-1671. [PMID: 29803935 DOI: 10.1016/j.drudis.2018.05.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/06/2018] [Accepted: 05/21/2018] [Indexed: 02/07/2023]
Abstract
Since the early 19th century, host-defense peptides (HDPs) have been known to play a crucial role in innate host defense. Subsequent work has demonstrated their role in adaptive immunity as well as their involvement in cancer and also a number of inflammatory and/or autoimmune diseases. In addition to these multiple functional activities, several studies have shown that HDP accumulation might be correlated with various human diseases and, therefore, could be used as a biomarkers for such. Thus, research has aimed to validate the clinical use of HDPs for diagnosis, prognosis, and further treatment. In this review, we outline the most recent findings related to the use of HDPs as biomarkers, their clinical and epidemiological value, and the techniques used to determine the levels of HDPs.
Collapse
Affiliation(s)
- Osmar N Silva
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - William F Porto
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil; Porto Reports, 70790-160, Brasília, DF, Brazil
| | - Suzana M Ribeiro
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados-MS
| | - Ingrid Batista
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Octavio Luiz Franco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil; Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, DF, Brazil; Departamento de Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil.
| |
Collapse
|
5
|
Abstract
While initially identified as a broad-spectrum antimicrobial peptide, constitutively expressed in epithelia, human β-defensin (hBD)-1 is now recognized to have a more complex pattern of expression of its gene, DEFB1, as well as activities that extend beyond direct antimicrobial. These observations suggest a complex role for hBD-1 in the host defense against viral infections, as evidenced by its expression in cells involved in viral defense, and its gene regulation in response to viral challenge. This regulation is observed both in vitro and in vivo in humans, as well as with the murine homolog, mBD-1. While numerous reviews have summarized the existing literature on β-defensin gene expression and activity, here we provide a focused review of relevant studies on the virus-mediated regulation of hBD-1 and how this regulation can provide a crucial aspect of the innate immune defense against viral infection.
Collapse
Affiliation(s)
- Lisa Kathleen Ryan
- University of Florida College of Medicine, Division of Infectious Disease, Department of Medicine and Global Medicine, 1600 SW Archer Road, Box 100277, Gainesville, FL 32610, USA.
| | - Gill Diamond
- University of Florida College of Dentistry, Department of Oral Biology, 1600 SW Archer Road, Box 100424, Gainesville, FL 32610, USA.
| |
Collapse
|
6
|
Willie B, Gare J, King CL, Zimmerman PA, Mehlotra RK. A preliminary assessment of Toll-like receptor and β-defensin gene polymorphisms in Papua New Guinea - what does it mean for HIV/AIDS? PAPUA AND NEW GUINEA MEDICAL JOURNAL 2017; 60:51-59. [PMID: 30147152 PMCID: PMC6105279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Polymorphisms in Toll-like receptor (TLR) and human β-defensin (hBD, encoded by DEFB) genes have been evaluated for their associations with HIV infection and disease outcomes. Those studies, conducted in various populations under a variety of study designs, generally revealed that specific single nucleotide polymorphisms (SNPs) in TLR1, 2, 3, 4, 6, 7, 8, and 9 genes, and copy number variation (CNV) in DEFB4 (encoding hBD-2), DEFB103A (encoding hBD-3), and DEFB104A (encoding hBD-4) genes are among potential genetic factors that can affect susceptibility to HIV infection and/or disease progression. The information regarding their prevalence in Papua New Guinea (PNG) is very limited for TLR SNPs, and not available for DEFB CNV. The present study provides a preliminary assessment of these genetic polymorphisms in samples collected from the Wosera (East Sepik Province, n = 29) and Liksul (Madang Province, n = 23) areas. Wosera samples were analyzed for a total of 41 SNPs in 8 TLR genes (TLR1, 2, 3, 4, 6, 7, 8, and 9), and both sample sets were analyzed for CNV in DEFB4/103A/104A genes. A number of TLR SNPs were not detected, and many other SNPs were present at low frequencies (minor allele frequencies ≤0.05) in the Wosera samples. The DEFB4/103A/104A copy numbers were significantly different between the two sample sets (p = 0.024). Validation of these results, using larger sample sizes as well as samples from other areas of PNG, is warranted. In addition, genetic association studies are needed to estimate the effects of these polymorphisms on HIV infection and disease progression in PNG.
Collapse
Affiliation(s)
- Barne Willie
- Papua New Guinea Institute of Medical Research, Goroka, Eastern Highlands Province, Papua New Guinea
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Biomedical Research Building, 4 Floor, 2109 Adelbert Rd., Cleveland, Ohio 44106-2624, United States of America
| | - Janet Gare
- Papua New Guinea Institute of Medical Research, Goroka, Eastern Highlands Province, Papua New Guinea
| | - Christopher L. King
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Biomedical Research Building, 4 Floor, 2109 Adelbert Rd., Cleveland, Ohio 44106-2624, United States of America
| | - Peter A. Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Biomedical Research Building, 4 Floor, 2109 Adelbert Rd., Cleveland, Ohio 44106-2624, United States of America
| | - Rajeev K. Mehlotra
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Biomedical Research Building, 4 Floor, 2109 Adelbert Rd., Cleveland, Ohio 44106-2624, United States of America
| |
Collapse
|
7
|
Porto WF, Nolasco DO, Pires ÁS, Pereira RW, Franco OL, Alencar SA. Prediction of the impact of coding missense and nonsense single nucleotide polymorphisms on HD5 and HBD1 antibacterial activity against Escherichia coli. Biopolymers 2017; 106:633-44. [PMID: 27160989 DOI: 10.1002/bip.22866] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/14/2016] [Accepted: 04/26/2016] [Indexed: 01/01/2023]
Abstract
Defensins confer host defense against microorganisms and are important for human health. Single nucleotide polymorphisms (SNPs) in defensin gene-coding regions could lead to less active variants. Using SNP data available at the dbSNP database and frequency information from the 1000 Genomes Project, two DEFA5 (L26I and R13H) and eight DEFB1 (C35S, K31T, K33R, R29G, V06I, C12Y, Y28* and C05*) missense and nonsense SNPs that are located within mature regions of the coded defensins were retrieved. Such SNPs are rare and population restricted. In order to assess their antibacterial activity against Escherichia coli, two linear regression models were used from a previous work, which models the antibacterial activity as a function of solvation potential energy, using molecular dynamics data. Regarding only the antibacterial predictions, for HD5, no biological differences between wild-type and its variants were observed; while for HBD1, the results suggest that the R29G, K31T, Y28* and C05* variants could be less active than the wild-type one. The data here reported could lead to a substantial improvement in knowledge about the impact of missense SNPs in human defensins and their world distribution. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 633-644, 2016.
Collapse
Affiliation(s)
- William F Porto
- Programa De Pós-Graduação Em Ciências Genômicas E Biotecnologia, Universidade Católica De Brasília, Brasília, DF, Brazil.,Centro De Análises Proteômicas E Bioquímicas, Pós-Graduação Em Ciências Genômicas E Biotecnologia, Universidade Católica De Brasília, Brasília, DF, Brazil
| | - Diego O Nolasco
- Programa De Pós-Graduação Em Ciências Genômicas E Biotecnologia, Universidade Católica De Brasília, Brasília, DF, Brazil.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA
| | - Állan S Pires
- Programa De Pós-Graduação Em Ciências Genômicas E Biotecnologia, Universidade Católica De Brasília, Brasília, DF, Brazil.,Centro De Análises Proteômicas E Bioquímicas, Pós-Graduação Em Ciências Genômicas E Biotecnologia, Universidade Católica De Brasília, Brasília, DF, Brazil
| | - Rinaldo W Pereira
- Programa De Pós-Graduação Em Ciências Genômicas E Biotecnologia, Universidade Católica De Brasília, Brasília, DF, Brazil
| | - Octávio L Franco
- Programa De Pós-Graduação Em Ciências Genômicas E Biotecnologia, Universidade Católica De Brasília, Brasília, DF, Brazil. .,Centro De Análises Proteômicas E Bioquímicas, Pós-Graduação Em Ciências Genômicas E Biotecnologia, Universidade Católica De Brasília, Brasília, DF, Brazil. .,S-Inova Biotech, Pos-Graduação Em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil.
| | - Sérgio A Alencar
- Programa De Pós-Graduação Em Ciências Genômicas E Biotecnologia, Universidade Católica De Brasília, Brasília, DF, Brazil
| |
Collapse
|
8
|
Mehlotra RK, Hall NB, Willie B, Stein CM, Weinberg A, Zimmerman PA, Vernon LT. Associations of Toll-Like Receptor and β-Defensin Polymorphisms with Measures of Periodontal Disease (PD) in HIV+ North American Adults: An Exploratory Study. PLoS One 2016; 11:e0164075. [PMID: 27727278 PMCID: PMC5058471 DOI: 10.1371/journal.pone.0164075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/19/2016] [Indexed: 11/28/2022] Open
Abstract
Polymorphisms in toll-like receptor (TLR) and β-defensin (DEFB) genes have been recognized as potential genetic factors that can influence susceptibility to and severity of periodontal diseases (PD). However, data regarding associations between these polymorphisms and PD are still scarce in North American populations, and are not available in HIV+ North American populations. In this exploratory study, we analyzed samples from HIV+ adults (n = 115), who received primary HIV care at 3 local outpatient HIV clinics and were monitored for PD status. We genotyped a total of 41 single nucleotide polymorphisms (SNPs) in 8 TLR genes and copy number variation (CNV) in DEFB4/103A. We performed regression analyses for levels of 3 periodontopathogens in subgingival dental plaques (Porphyromonas gingivalis [Pg], Treponema denticola [Td], and Tannerella forsythia [Tf]) and 3 clinical measures of PD (periodontal probing depth [PPD], gingival recession [REC], and bleeding on probing [BOP]). In all subjects combined, 2 SNPs in TLR1 were significantly associated with Td, and one SNP in TLR2 was significantly associated with BOP. One of the 2 SNPs in TLR1 was significantly associated with Td in Caucasians. In addition, another SNP in TLR1 and a SNP in TLR6 were also significantly associated with Td and Pg, respectively, in Caucasians. All 3 periodontopathogen levels were significantly associated with PPD and BOP, but none was associated with REC. Instrumental variable analysis showed that 8 SNPs in 6 TLR genes were significantly associated with the 3 periodontopathogen levels. However, associations between the 3 periodontopathogen levels and PPD or BOP were not driven by associations with these identified SNPs. No association was found between DEFB4/103A CNV and any periodontopathogen level or clinical measure in all samples, Caucasians, or African Americans. Our exploratory study suggests a role of TLR polymorphisms, particularly TLR1 and TLR6 polymorphisms, in PD in HIV+ North Americans.
Collapse
Affiliation(s)
- Rajeev K. Mehlotra
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- * E-mail: (RKM); (LTV)
| | - Noemi B. Hall
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Barne Willie
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Catherine M. Stein
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Aaron Weinberg
- Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, Ohio, United States of America
| | - Peter A. Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Lance T. Vernon
- Department of Pediatric and Community Dentistry, Case Western Reserve University School of Dental Medicine, Cleveland, Ohio, United States of America
- * E-mail: (RKM); (LTV)
| |
Collapse
|
9
|
Mehlotra RK, Zimmerman PA, Weinberg A. Defensin gene variation and HIV/AIDS: a comprehensive perspective needed. J Leukoc Biol 2016; 99:687-92. [PMID: 26957215 DOI: 10.1189/jlb.6ru1215-560r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/02/2016] [Indexed: 01/24/2023] Open
Abstract
Both α- and β-defensins have anti-human immunodeficiency virus activity. These defensins achieve human immunodeficiency virus inhibition through a variety of mechanisms, including direct binding with virions, binding to and modulation of host cell-surface receptors with disruption of intracellular signaling, and functioning as chemokines or cytokines to augment and alter adaptive immune responses. Polymorphisms in the defensin genes have been associated with susceptibility to human immunodeficiency virus infection and disease progression. However, the roles that these defensins and their genetic polymorphisms have in influencing human immunodeficiency virus/acquired immunodeficiency syndrome outcomes are not straightforward and, at times, appear contradictory. Differences in populations, study designs, and techniques for genotyping defensin gene polymorphisms may have contributed to this lack of clarity. In addition, a comprehensive approach, where both subfamilies of defensins and their all-inclusive genetic polymorphism profiles are analyzed, is lacking. Such an approach may reveal whether the human immunodeficiency virus inhibitory activities of α- and β-defensins are based on parallel or divergent mechanisms and may provide further insights into how the genetic predisposition for susceptibility or resistance to human immunodeficiency virus/acquired immunodeficiency syndrome is orchestrated between these molecules.
Collapse
Affiliation(s)
- Rajeev K Mehlotra
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Peter A Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Aaron Weinberg
- Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, Ohio, USA
| |
Collapse
|
10
|
Ding N, Yang X, Zhang L, Cai G, Xia Q, Fan D, Li X, Hu Y, Liu L, Xin L, Wang L, Xu S, Xu J, Zou Y, Ding C, Pan F. Association of β-defensin gene copy number variations with ankylosing spondylitis in Chinese population: A case–control study. Mod Rheumatol 2015; 26:146-50. [DOI: 10.3109/14397595.2015.1056930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
11
|
Genotyping of common SIRPB1 copy number variant using Paralogue Ratio Test coupled to MALDI-MS quantification. Mol Cell Probes 2015; 29:517-521. [PMID: 26239731 DOI: 10.1016/j.mcp.2015.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/15/2015] [Accepted: 07/27/2015] [Indexed: 11/23/2022]
Abstract
Copy number variant (CNV) regions have been proven to have a significant impact on gene expression. Some of them have been also found to be associated to different human diseases. CNV genotyping is often prone to error and cross-validation with independent methods is frequently required. The platform of choice depends on whether it is a genome-wide discovery screening or a candidate CNV study, the cohort size and the number of CNVs included in the assay and, finally, the budget available. Here we illustrate a affordable approach to determine the CNV genotype using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and based on the quantitative determination of single nucleotide duplicated mismatches (SNDM) mapping the CNV region and a paralogue genomic region that is used as a two-copy reference. We have genotyped nsv436327, a common CNV mapping SIRPB1 intron 1 that has been associated to human personality behavior. SIRP cluster region was subjected to several ancestral duplication events what makes SIRPB1 CNV genotyping technically challenging. We designed three sets of primer pairs that amplified paralogue regions inside and outside the CNV, containing three SNDMs. Post-PCR extension analyses of sequencing oligonucleotides mapping immediately upstream each SNDM allowed us to quantify using MALDI-MS the proportion of PCR products derived from the CNV region versus the external reference. In contrast to other approaches, setting up this genotyping method requires an affordable investment.
Collapse
|
12
|
Machado LR, Ottolini B. An evolutionary history of defensins: a role for copy number variation in maximizing host innate and adaptive immune responses. Front Immunol 2015; 6:115. [PMID: 25852686 PMCID: PMC4364288 DOI: 10.3389/fimmu.2015.00115] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/01/2015] [Indexed: 12/21/2022] Open
Abstract
Defensins represent an evolutionary ancient family of antimicrobial peptides that play diverse roles in human health and disease. Defensins are cationic cysteine-containing multifunctional peptides predominantly expressed by epithelial cells or neutrophils. Defensins play a key role in host innate immune responses to infection and, in addition to their classically described role as antimicrobial peptides, have also been implicated in immune modulation, fertility, development, and wound healing. Aberrant expression of defensins is important in a number of inflammatory diseases as well as modulating host immune responses to bacteria, unicellular pathogens, and viruses. In parallel with their role in immunity, in other species, defensins have evolved alternative functions, including the control of coat color in dogs. Defensin genes reside in complex genomic regions that are prone to structural variations and some defensin family members exhibit copy number variation (CNV). Structural variations have mediated, and continue to influence, the diversification and expression of defensin family members. This review highlights the work currently being done to better understand the genomic architecture of the β-defensin locus. It evaluates current evidence linking defensin CNV to autoimmune disease (i.e., Crohn’s disease and psoriasis) as well as the contribution CNV has in influencing immune responses to HIV infection.
Collapse
Affiliation(s)
- Lee R Machado
- Institute of Health and Wellbeing, School of Health, University of Northampton , Northampton , UK
| | - Barbara Ottolini
- Department of Cancer Studies, University of Leicester , Leicester , UK
| |
Collapse
|
13
|
Association of Toll-like receptor polymorphisms with HIV status in North Americans. Genes Immun 2014; 15:569-77. [PMID: 25253287 PMCID: PMC4257894 DOI: 10.1038/gene.2014.54] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/11/2014] [Accepted: 08/22/2014] [Indexed: 12/11/2022]
Abstract
Single nucleotide polymorphisms (SNPs) in toll-like receptor (TLR) genes TLR2-4 and TLR7-9, but not in TLR1 and TLR6, have been previously evaluated regarding HIV acquisition and disease progression in various populations, most of which were European. In the present study, we examined associations between a total of 41 SNPs in 8 TLR genes (TLR1-4, TLR6-9) and HIV status in North American subjects (total n = 276 [Caucasian, n = 102; African American, n = 150; other, n = 24]). Stratification of the data by self-identified race revealed that a total of 9 SNPs in TLR1, TLR4, TLR6, and TLR8 in Caucasians, and 2 other SNPs, one each in TLR4 and TLR8, in African Americans were significantly associated with HIV status at P < 0.05. Concordant with the odds ratios of these SNPs, significant differences were observed in the SNP allele frequencies between HIV+ and HIV− subjects. Finally, in Caucasians, certain haplotypes of single (TLR1, TLR4) and heterodimer (TLR2_TLR6) genes may be inferred as “susceptible” or “protective”. Our study provides in-depth insight into the associations between TLR variants, particularly TLR1 and TLR6, and HIV status in North Americans, and suggests that these associations may be race-specific.
Collapse
|
14
|
Mehlotra RK, Dazard JE, John B, Zimmerman PA, Weinberg A, Jurevic RJ. Copy Number Variation within Human β-Defensin Gene Cluster Influences Progression to AIDS in the Multicenter AIDS Cohort Study. ACTA ACUST UNITED AC 2012; 3. [PMID: 23543857 DOI: 10.4172/2155-6113.1000184] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
STUDY BACKGROUND DEFB4/103A encoding β-defensin 2 and 3, respectively, inhibit CXCR4-tropic (X4) viruses in vitro. We determined whether DEFB4/103A Copy Number Variation (CNV) influences time-to-X4 and time-to-AIDS outcomes. METHODS We utilized samples from a previously published Multicenter AIDS Cohort Study (MACS), which provides longitudinal account of viral tropism in relation to the full spectrum of rates of disease progression. Using traditional models for time-to-event analysis, we investigated association between DEFB4/103A CNV and the two outcomes, and interaction between DEFB4/103A CNV and disease progression groups, Fast and Slow. RESULTS Time-to-X4 and time-to-AIDS were weakly correlated. There was a stronger relationship between these two outcomes for the fast progressors. DEFB4/103A CNV was associated with time-to-AIDS, but not time-to-X4. The association between higher DEFB4/103A CNV and time-to-AIDS was more pronounced for the slow progressors. CONCLUSION DEFB4/103A CNV was associated with time-to-AIDS in a disease progression group-specific manner in the MACS cohort. Our findings may contribute to enhancing current understanding of how genetic predisposition influences AIDS progression.
Collapse
Affiliation(s)
- Rajeev K Mehlotra
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | | | | | | | | |
Collapse
|