1
|
Yang R, Zhu M, Fan S, Zhang J. Niacin intake and mortality (total and cardiovascular disease) in patients with cardiovascular disease: Insights from NHANES 2003-2018. Nutr J 2024; 23:123. [PMID: 39415265 PMCID: PMC11481813 DOI: 10.1186/s12937-024-01027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) poses a significant challenge to global public health. Dietary intervention therapy offers high cost-effectiveness for treating CVD. Currently, there is limited research on the dietary niacin intake and survival of CVD patients. This study aims to examine the association of dietary niacin intake with long-term survival in people with CVD. METHODS A nationally representative sample of 4,377 diabetes subjects was drawn from the NHANES (National Health and Nutrition Examination Survey) data collected between 2003 and 2018. Dietary niacin intake in this study represents either the average of the two recalls or the value from one recall (if only one recall was available for a participant). Weighted Cox proportional hazards regression models were used to calculate hazard ratios (HRs) and 95% CIs to examine the associations between dietary niacin intake and the risk of all-cause and CVD mortality. RESULTS After adjustment for multiple covariates, HRs and 95% CIs in model 3 indicated that participants in the highest quartile (Quartile 4) of dietary niacin intake were at lower risk for all-cause mortality (HR = 0.74, 95% CI: 0.60-0.90, P for trend = 0.010) and CVD mortality (HR = 0.67, 95% CI:0.51-0.89, P for trend = 0.020). CONCLUSION Higher dietary niacin intake may be associated with a reduced risk of all-cause and cardiovascular disease mortality among CVD patients. Additionally, significant interactions were found between dietary niacin intake and BMI as well as vitamin B12 subgroups.
Collapse
Affiliation(s)
- Ruiming Yang
- Department of Nutrition and Food Hygiene, School of Public Health, the National Key Discipline, Harbin Medical University, Harbin, China
| | - Menghan Zhu
- The Baoding Center for Disease Control and Prevention, Baoding City, Hebei Province, China
| | - Shuzhen Fan
- Department of Nutrition and Food Hygiene, School of Public Health, the National Key Discipline, Harbin Medical University, Harbin, China
| | - Jing Zhang
- The Second Department of Infectious Disease, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 201100, China.
| |
Collapse
|
2
|
Lo CH, Liu Z, Chen S, Lin F, Berneshawi AR, Yu CQ, Koo EB, Kowal TJ, Ning K, Hu Y, Wang WJ, Liao YJ, Sun Y. Primary cilia formation requires the Leigh syndrome-associated mitochondrial protein NDUFAF2. J Clin Invest 2024; 134:e175560. [PMID: 38949024 PMCID: PMC11213510 DOI: 10.1172/jci175560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/10/2024] [Indexed: 07/02/2024] Open
Abstract
Mitochondria-related neurodegenerative diseases have been implicated in the disruption of primary cilia function. Mutation in an intrinsic mitochondrial complex I component NDUFAF2 has been identified in Leigh syndrome, a severe inherited mitochondriopathy. Mutations in ARMC9, which encodes a basal body protein, cause Joubert syndrome, a ciliopathy with defects in the brain, kidney, and eye. Here, we report a mechanistic link between mitochondria metabolism and primary cilia signaling. We discovered that loss of NDUFAF2 caused both mitochondrial and ciliary defects in vitro and in vivo and identified NDUFAF2 as a binding partner for ARMC9. We also found that NDUFAF2 was both necessary and sufficient for cilia formation and that exogenous expression of NDUFAF2 rescued the ciliary and mitochondrial defects observed in cells from patients with known ARMC9 deficiency. NAD+ supplementation restored mitochondrial and ciliary dysfunction in ARMC9-deficient cells and zebrafish and ameliorated the ocular motility and motor deficits of a patient with ARMC9 deficiency. The present results provide a compelling mechanistic link, supported by evidence from human studies, between primary cilia and mitochondrial signaling. Importantly, our findings have significant implications for the development of therapeutic approaches targeting ciliopathies.
Collapse
Affiliation(s)
- Chien-Hui Lo
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Zhiquan Liu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Siyu Chen
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Frank Lin
- Department of Medicine, Stanford University, Palo Alto, California, USA
| | - Andrew R. Berneshawi
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Charles Q. Yu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Euna B. Koo
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Tia J. Kowal
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Ke Ning
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Won-Jing Wang
- Institute of Biochemistry and Molecular Biology, College of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Y. Joyce Liao
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
- Palo Alto Veterans Administration, Palo Alto, California, USA
- Stanford Maternal and Child Health Research Institute and
- BioX, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
3
|
Sub-chronic exposure to PhIP induces oxidative damage and DNA damage, and disrupts the amino acid metabolism in the colons of Wistar rats. Food Chem Toxicol 2021; 153:112249. [PMID: 33945839 DOI: 10.1016/j.fct.2021.112249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/13/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
Heterocyclic amines (HCAs) are a group of mutagenic compounds produced during thermal processing of protein-rich foods. One of the most abundant HCAs, 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (PhIP) has potential carcinogenic and mutagenic effects on human organs, especially the colon. This study aimed to explore the toxic effects of PhIP on amino acid metabolism in the colon of Wistar rats using RNA-seq and LC-MS/MS. Exposure to PhIP for 4 weeks induced oxidative damage and DNA damage in the colons, and disrupted the expression of related genes involved in tryptophan metabolism, beta(β)-alanine metabolism, valine, leucine, and isoleucine degradation, and glutathione metabolic pathways. Moreover, the levels of fecal metabolites related to amino acid metabolism were affected by PhIP. Cumulatively, these results indicate that PhIP can induce colonic oxidative injury and disorders related to amino acid metabolism, thereby providing a new theoretical basis for the study of PhIP toxicity.
Collapse
|
4
|
Niacin stimulates EPH4EV mammary epithelial cell proliferation and mammary gland development in pubertal mice through activation of AKT/mTOR and ERK1/2 signaling pathways. Cell Tissue Res 2021; 384:313-324. [PMID: 33576879 DOI: 10.1007/s00441-020-03355-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/18/2020] [Indexed: 12/27/2022]
Abstract
Previous studies have shown the effects of vitamins on the development of the mammary gland. However, the role of niacin in this process has not been reported. Therefore, the aim of this study is to investigate the effects of niacin on mammary gland development in pubertal mice and to use a mouse mammary epithelial cell line to study the underlying mechanism. The results showed that niacin could activate the AKT/mTOR and ERK signaling pathways and increase phosphorylation of 4EBP1 to promote the synthesis of cell proliferation markers, leading to the dissociation of the Rb-E2F1 complex in mMECs. In addition, 0.5% niacin promoted mammary duct development, increased the expression of cyclin D1/D3 and PCNA and activated Akt/mTOR and ERK1/2 in the mammary glands of pubertal mice. These results strongly suggest that niacin stimulates mammary gland development in pubertal mice through the Akt/mTOR and ERK1/2 signaling pathways.
Collapse
|
5
|
Changes in Plasma Free Fatty Acids Associated with Type-2 Diabetes. Nutrients 2019; 11:nu11092022. [PMID: 31466350 PMCID: PMC6770316 DOI: 10.3390/nu11092022] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is associated with increased total plasma free fatty acid (FFA) concentrations and an elevated risk of cardiovascular disease. The exact mechanisms by which the plasma FFA profile of subjects with T2DM changes is unclear, but it is thought that dietary fats and changes to lipid metabolism are likely to contribute. Therefore, establishing the changes in concentrations of specific FFAs in an individual’s plasma is important. Each type of FFA has different effects on physiological processes, including the regulation of lipolysis and lipogenesis in adipose tissue, inflammation, endocrine signalling and the composition and properties of cellular membranes. Alterations in such processes due to altered plasma FFA concentrations/profiles can potentially result in the development of insulin resistance and coagulatory defects. Finally, fibrates and statins, lipid-regulating drugs prescribed to subjects with T2DM, are also thought to exert part of their beneficial effects by impacting on plasma FFA concentrations. Thus, it is also interesting to consider their effects on the concentration of FFAs in plasma. Collectively, we review how FFAs are altered in T2DM and explore the likely downstream physiological and pathological implications of such changes.
Collapse
|
6
|
Kim M, Basharat A, Santosh R, Mehdi SF, Razvi Z, Yoo SK, Lowell B, Kumar A, Brima W, Danoff A, Dankner R, Bergman M, Pavlov VA, Yang H, Roth J. Reuniting overnutrition and undernutrition, macronutrients, and micronutrients. Diabetes Metab Res Rev 2019; 35:e3072. [PMID: 30171821 DOI: 10.1002/dmrr.3072] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/20/2018] [Accepted: 08/26/2018] [Indexed: 12/15/2022]
Abstract
Over-nutrition and its late consequences are a dominant theme in medicine today. In addition to the health hazards brought on by over-nutrition, the medical community has recently accumulated a roster of health benefits with obesity, grouped under "obesity paradox." Throughout the world and throughout history until the 20th century, under-nutrition was a dominant evolutionary force. Under-nutrition brings with it a mix of benefits and detriments that are opposite to and continuous with those of over-nutrition. This continuum yields J-shaped or U-shaped curves relating body mass index to mortality. The overweight have an elevated risk of dying in middle age of degenerative diseases while the underweight are at increased risk of premature death from infectious conditions. Micronutrient deficiencies, major concerns of nutritional science in the 20th century, are being neglected. This "hidden hunger" is now surprisingly prevalent in all weight groups, even among the overweight. Because micronutrient replacement is safe, inexpensive, and predictably effective, it is now an exceptionally attractive target for therapy across the spectrum of weight and age. Nutrition-related conditions worthy of special attention from caregivers include excess vitamin A, excess vitamin D, and deficiency of magnesium.
Collapse
Affiliation(s)
- Miji Kim
- Laboratory of Diabetes and Diabetes-Related Disorders, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
| | - Anam Basharat
- Laboratory of Diabetes and Diabetes-Related Disorders, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
| | - Ramchandani Santosh
- Laboratory of Diabetes and Diabetes-Related Disorders, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
| | - Syed F Mehdi
- Laboratory of Diabetes and Diabetes-Related Disorders, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
| | - Zanali Razvi
- Laboratory of Diabetes and Diabetes-Related Disorders, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
| | - Sun K Yoo
- Laboratory of Diabetes and Diabetes-Related Disorders, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
| | - Barbara Lowell
- Laboratory of Diabetes and Diabetes-Related Disorders, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
| | - Amrat Kumar
- Laboratory of Diabetes and Diabetes-Related Disorders, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
| | - Wunnie Brima
- Laboratory of Diabetes and Diabetes-Related Disorders, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, USA
| | - Ann Danoff
- Department of Medicine, Cpl. Michael J Crescenz Veterans Administration Medical Center, Philadelphia, PA, USA
| | - Rachel Dankner
- Department of Epidemiology and Preventive Medicine, School of Public Health, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michael Bergman
- Department of Medicine, Division of Endocrinology, NYU School of Medicine, New York, NY, USA
| | - Valentin A Pavlov
- Laboratory of Diabetes and Diabetes-Related Disorders, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
- Center for Biomedical Science and Center for Bioelectric Medicine, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
| | - Huan Yang
- Laboratory of Diabetes and Diabetes-Related Disorders, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
- Center for Biomedical Science and Center for Bioelectric Medicine, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
| | - Jesse Roth
- Laboratory of Diabetes and Diabetes-Related Disorders, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, USA
- Center for Biomedical Science and Center for Bioelectric Medicine, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
| |
Collapse
|
7
|
Yang SA. Association study between growth hormone receptor ( GHR ) gene polymorphisms and obesity in Korean population. J Exerc Rehabil 2016; 12:632-636. [PMID: 28119888 PMCID: PMC5227328 DOI: 10.12965/jer.1632844.422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/13/2016] [Indexed: 01/27/2023] Open
Abstract
A main target of growth hormone (GH) is adipose tissue in human body. The GH secretion in obesity patients is impaired. It is needless to say that growth hormone receptor (GHR) is necessary in GH hormone signaling. The purpose of the present study is to examine the association between single nucleotide polymorphisms (SNPs) and the development of obesity. A total of 211 overweight/obese subjects with a body mass index (BMI) ≥23 kg/m2 and 157 nonoverweight/obese controls with a BMI of 18.5-23.0 kg/m2 were involved in this study. Seven SNPs including the rs6451620 (intron), rs4130114 (intron), rs4410646 (intron), rs6898743 (intron), rs4394131 (intron), rs6182 (Cys440Phe), and rs6184 (Pro579Thr) and rs2229765 SNPs of GHR gene were genotyped. Genotyping was performed using custom DNA chip. SNPStats was used to calculate the odds ratio, 95% confidence interval, and P-value. The link-age disequilibrium block and haplotypes among seven SNPs were determined using Haploview version 4.2. Dominant, recessive, and log-additive genetic models were conducted for genetic analyzing. Among tested SNPs in GHR gene, rs4410646 and rs6898743 showed significant association with obesity (rs4410646, P=0.02 in dominant model and P=0.036 in log-additive model; rs6898743, P=0.039 in dominant model and P=0.044 in log-additive model). In summary, these results suggest that GHR gene polymorphisms might play a role in the development of obesity in the Korean population.
Collapse
Affiliation(s)
- Seung-Ae Yang
- Corresponding author: Seung-Ae Yang, http://orcid.org/0000-0002-6235-2752, College of Nursing, Sungshin Women’s University, 2 Bomun-ro 34da-gil, Seongbuk-gu, Seoul 02844, Korea, Tel: +82-2-920-7728, Fax: +82-2-968-0560, E-mail:
| |
Collapse
|
8
|
Yang SA. Association study between growth hormone receptor ( GHR ) gene polymorphisms and obesity in Korean population. J Exerc Rehabil 2016. [PMID: 28119888 PMCID: PMC5227328 DOI: 10.12965//jer.1632844.422] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A main target of growth hormone (GH) is adipose tissue in human body. The GH secretion in obesity patients is impaired. It is needless to say that growth hormone receptor (GHR) is necessary in GH hormone signaling. The purpose of the present study is to examine the association between single nucleotide polymorphisms (SNPs) and the development of obesity. A total of 211 overweight/obese subjects with a body mass index (BMI) ≥23 kg/m2 and 157 nonoverweight/obese controls with a BMI of 18.5–23.0 kg/m2 were involved in this study. Seven SNPs including the rs6451620 (intron), rs4130114 (intron), rs4410646 (intron), rs6898743 (intron), rs4394131 (intron), rs6182 (Cys440Phe), and rs6184 (Pro579Thr) and rs2229765 SNPs of GHR gene were genotyped. Genotyping was performed using custom DNA chip. SNPStats was used to calculate the odds ratio, 95% confidence interval, and P-value. The link-age disequilibrium block and haplotypes among seven SNPs were determined using Haploview version 4.2. Dominant, recessive, and log-additive genetic models were conducted for genetic analyzing. Among tested SNPs in GHR gene, rs4410646 and rs6898743 showed significant association with obesity (rs4410646, P=0.02 in dominant model and P=0.036 in log-additive model; rs6898743, P=0.039 in dominant model and P=0.044 in log-additive model). In summary, these results suggest that GHR gene polymorphisms might play a role in the development of obesity in the Korean population.
Collapse
Affiliation(s)
- Seung-Ae Yang
- College of Nursing, Sungshin Women's University, Seoul, Korea
| |
Collapse
|