1
|
Sawasdichai S, Chaumeau V, Kearney E, Wasisakun P, Simpson JA, Price DJ, Chotirat S, Rénia L, Bergmann-Leitner E, Fowkes F, Nosten F. Characterizing antibody responses to mosquito salivary antigens of the Southeast Asian vectors of malaria and dengue with a human challenge model of controlled exposure: a protocol. Wellcome Open Res 2023; 8:135. [PMID: 37456919 PMCID: PMC10338987 DOI: 10.12688/wellcomeopenres.19049.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Background: Measurement of antibody titers directed against mosquito salivary antigens in blood samples has been proposed as an outcome measure to assess human exposure to vector bites. However, only a handful of antigens have been identified and the specificity and longitudinal dynamics of antibody responses are not well known. We report the protocol of a clinical trial of controlled exposure to mosquito bites that aims to identify and validate biomarkers of exposure to bites of mosquito vector species that transmit malaria and dengue in Southeast Asia and some other parts of the world. Methods: This study is an exploratory factorial randomized control trial of controlled exposure to mosquito bites with 10 arms corresponding to different species ( Aedes aegypti, Ae. albopictus, Anopheles dirus, An. maculatus and An. minimus) and numbers of bites (35 or 305 bites in total over 6 weeks). Blood samples will be collected from study participants before, during and after mosquito biting challenges. Candidate peptides will be identified from published literature with antigen prediction algorithms using mosquito DNA sequence data and with immunoblotting assays carried out using protein extracts of dissected mosquito salivary glands and participants samples. Antibody titers against candidate peptides will be determined in participants samples with high-throughput cutting-edge immuno-assays. Quantification of the antibody response profile over time (including an estimate of the decay rate) and the effect of the number of bites on the antibody response will be determined using linear and logistic mixed-effects models for the continuous and the binary response, respectively. Conclusion: This research is expected to generate important knowledge for vector sero-surveillance and evaluation of vector-control interventions against malaria and dengue in the Greater Mekong Subregion. Registration: This study is registered with clinicaltrials.gov (NCT04478370) on July 20 th, 2020.
Collapse
Affiliation(s)
- Sunisa Sawasdichai
- Shoklo Malaria Research Unit, Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Tak, 63140, Thailand
| | - Victor Chaumeau
- Shoklo Malaria Research Unit, Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Tak, 63140, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, England, OX3 7BN, UK
| | - Ellen Kearney
- Burnet Institute, Melbourne, VIC 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, VIC 3010, Australia
| | - Praphan Wasisakun
- Shoklo Malaria Research Unit, Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Tak, 63140, Thailand
| | - Julie A. Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, VIC 3010, Australia
| | - David J. Price
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, VIC 3010, Australia
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, VIC 3000, Australia
| | - Sadudee Chotirat
- Malaria Vivax Research Unit, Faculty of Tropical medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Laurent Rénia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
- A*STAR Infectious Diseases Labs, Agency for Science, Technology, and Research, Singapore, 138648, Singapore
| | | | - Freya Fowkes
- Burnet Institute, Melbourne, VIC 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, VIC 3010, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, VIC 3052, Australia
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Tak, 63140, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, England, OX3 7BN, UK
| |
Collapse
|
2
|
Sawasdichai S, Chaumeau V, Kearney E, Wasisakun P, Simpson JA, Price DJ, Chotirat S, Rénia L, Bergmann-Leitner E, Fowkes F, Nosten F. Characterizing antibody responses to mosquito salivary antigens of the Southeast Asian vectors of malaria and dengue with a human challenge model of controlled exposure: a protocol. Wellcome Open Res 2023. [DOI: 10.12688/wellcomeopenres.19049.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Background: Measurement of antibody titers directed against mosquito salivary antigens in blood samples has been proposed as an outcome measure to assess human exposure to vector bites. However, only a handful of antigens have been identified and the specificity and longitudinal dynamics of antibody responses are not well known. We report the protocol of a clinical trial of controlled exposure to mosquito bites that aims to identify and validate biomarkers of exposure to bites of mosquito vector species that transmit malaria and dengue in Southeast Asia and some other parts of the world. Methods: This study is an exploratory factorial randomized control trial of controlled exposure to mosquito bites with 10 arms corresponding to different species (Aedes aegypt, Ae. albopictus, Anopheles dirus, An. maculatus and An. minimus) and numbers of bites (35 or 305 bites in total over 6 weeks). Blood samples will be collected from study participants before, during and after mosquito biting challenges. Candidate peptides will be identified from published literature with antigen prediction algorithms using mosquito DNA sequence data and with immunoblotting assays carried out using protein extracts of dissected mosquito salivary glands and participants samples. Antibody titers against candidate peptides will be determined in participants samples with high-throughput cutting-edge immuno-assays. Quantification of the antibody response profile over time (including an estimate of the decay rate) and the effect of the number of bites on the antibody response will be determined using linear and logistic mixed-effects models for the continuous and the binary response, respectively. Conclusion: This research is expected to generate important knowledge for vector sero-surveillance and evaluation of vector-control interventions against malaria and dengue in the Greater Mekong Subregion. Registration: This study is registered with clinicaltrials.gov (NCT04478370) on July 20th, 2020.
Collapse
|
3
|
Visser I, Koenraadt CJ, Koopmans MP, Rockx B. The significance of mosquito saliva in arbovirus transmission and pathogenesis in the vertebrate host. One Health 2023. [DOI: 10.1016/j.onehlt.2023.100506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
|
4
|
Hasyim AA, Iyori M, Mizuno T, Abe YI, Yamagoshi I, Yusuf Y, Syafira I, Sakamoto A, Yamamoto Y, Mizukami H, Shida H, Yoshida S. Adeno-associated virus-based malaria booster vaccine following attenuated replication-competent vaccinia virus LC16m8Δ priming. Parasitol Int 2022; 92:102652. [PMID: 36007703 DOI: 10.1016/j.parint.2022.102652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022]
Abstract
We previously demonstrated that boosting with adeno-associated virus (AAV) type 1 (AAV1) can induce highly effective and long-lasting protective immune responses against malaria parasites when combined with replication-deficient adenovirus priming in a rodent model. In the present study, we compared the efficacy of two different AAV serotypes, AAV1 and AAV5, as malaria booster vaccines following priming with the attenuated replication-competent vaccinia virus strain LC16m8Δ (m8Δ), which harbors the fusion gene encoding both the pre-erythrocytic stage protein, Plasmodium falciparum circumsporozoite (PfCSP) and the sexual stage protein (Pfs25) in a two-dose heterologous prime-boost immunization regimen. Both regimens, m8Δ/AAV1 and m8Δ/AAV5, induced robust anti-PfCSP and anti-Pfs25 antibodies. To evaluate the protective efficacy, the mice were challenged with sporozoites twice after immunization. At the first sporozoite challenge, m8Δ/AAV5 achieved 100% sterile protection whereas m8Δ/AAV1 achieved 70% protection. However, at the second challenge, 100% of the surviving mice from the first challenge were protected in the m8Δ/AAV1 group whereas only 55.6% of those in the m8Δ/AAV5 group were protected. Regarding the transmission-blocking efficacy, we found that both immunization regimens induced high levels of transmission-reducing activity (>99%) and transmission-blocking activity (>95%). Our data indicate that the AAV5-based multistage malaria vaccine is as effective as the AAV1-based vaccine when administered following an m8Δ-based vaccine. These results suggest that AAV5 could be a viable alternate vaccine vector as a malaria booster vaccine.
Collapse
Affiliation(s)
- Ammar A Hasyim
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Ishikawa 920-1192, Japan
| | - Mitsuhiro Iyori
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Ishikawa 920-1192, Japan
| | - Tetsushi Mizuno
- Department of Global Infectious Diseases, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-0934, Japan
| | - Yu-Ichi Abe
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Ishikawa 920-1192, Japan
| | - Iroha Yamagoshi
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Ishikawa 920-1192, Japan
| | - Yenni Yusuf
- Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar, Sulawesi Selatan 90245, Indonesia
| | - Intan Syafira
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Ishikawa 920-1192, Japan
| | - Akihiko Sakamoto
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Ishikawa 920-1192, Japan
| | - Yutaro Yamamoto
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroaki Mizukami
- Division of Gene Therapy, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Hisatoshi Shida
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido 060-0815, Japan
| | - Shigeto Yoshida
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Ishikawa 920-1192, Japan.
| |
Collapse
|
5
|
Shahnaij M, Iyori M, Mizukami H, Kajino M, Yamagoshi I, Syafira I, Yusuf Y, Fujiwara K, Yamamoto DS, Kato H, Ohno N, Yoshida S. Liver-Directed AAV8 Booster Vaccine Expressing Plasmodium falciparum Antigen Following Adenovirus Vaccine Priming Elicits Sterile Protection in a Murine Model. Front Immunol 2021; 12:612910. [PMID: 34248928 PMCID: PMC8261234 DOI: 10.3389/fimmu.2021.612910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocyte infection by malaria sporozoites is a bottleneck in the life-cycle of Plasmodium spp. including P. falciparum, which causes the most lethal form of malaria. Therefore, developing an effective vaccine capable of inducing the strong humoral and cellular immune responses necessary to block the pre-erythrocytic stage has potential to overcome the spatiotemporal hindrances pertaining to parasite biology and hepatic microanatomy. We recently showed that when combined with a human adenovirus type 5 (AdHu5)-priming vaccine, adeno-associated virus serotype 1 (AAV1) is a potent booster malaria vaccine vector capable of inducing strong and long-lasting protective immune responses in a rodent malaria model. Here, we evaluated the protective efficacy of a hepatotropic virus, adeno-associated virus serotype 8 (AAV8), as a booster vector because it can deliver a transgene potently and rapidly to the liver, the organ malaria sporozoites initially infect and multiply in following sporozoite injection by the bite of an infected mosquito. We first generated an AAV8-vectored vaccine expressing P. falciparum circumsporozoite protein (PfCSP). Intravenous (i.v.) administration of AAV8-PfCSP to mice initially primed with AdHu5-PfCSP resulted in a hepatocyte transduction rate ~2.5 times above that seen with intramuscular (i.m.) administration. This immunization regimen provided a better protection rate (100% sterile protection) than that of the i.m. AdHu5-prime/i.m. AAV8-boost regimen (60%, p < 0.05), i.m. AdHu5-prime/i.v. AAV1-boost (78%), or i.m. AdHu5-prime/i.m. AAV1-boost (80%) against challenge with transgenic PfCSP-expressing P. berghei sporozoites. Compared with the i.m. AdHu5-prime/i.v. AAV1-boost regimen, three other regimens induced higher levels of PfCSP-specific humoral immune responses. Importantly, a single i.v. dose of AAV8-PfCSP recruited CD8+ T cells, especially resident memory CD8+ T cells, in the liver. These data suggest that boost with i.v. AAV8-PfCSP can improve humoral and cellular immune responses in BALB/c mice. Therefore, this regimen holds great promise as a next-generation platform for the development of an effective malaria vaccine.
Collapse
Affiliation(s)
- Mohammad Shahnaij
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Mitsuhiro Iyori
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Mizukami
- Division of Gene Therapy, Jichi Medical University, Shimotsuke, Japan
| | - Mayu Kajino
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Iroha Yamagoshi
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Intan Syafira
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Yenni Yusuf
- Department of Parasitology, Faculty of Medicine, University of Hasanuddin, Makassar, Indonesia
| | - Ken Fujiwara
- Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Daisuke S Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Japan
| | - Hirotomo Kato
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Japan
| | - Nobuhiko Ohno
- Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Shigeto Yoshida
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
6
|
Miller MR, Sorensen MR, Markle ED, Clarkson TC, Knight AL, Savran MJ, Foy BD. Characterizing and Quantifying Arbovirus Transmission by Aedes aegypti Using Forced Salivation and Analysis of Bloodmeals. INSECTS 2021; 12:insects12040304. [PMID: 33808172 PMCID: PMC8065531 DOI: 10.3390/insects12040304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022]
Abstract
Arbovirus transmission studies are dependent on the ability to estimate the titer of virus transmitted from infectious mosquitoes to a host. There are several methods for estimating virus titer in mosquito saliva, including (1) using forced salivation (FS) whereby the infectious mosquito's proboscis is forced into a capillary tube containing media to collect and test their saliva for virus, and (2) by quantifying virus expectorated into host tissues or into the blood contained in an artificial feeder immediately after blood feeding. We studied FS and bloodmeals to estimate and compare titers of Zika virus and chikungunya virus transmitted by the mosquito vector Aedes aegypti. Infectious virus and viral genomes of both viruses were detected more often from individual mosquitoes using immersion oil for the FS media compared to fetal bovine serum (FBS) plus glycerol, but the FS media had no influence on virus quantification from positive samples. FS virus titers were equivalent when comparing individuals or groups of mosquitoes that never received a blood meal compared to those that were blood fed immediately prior, showing that blood feeding does not influence FS. This suggested that performing FS on mosquitoes after blood feeding might be an efficient way to estimate virus transmitted during blood feeding. However, detecting virus from the blood remaining in an artificial feeder post-blood feeding was mostly unsuccessful relative to quantifying virus from FS of the post-blood fed mosquitoes. In contrast, immunocompromised mice always became infected after being fed on by Zika-infected mosquitoes, even when no infectious virus was detected in their saliva by FS post-blood feed. Due to this discrepancy, we tested the ingested bloodmeals of individual mosquitoes that fed on artificial blood feeders for virus, and compared these to virus in their saliva harvested from FS and to virus in their bodies. These experiments revealed ~50-100 times higher virus titers in the dissected bloodmeals compared to those detected in the same mosquitoes' saliva, demonstrating how mosquitoes re-ingest much of their saliva during artificial blood feeding, and highlighting a large increase in virus transmission during Aedes aegypti blood feeding. Both FS and the dissected bloodmeals of artificially blood-fed mosquitoes showed that the quantity of viral RNA expectorated by mosquitoes was 2-5 logs more than the quantity of infectious virus. The results from this study add critical information to understanding and quantifying the transmission of Aedes aegypti arboviruses.
Collapse
|
7
|
Yusuf Y, Yoshii T, Iyori M, Yoshida K, Mizukami H, Fukumoto S, Yamamoto DS, Alam A, Emran TB, Amelia F, Islam A, Otsuka H, Takashima E, Tsuboi T, Yoshida S. Adeno-Associated Virus as an Effective Malaria Booster Vaccine Following Adenovirus Priming. Front Immunol 2019; 10:730. [PMID: 31024558 PMCID: PMC6460511 DOI: 10.3389/fimmu.2019.00730] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
An ideal malaria vaccine platform should potently induce protective immune responses and block parasite transmission from mosquito to human, and it should maintain these effects for an extended period. Here, we have focused on vaccine development based on adeno-associated virus serotype 1 (AAV1), a viral vector widely studied in the field of clinical gene therapy that is able to induce long-term transgene expression without causing toxicity in vivo. Our results show the potential utility of AAV1 vectors as an extremely potent booster vaccine to induce durable immunity when combined with an adenovirus-priming vaccine in a rodent malaria model. We generated a series of recombinant AAV1s and human adenovirus type 5 (AdHu5) expressing either Plasmodium falciparum circumsporozoite protein (PfCSP) or P25 (Pfs25) protein. Heterologous two-dose immunization with an AdHu5-prime and AAV1-boost (AdHu5-AAV1) elicited robust and durable PfCSP- or Pfs25-specific functional antibodies over 280 days. Regarding protective efficacy, AdHu5-AAV1 PfCSP achieved high sterile protection (up to 80% protection rate) against challenge with transgenic Plasmodium berghei sporozoites expressing PfCSP. When examining transmission-blocking (TB) efficacy, we found that immunization with AdHu5-AAV1 Pfs25 maintained TB activity in vivo against transgenic P. berghei expressing Pfs25 for 287 days (99% reduction in oocyst intensity, 85% reduction in oocyst prevalence). Our data indicate that AAV1-based malaria vaccines can confer potent and durable protection as well as TB efficacy when administered following an AdHu5 priming vaccine, supporting the further evaluation of this regimen in clinical trials as a next-generation malaria vaccine platform.
Collapse
Affiliation(s)
- Yenni Yusuf
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
- Department of Parasitology, Faculty of Medicine, University of Hasanuddin, Makassar, Indonesia
| | - Tatsuya Yoshii
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Mitsuhiro Iyori
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Kunitaka Yoshida
- Kanazawa University Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Mizukami
- Division of Gene therapy, Jichi Medical University, Shimotsuke, Japan
| | - Shinya Fukumoto
- National Research Centre for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Daisuke S. Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Japan
| | - Asrar Alam
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Talha Bin Emran
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Fitri Amelia
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Ashekul Islam
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Hiromu Otsuka
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Shigeto Yoshida
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
8
|
Kusakisako K, Ido A, Masatani T, Morokuma H, Hernandez EP, Talactac MR, Yoshii K, Tanaka T. Transcriptional activities of two newly identified Haemaphysalis longicornis tick-derived promoter regions in the Ixodes scapularis tick cell line (ISE6). INSECT MOLECULAR BIOLOGY 2018; 27:590-602. [PMID: 29663614 DOI: 10.1111/imb.12497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ticks are obligate haematophagous ectoparasites considered to be second to mosquitoes as vectors of human diseases and the most important vector for animals. Despite efforts to control tick infestations, they remain a serious health problem. Gene manipulation has been established in mosquitoes and led to the control of mosquito populations and of mosquito-borne pathogens. Therefore, gene manipulation could be useful for controlling ticks and tick-borne pathogens. To investigate effective gene expression vectors for ticks, the promoter activities of commercial plasmids were evaluated in a tick cell line (ISE6). Dual luciferase assays revealed that pmirGLO, the human phosphoglycerate kinase promoter contained plasmid vector, showed the highest activity in ISE6 cells amongst the tested plasmids. Moreover, we identified the promoter regions of the Haemaphysalis longicornis actin (HlAct) and the intracellular ferritin (HlFer1) genes. To construct a more effective expression vector for ticks, these promoter regions were inserted into pmirGLO (pmirGLO-HlAct pro and pmirGLO-HlFer1 pro). The pmirGLO-HlAct pro vector showed significantly higher promoter activity than pmirGLO, whereas the pmirGLO-HlFer1 pro vector demonstrated significantly lower promoter activity than pmirGLO in ISE6 cells. The HlAct promoter region may have high promoter activity in ISE6 cells. The results of the present study provide useful information for the development of a genetic modification system in ticks.
Collapse
Affiliation(s)
- K Kusakisako
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, Japan
| | - A Ido
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - T Masatani
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - H Morokuma
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - E P Hernandez
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, Japan
| | - M R Talactac
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, Japan
- Department of Clinical and Population Health, College of Veterinary Medicine and Biomedical Sciences, Cavite State University, Cavite, Philippines
| | - K Yoshii
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - T Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, Japan
| |
Collapse
|
9
|
Iyori M, Yamamoto DS, Sakaguchi M, Mizutani M, Ogata S, Nishiura H, Tamura T, Matsuoka H, Yoshida S. DAF-shielded baculovirus-vectored vaccine enhances protection against malaria sporozoite challenge in mice. Malar J 2017; 16:390. [PMID: 28962615 PMCID: PMC5622557 DOI: 10.1186/s12936-017-2039-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/21/2017] [Indexed: 01/31/2023] Open
Abstract
Background Previous studies have shown that the baculovirus-vectored vaccine based on the “baculovirus dual expression system (BDES)” is an effective vaccine delivery platform for malaria. However, a point of weakness remaining for use of this vaccine platform in vivo concerns viral inactivation by serum complement. In an effort to achieve complement resistance, the gene encoding the human decay-accelerating factor (hDAF) was incorporated into the BDES malaria vaccine expressing the Plasmodium falciparum circumsporozoite protein (PfCSP). Results The newly-developed BDES vaccine, designated BDES-sPfCSP2-Spider, effectively displayed hDAF and PfCSP on the surface of the viral envelope, resulting in complement resistance both in vitro and in vivo. Importantly, upon intramuscular inoculation into mice, the BDES-sPfCSP2-Spider vaccine had a higher protective efficacy (60%) than that of the control vaccine BDES-sPfCSP2-Spier (30%) against challenge with transgenic Plasmodium berghei sporozoites expressing PfCSP. Conclusion DAF-shielded BDES-vaccines offer great potential for development as a new malaria vaccine platform against the sporozoite challenge. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-2039-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mitsuhiro Iyori
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, First Natural Science Building 1A219, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Daisuke S Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Miako Sakaguchi
- Central Laboratory, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Masanori Mizutani
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, First Natural Science Building 1A219, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Sota Ogata
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, First Natural Science Building 1A219, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Hidesato Nishiura
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, First Natural Science Building 1A219, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Takahiko Tamura
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, First Natural Science Building 1A219, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Hiroyuki Matsuoka
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Shigeto Yoshida
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, First Natural Science Building 1A219, Kakuma-machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
10
|
Yamamoto DS, Sumitani M, Kasashima K, Sezutsu H, Matsuoka H. Inhibition of Malaria Infection in Transgenic Anopheline Mosquitoes Lacking Salivary Gland Cells. PLoS Pathog 2016; 12:e1005872. [PMID: 27598328 PMCID: PMC5012584 DOI: 10.1371/journal.ppat.1005872] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/15/2016] [Indexed: 01/24/2023] Open
Abstract
Malaria is an important global public health challenge, and is transmitted by anopheline mosquitoes during blood feeding. Mosquito vector control is one of the most effective methods to control malaria, and population replacement with genetically engineered mosquitoes to block its transmission is expected to become a new vector control strategy. The salivary glands are an effective target tissue for the expression of molecules that kill or inactivate malaria parasites. Moreover, salivary gland cells express a large number of molecules that facilitate blood feeding and parasite transmission to hosts. In the present study, we adapted a functional deficiency system in specific tissues by inducing cell death using the mouse Bcl-2-associated X protein (Bax) to the Asian malaria vector mosquito, Anopheles stephensi. We applied this technique to salivary gland cells, and produced a transgenic strain containing extremely low amounts of saliva. Although probing times for feeding on mice were longer in transgenic mosquitoes than in wild-type mosquitoes, transgenic mosquitoes still successfully ingested blood. Transgenic mosquitoes also exhibited a significant reduction in oocyst formation in the midgut in a rodent malaria model. These results indicate that mosquito saliva plays an important role in malaria infection in the midgut of anopheline mosquitoes. The dysfunction in the salivary glands enabled the inhibition of malaria transmission from hosts to mosquito midguts. Therefore, salivary components have potential in the development of new drugs or genetically engineered mosquitoes for malaria control. Malaria, transmitted by anopheline mosquitoes, represents an important global public health challenge. The salivary glands of mosquitoes are an attractive target tissue for malaria and vector control. We produced a transgenic strain inducing cell death in the salivary glands with a cell death effector molecule in the Asian malaria vector mosquito, Anopheles stephensi. This transgenic strain contained extremely low amounts of saliva. An analysis of this strain revealed that saliva plays an important role in probing as well as malaria infection in the midgut in a rodent malaria model. The dysfunction in the salivary glands enabled the inhibition of malaria transmission to mosquito midguts. Therefore, salivary components are also important in malaria control.
Collapse
Affiliation(s)
- Daisuke S. Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Yakushiji, Shimotsuke, Tochigi, Japan
- * E-mail:
| | - Megumi Sumitani
- Transgenic Silkworm Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Owashi, Tsukuba, Ibaraki, Japan
| | - Katsumi Kasashima
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Yakushiji, Shimotsuke, Tochigi, Japan
| | - Hideki Sezutsu
- Transgenic Silkworm Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Owashi, Tsukuba, Ibaraki, Japan
| | - Hiroyuki Matsuoka
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Yakushiji, Shimotsuke, Tochigi, Japan
| |
Collapse
|
11
|
Parameters of Mosquito-Enhanced West Nile Virus Infection. J Virol 2015; 90:292-9. [PMID: 26468544 DOI: 10.1128/jvi.02280-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/06/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The arthropod-borne West Nile virus (WNV) emerged in New York State in 1999 and quickly spread throughout the United States. Transmission is maintained in an enzootic cycle in which infected mosquitoes transmit the virus to susceptible hosts during probing and feeding. Arthropod-derived components within the viral inoculum are increasingly acknowledged to play a role in infection of vertebrate hosts. We previously showed that Culex tarsalis mosquito saliva and salivary gland extract (SGE) enhance the in vivo replication of WNV. Here, we characterized the effective dose, timing, and proximity of saliva and SGE administration necessary for enhancement of WNV viremia using a mouse model. Mosquito saliva and SGE enhanced viremia in a dose-dependent manner, and a single mosquito bite or as little as 0.01 μg of SGE was effective at enhancing viremia, suggesting a potent active salivary factor. Viremia was enhanced when SGE was injected in the same location as virus inoculation from 24 h before virus inoculation through 12 h after virus inoculation. These results were confirmed with mosquito saliva deposited by uninfected mosquitoes. When salivary treatment and virus inoculation were spatially separated, viremia was not enhanced. In summary, the effects of mosquito saliva and SGE were potent, long lasting, and localized, and these studies have implications for virus transmission in nature, where vertebrate hosts are fed upon by both infected and uninfected mosquitoes over time. Furthermore, our model provides a robust system to identify the salivary factor(s) responsible for enhancement of WNV replication. IMPORTANCE Mosquito-borne viruses are a significant class of agents causing emerging infectious diseases. WNV has caused over 18,000 cases of neuroinvasive disease in the United States since its emergence. We have shown that Culex tarsalis mosquito saliva and SGE enhance the replication of WNV. We now demonstrate that saliva and SGE have potent, long-lasting, and localized effects. Our model provides a robust system to identify the salivary factor(s) and characterize the mechanism responsible for enhancement of WNV replication. These studies could lead to the identification of novel prophylactic or treatment options useful in limiting the spread of WNV, other mosquito-borne viruses, and the diseases that they cause.
Collapse
|
12
|
Coutinho-Abreu IV, Guimaraes-Costa AB, Valenzuela JG. Impact of Insect Salivary Proteins in Blood Feeding, Host Immunity, Disease, and in the Development of Biomarkers for Vector Exposure. CURRENT OPINION IN INSECT SCIENCE 2015; 10:98-103. [PMID: 26339571 PMCID: PMC4553692 DOI: 10.1016/j.cois.2015.04.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 05/02/2023]
Abstract
Functional genomic approaches based on expression of recombinant proteins linked to biochemical and disease model approaches resulted in the discovery of novel biological activities and the role some of these proteins play in disease transmission. Importantly, the expression of salivary proteins was recently shown to be affected by environmental factors and by the presence of the pathogen in the salivary gland. A practical application resulting from insect saliva research is the use of insect antigenic salivary protein as biomarkers of vector exposure in humans and animal reservoirs, an approach that is yielding interesting results in the field.
Collapse
|
13
|
Matsuoka H, Tomita H, Hattori R, Arai M, Hirai M. Visualization of Malaria Parasites in the Skin Using the Luciferase Transgenic Parasite, Plasmodium berghei. Trop Med Health 2014; 43:53-61. [PMID: 25859153 PMCID: PMC4361344 DOI: 10.2149/tmh.2014-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/13/2014] [Indexed: 01/25/2023] Open
Abstract
We produced a transgenic rodent malaria parasite (Plasmodium berghei) that contained the luciferase gene under a promoter region of elongation factor-1α. These transgenic (TG) parasites expressed luciferase in all stages of their life cycle, as previously reported. However, we were the first to succeed in observing sporozoites as a mass in mouse skin following their deposition by the probing of infective mosquitoes. Our transgenic parasites may have emitted stronger bioluminescence than previous TG parasites. The estimated number of injected sporozoites by mosquitoes was between 34 and 775 (median 80). Since luciferase activity diminished immediately after the death of the parasites, luciferase activity could be an indicator of the existence of live parasites. Our results indicated that sporozoites survived at the probed site for more than 42 hours. We also detected sporozoites in the liver within 15 min of the intravenous injection. Bioluminescence was not observed in the lung, kidney or spleen. We confirmed the observation that the liver was the first organ in which malaria parasites entered and increased in number.
Collapse
Affiliation(s)
- Hiroyuki Matsuoka
- Division of Medical Zoology, Jichi Medical University , 3311-1 Yakushiji, Shimotsuke-shi 329-0498, Japan
| | - Hiroyuki Tomita
- Division of Medical Zoology, Jichi Medical University , 3311-1 Yakushiji, Shimotsuke-shi 329-0498, Japan
| | - Ryuta Hattori
- Division of Medical Zoology, Jichi Medical University , 3311-1 Yakushiji, Shimotsuke-shi 329-0498, Japan
| | - Meiji Arai
- Division of Medical Zoology, Jichi Medical University , 3311-1 Yakushiji, Shimotsuke-shi 329-0498, Japan ; Department of International Medical Zoology, Graduate School of Medicine, Kagawa University , Miki-cho 761-0793, Japan
| | - Makoto Hirai
- Division of Medical Zoology, Jichi Medical University , 3311-1 Yakushiji, Shimotsuke-shi 329-0498, Japan ; Department of Parasitology, School of Medicine, Juntendo University , Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|