1
|
Nganso BT, Eliash N, Mani K, Sela N, Villar-Briones A, Osabutey AF, Rafaeli A, Mikheyev AS, Soroker V. Chemosensory function of Varroa gnathosoma: transcriptomic and proteomic analyses. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 93:701-719. [PMID: 39441431 PMCID: PMC11534843 DOI: 10.1007/s10493-024-00952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/18/2024] [Indexed: 10/25/2024]
Abstract
In this study, we evaluated the role of the gnathosoma (mouthparts) in chemosensing of the most devastating honey bee parasite, Varroa destructor mite. Through transcriptomic analysis, we compared the expression of putative chemosensory genes between the body parts containing the main chemosensory organs (the forelegs), gnathosoma and the rest of the body devoid of these two body parts. Furthermore, we checked the presence of chemosensory-related transcripts in the proteome of the gnathosoma. Our comparative transcriptomic analysis revealed the presence of 83 transcripts with known characteristic conserved domains belonging to eight chemosensory gene families in the three Varroa transcriptomes. Among these transcripts, 11 were significantly upregulated in the mite's forelegs, compared to 8 and 10 in the gnathosoma and body devoid of both organs, respectively. Whilst the gnathosoma and the forelegs share similar expression of some putative lipid carrier proteins, membrane-bound receptors, and associated proteins, they also differ in the expression profiles of some transcripts belonging to these protein families. This suggests two functional chemosensory organs that may differ in their chemosensory function according to specific characteristics of compounds they detect. Moreover, the higher expression of some chemosensory transcripts in the body devoid of forelegs and gnathosoma compared to the gnathosoma alone, may suggest the presence of additional function of these transcripts or alternatively presence of additional external or internal chemosensory organs. Insights into the functional annotation of a highly expressed gustatory receptor present in both organs using RNA interference (RNAi) are also revealed.
Collapse
Affiliation(s)
- Beatrice T Nganso
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, the Volcani Center, Rishon LeZion, Israel
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Nurit Eliash
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Onna-son, Okinawa, Japan
- Shamir Research Institute, Rishon LeTsiyon, Israel
- University of Haifa, Haifa, Israel
| | - Kannan Mani
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, the Volcani Center, Rishon LeZion, Israel
| | - Noa Sela
- Bioinformatics Unit, ARO Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion, 7528809, Israel
| | - Alejandro Villar-Briones
- Instrumental Analysis Section, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Angelina Fathia Osabutey
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, the Volcani Center, Rishon LeZion, Israel
| | - Ada Rafaeli
- Institute of Postharvest and Food Sciences, Agricultural Research Organization, the Volcani Centre, Rishon Lezion, Israel
| | - Alexander S Mikheyev
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Onna-son, Okinawa, Japan
- Research School of Biology, Australian National University, Canberra, ACTRR, Australia
| | - Victoria Soroker
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, the Volcani Center, Rishon LeZion, Israel.
| |
Collapse
|
2
|
Gaudet K, Anholeto LA, Hillier NK, Faraone N. Lemongrass essential oil and DEET inhibit attractant detection in infected and non-infected Ixodes scapularis ticks. CURRENT RESEARCH IN INSECT SCIENCE 2024; 6:100096. [PMID: 39386116 PMCID: PMC11462224 DOI: 10.1016/j.cris.2024.100096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024]
Abstract
Blacklegged tick, Ixodes scapularis Say (Arachnida: Ixodidae), is a growing health concern for humans as vectors the causative agent of Lyme disease, Borrelia burgdorferi, and many other pathogens. Given the potential health threat I. scapularis entails, and the need to find effective strategies to prevent tick bites, it is pivotal to understand the chemosensory system of ticks and their host-seeking behaviour when exposed to repellents. In this study, we investigated whether the exposure to synthetic and plant-derived repellents impairs the ability of I. scapularis to detect attractants and host volatiles (butyric acid), and ultimately how these repellents interfere with host-seeking behaviour in both wild and lab-reared ticks. Furthermore, we screened wild ticks used in electrophysiology and Y-tube behavioural assays for presence of pathogens (Borrelia, Anaplasma, and Babesia) to evaluate if the bacterial infection status would affect the detection of butyric acid under the exposure to repellents. We determined that the exposure to DEET, lemongrass essential oil, citral, and geraniol significantly inhibited the ability of both lab-reared and wild adult female I. scapularis to detect and respond to butyric acid. We found that tick infection status does not significantly impact host-seeking behaviour in adult female I. scapularis. The knowledge gained from our study contributes to advance our understanding of host-seeking behaviour in ticks and the impact that the exposure to repellent has on the tick chemosensory system. These findings will be important for elucidating the mechanism of repellence in ticks and for the development of effective tick repellent management tools.
Collapse
Affiliation(s)
- Kayla Gaudet
- Department of Biology, Acadia University, 33 Westwood Ave., Wolfville, NS, Canada B4P 2R6
- Department of Chemistry, Acadia University, 6 University Ave., Wolfville, NS, Canada B4P 2R6
| | - Luis Adriano Anholeto
- Department of Chemistry, Acadia University, 6 University Ave., Wolfville, NS, Canada B4P 2R6
| | - N. Kirk Hillier
- Department of Biology, Acadia University, 33 Westwood Ave., Wolfville, NS, Canada B4P 2R6
| | - Nicoletta Faraone
- Department of Chemistry, Acadia University, 6 University Ave., Wolfville, NS, Canada B4P 2R6
| |
Collapse
|
3
|
Iannucci A, Zhu J, Antonielli L, Ayari A, Nasri-Ammar K, Knoll W, Pelosi P, Dani FR. Chemosensory proteins as putative semiochemical carriers in the desert isopod Hemilepistus reaumurii. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 162:104012. [PMID: 37743031 DOI: 10.1016/j.ibmb.2023.104012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
The order Isopoda contains both aquatic and terrestrial species, among which Hemilepistus reaumurii, which lives in arid environments and is the most adapted to terrestrial life. Olfaction has been deeply investigated in insects while it has received very limited attention in other arthropods, particularly in terrestrial crustaceans. In insects, soluble proteins belonging to two main families, Odorant Binding Proteins (OBPs) and Chemosensory Proteins (CSPs), are contained in the olfactory sensillar lymph and are suggested to act as carriers of hydrophobic semiochemicals to or from membrane-bound olfactory receptors. Other protein families, namely Nieman-Pick type 2 (NPC2) and Lipocalins (LCNs) have been also reported as putative odorant carriers in insects and other arthropod clades. In this study, we have sequenced and analysed the transcriptomes of antennae and of the first pair of legs of H. reaumurii focusing on soluble olfactory proteins. Interestingly, we have found 13 genes encoding CSPs, whose sequences differ from those of the other arthropod clades, including non-isopod crustaceans, for the presence of two additional cysteine residues, besides the four conserved ones. Binding assays on two of these proteins showed strong affinities for fatty acids and long-chain unsaturated esters and aldehydes, putative semiochemicals for this species.
Collapse
Affiliation(s)
- Alessio Iannucci
- Department of Biology, University of Firenze, 50019, Firenze, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| | - Jiao Zhu
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, 3430 Tulln, Austria
| | - Livio Antonielli
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, 3430 Tulln, Austria
| | - Anas Ayari
- Université Tunis El Manar, Faculté des Sciences de Tunis, Unité de Recherche de Bio-Ecologie et Systématique Evolutive, 2092, Tunis, Tunisia
| | - Karima Nasri-Ammar
- Université Tunis El Manar, Faculté des Sciences de Tunis, Unité de Recherche de Bio-Ecologie et Systématique Evolutive, 2092, Tunis, Tunisia
| | - Wolfgang Knoll
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, 3430 Tulln, Austria
| | - Paolo Pelosi
- AIT Austrian Institute of Technology GmbH, Center for Health & Bioresources, Bioresources Unit, 3430 Tulln, Austria
| | - Francesca Romana Dani
- Department of Biology, University of Firenze, 50019, Firenze, Italy; National Biodiversity Future Center, 90133, Palermo, Italy.
| |
Collapse
|
4
|
Mani K, Nganso BT, Rodin P, Otmy A, Rafaeli A, Soroker V. Effects of Niemann-Pick type C2 (NPC2) gene transcripts silencing on behavior of Varroa destructor and molecular changes in the putative olfactory gene networks. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 148:103817. [PMID: 35926690 DOI: 10.1016/j.ibmb.2022.103817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
To understand the role of two Niemann-Pick type C2 (NPC2) transcripts, Vd40090 (NP1) and Vd74517 (NP5), in the chemosensing pathway of Varroa destructor, we evaluated the impact of NP5 silencing on mites behavior and compared the effect of silencing of either transcripts on the interaction between chemosensory transcripts. In contrast to silencing NP1, which reduced feeding and reproduction by the mite (Nganso et al., 2021), silencing of NP5 reduced significantly the host reaching ability, but it did not affect the feeding on nurse bee. However, silencing of either transcript changed dramatically the co-expression patterns among the putative chemosensory genes, binding proteins and receptors. The results suggest the role of gustatory receptors in the detection of long-range chemical cues in the chemosensory cascade of the Varroa mite.
Collapse
Affiliation(s)
- Kannan Mani
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Centre, Rishon LeZion, Israel
| | - Beatrice T Nganso
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Centre, Rishon LeZion, Israel
| | - Penina Rodin
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Centre, Rishon LeZion, Israel
| | - Assaf Otmy
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Centre, Rishon LeZion, Israel
| | - Ada Rafaeli
- Institute of Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Centre, Rishon LeZion, Israel
| | - Victoria Soroker
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Centre, Rishon LeZion, Israel.
| |
Collapse
|
5
|
Pelosi P, Knoll W. Odorant-binding proteins of mammals. Biol Rev Camb Philos Soc 2022; 97:20-44. [PMID: 34480392 DOI: 10.1111/brv.12787] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022]
Abstract
Odorant-binding proteins (OBPs) of vertebrates belong to the lipocalin superfamily and perform a dual function: solubilizing and ferrying volatile pheromones to the olfactory receptors, and complexing the same molecules in specialized glands and assisting their release into the environment. Within vertebrates, to date they have been reported only in mammals, apart from two studies on amphibians. Based on the small number of OBPs expressed in each species, on their sites of production outside the olfactory area and their presence in biological fluids known to be pheromone carriers, such as urine, saliva and sexual secretions, we conclude that OBPs of mammals are specifically dedicated to pheromonal communication. This assumption is further supported by the observation that some OBPs present in biological secretions are endowed with their own pheromonal activity, adding renewed interest to these proteins. Another novel piece of evidence is the recent discovery that glycosylation and phosphorylation can modulate the binding activity of these proteins, improving their affinity to pheromones and narrowing their specificity. A comparison with insects and other arthropods shows a completely different scenario. While mammalian OBPs are specifically tuned to pheromones, those of insects, which are completely different in sequence and structure, include carriers for general odorants in addition to those dedicated to pheromones. Additionally, whereas mammals adopted a single family of carrier proteins for chemical communication, insects and other arthropods are endowed with several families of semiochemical-binding proteins. Here, we review the literature on the structural and functional properties of vertebrate OBPs, summarize the most interesting new findings and suggest possible exciting future developments.
Collapse
Affiliation(s)
- Paolo Pelosi
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenz Straße 24, Tulln, 3430, Austria
| | - Wolfgang Knoll
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenz Straße 24, Tulln, 3430, Austria
| |
Collapse
|
6
|
Standard Methods for Dissection of Varroa destructor Females. INSECTS 2021; 13:insects13010037. [PMID: 35055880 PMCID: PMC8781925 DOI: 10.3390/insects13010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/25/2021] [Indexed: 11/17/2022]
Abstract
Varroa destructor (Anderson and Trueman) is known as a major pest of Apis mellifera L, especially in the Northern Hemisphere where its effects can be deleterious. As an obligate parasite, this mite relies entirely on its host to reproduce and complete its cycle. Studies focusing on isolated organs are needed to better comprehend this organism. To conduct such targeted molecular or physiological studies, the dissection of V. destructor mites is crucial as it allows the extraction of specific organs. Here, we propose a technical article showing detailed steps of females V. destructor dissection, illustrated with pictures and videos. These illustrated guidelines will represent a helpful tool to go further in V. destructor research.
Collapse
|
7
|
Nganso BT, Mani K, Eliash N, Rafaeli A, Soroker V. Towards disrupting Varroa -honey bee chemosensing: A focus on a Niemann-Pick type C2 transcript. INSECT MOLECULAR BIOLOGY 2021; 30:519-531. [PMID: 34216416 DOI: 10.1111/imb.12722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/30/2021] [Accepted: 05/30/2021] [Indexed: 06/13/2023]
Abstract
We focused our study on the 12 recently identified putative odorant carrier proteins in the ectoparasitic mite, Varroa destructor. Here we show, via an exclusion of the chemosensory appendages (forelegs and gnathosoma) that transcripts of five of the 12 genes were significantly lower, suggesting that they are likely involved in carrying host volatiles. Specifically, three transcripts were found to be foreleg-specific while the other two transcripts were expressed in both the forelegs and gnathosoma. We focused on one of the highly expressed and foreleg-specific transcript Vd40090, which encodes a Niemann-Pick disease protein type C2 (NPC2) protein. Effects of dsRNA-mediated silencing of Vd40090 were first measured by quantifying the transcript levels of genes that encode other putative odorant carrier proteins as well as reproduction related proteins. In addition, the impact of silencing on mites behaviour and survival was tested. Silencing of Vd40090 effectively disrupted Varroa host selection, acceptance and feeding and significantly impaired the expression of genes that regulate its reproduction in brood cells, resulting in reduced reproduction and survival.
Collapse
Affiliation(s)
- B T Nganso
- Institute of Plant Protection, Agricultural Research Organization, the Volcani Center, Rishon LeZion, Israel
| | - K Mani
- Institute of Plant Protection, Agricultural Research Organization, the Volcani Center, Rishon LeZion, Israel
| | - N Eliash
- Institute of Plant Protection, Agricultural Research Organization, the Volcani Center, Rishon LeZion, Israel
| | - A Rafaeli
- Institute of Postharvest and Food Sciences, Agricultural Research Organization, the Volcani Centre, Rishon LeZion, Israel
| | - V Soroker
- Institute of Plant Protection, Agricultural Research Organization, the Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
8
|
Zhu J, Renzone G, Arena S, Dani FR, Paulsen H, Knoll W, Cambillau C, Scaloni A, Pelosi P. The Odorant-Binding Proteins of the Spider Mite Tetranychus urticae. Int J Mol Sci 2021; 22:ijms22136828. [PMID: 34202019 PMCID: PMC8269058 DOI: 10.3390/ijms22136828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022] Open
Abstract
Spider mites are one of the major agricultural pests, feeding on a large variety of plants. As a contribution to understanding chemical communication in these arthropods, we have characterized a recently discovered class of odorant-binding proteins (OBPs) in Tetranychus urticae. As in other species of Chelicerata, the four OBPs of T. urticae contain six conserved cysteines paired in a pattern (C1-C6, C2-C3, C4-C5) differing from that of insect counterparts (C1-C3, C2-C5, C4-C6). Proteomic analysis uncovered a second family of OBPs, including twelve members that are likely to be unique to T. urticae. A three-dimensional model of TurtOBP1, built on the recent X-ray structure of Varroa destructor OBP1, shows protein folding different from that of insect OBPs, although with some common features. Ligand-binding experiments indicated some affinity to coniferyl aldehyde, but specific ligands may still need to be found among very large molecules, as suggested by the size of the binding pocket.
Collapse
Affiliation(s)
- Jiao Zhu
- Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenz Straße, 24, 3430 Tulln, Austria; (J.Z.); (W.K.)
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-Universität, 55099 Mainz, Germany;
| | - Giovanni Renzone
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Napoli, Italy; (G.R.); (S.A.); (A.S.)
| | - Simona Arena
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Napoli, Italy; (G.R.); (S.A.); (A.S.)
| | - Francesca Romana Dani
- Department of Biology, University of Firenze, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy;
| | - Harald Paulsen
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-Universität, 55099 Mainz, Germany;
| | - Wolfgang Knoll
- Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenz Straße, 24, 3430 Tulln, Austria; (J.Z.); (W.K.)
- Department of Physics and Chemistry of Materials, Faculty of Medicine/Dental Medicine, Danube Private University, 3500 Krems, Austria
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques (UMR 7257), CNRS and Aix-Marseille Université, CDEX 09, 13288 Marseille, France;
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Napoli, Italy; (G.R.); (S.A.); (A.S.)
| | - Paolo Pelosi
- Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenz Straße, 24, 3430 Tulln, Austria; (J.Z.); (W.K.)
- Correspondence:
| |
Collapse
|
9
|
Amigues B, Zhu J, Gaubert A, Arena S, Renzone G, Leone P, Fischer IM, Paulsen H, Knoll W, Scaloni A, Roussel A, Cambillau C, Pelosi P. A new non-classical fold of varroa odorant-binding proteins reveals a wide open internal cavity. Sci Rep 2021; 11:13172. [PMID: 34162975 PMCID: PMC8222343 DOI: 10.1038/s41598-021-92604-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
Odorant-binding proteins (OBPs), as they occur in insects, form a distinct class of proteins that apparently has no closely related representatives in other animals. However, ticks, mites, spiders and millipedes contain genes encoding proteins with sequence similarity to insect OBPs. In this work, we have explored the structure and function of such non-insect OBPs in the mite Varroa destructor, a major pest of honey bee. Varroa OBPs present six cysteines paired into three disulphide bridges, but with positions in the sequence and connections different from those of their insect counterparts. VdesOBP1 structure was determined in two closely related crystal forms and appears to be a monomer. Its structure assembles five α-helices linked by three disulphide bridges, one of them exhibiting a different connection as compared to their insect counterparts. Comparison with classical OBPs reveals that the second of the six α-helices is lacking in VdesOBP1. Ligand-binding experiments revealed molecules able to bind only specific OBPs with a moderate affinity, suggesting that either optimal ligands have still to be identified, or post-translational modifications present in the native proteins may be essential for modulating binding activity, or else these OBPs might represent a failed attempt in evolution and are not used by the mites.
Collapse
Affiliation(s)
- Beatrice Amigues
- Architecture et Fonction des Macromolécules Biologiques (AFMB, UMR 6098), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université (AMU), Campus de Luminy, Case 932, 13288, Marseille Cedex 09, France
| | - Jiao Zhu
- Biosensor Technologies, Austrian Institute of Technology GmbH, Konrad-Lorenz Straße, 24, 3430, Tulln, Austria
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-Universität Mainz, 55099, Mainz, Germany
| | - Anais Gaubert
- Architecture et Fonction des Macromolécules Biologiques (AFMB, UMR 6098), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université (AMU), Campus de Luminy, Case 932, 13288, Marseille Cedex 09, France
| | - Simona Arena
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147, Naples, Italy
| | - Giovanni Renzone
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147, Naples, Italy
| | - Philippe Leone
- Architecture et Fonction des Macromolécules Biologiques (AFMB, UMR 6098), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université (AMU), Campus de Luminy, Case 932, 13288, Marseille Cedex 09, France
| | - Isabella Maria Fischer
- Biosensor Technologies, Austrian Institute of Technology GmbH, Konrad-Lorenz Straße, 24, 3430, Tulln, Austria
| | - Harald Paulsen
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-Universität Mainz, 55099, Mainz, Germany
| | - Wolfgang Knoll
- Biosensor Technologies, Austrian Institute of Technology GmbH, Konrad-Lorenz Straße, 24, 3430, Tulln, Austria
- Department of Physics and Chemistry of Materials, Faculty of Medicine/Dental Medicine, Danube Private University, Krems, Austria
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147, Naples, Italy
| | - Alain Roussel
- Architecture et Fonction des Macromolécules Biologiques (AFMB, UMR 6098), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université (AMU), Campus de Luminy, Case 932, 13288, Marseille Cedex 09, France
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques (AFMB, UMR 6098), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université (AMU), Campus de Luminy, Case 932, 13288, Marseille Cedex 09, France.
| | - Paolo Pelosi
- Biosensor Technologies, Austrian Institute of Technology GmbH, Konrad-Lorenz Straße, 24, 3430, Tulln, Austria.
| |
Collapse
|
10
|
Zhu J, Iannucci A, Dani FR, Knoll W, Pelosi P. Lipocalins in Arthropod Chemical Communication. Genome Biol Evol 2021; 13:6261314. [PMID: 33930146 PMCID: PMC8214410 DOI: 10.1093/gbe/evab091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 12/17/2022] Open
Abstract
Lipocalins represent one of the most successful superfamilies of proteins. Most of them are extracellular carriers for hydrophobic ligands across aqueous media, but other functions have been reported. They are present in most living organisms including bacteria. In animals they have been identified in mammals, molluscs, and arthropods; sequences have also been reported for plants. A subgroup of lipocalins, referred to as odorant-binding proteins (OBPs), mediate chemical communication in mammals by ferrying specific pheromones to the vomeronasal organ. So far, these proteins have not been reported as carriers of semiochemicals in other living organisms; instead chemical communication in arthropods is mediated by other protein families structurally unrelated to lipocalins. A search in the databases has revealed extensive duplication and differentiation of lipocalin genes in some species of insects, crustaceans, and chelicerates. Their large numbers, ranging from a handful to few dozens in the same species, their wide divergence, both within and between species, and their expression in chemosensory organs suggest that such expansion may have occurred under environmental pressure, thus supporting the hypothesis that lipocalins may be involved in chemical communication in arthropods.
Collapse
Affiliation(s)
- Jiao Zhu
- Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria.,Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Alessio Iannucci
- Departement of Biology, University of Firenze, Sesto Fiorentino, Italy
| | | | - Wolfgang Knoll
- Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria
| | - Paolo Pelosi
- Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria
| |
Collapse
|
11
|
Techer MA, Rane RV, Grau ML, Roberts JMK, Sullivan ST, Liachko I, Childers AK, Evans JD, Mikheyev AS. Divergent evolutionary trajectories following speciation in two ectoparasitic honey bee mites. Commun Biol 2019; 2:357. [PMID: 31583288 PMCID: PMC6773775 DOI: 10.1038/s42003-019-0606-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 09/10/2019] [Indexed: 01/28/2023] Open
Abstract
Multispecies host-parasite evolution is common, but how parasites evolve after speciating remains poorly understood. Shared evolutionary history and physiology may propel species along similar evolutionary trajectories whereas pursuing different strategies can reduce competition. We test these scenarios in the economically important association between honey bees and ectoparasitic mites by sequencing the genomes of the sister mite species Varroa destructor and Varroa jacobsoni. These genomes were closely related, with 99.7% sequence identity. Among the 9,628 orthologous genes, 4.8% showed signs of positive selection in at least one species. Divergent selective trajectories were discovered in conserved chemosensory gene families (IGR, SNMP), and Halloween genes (CYP) involved in moulting and reproduction. However, there was little overlap in these gene sets and associated GO terms, indicating different selective regimes operating on each of the parasites. Based on our findings, we suggest that species-specific strategies may be needed to combat evolving parasite communities.
Collapse
Affiliation(s)
- Maeva A. Techer
- Okinawa Institute of Science and Technology, 1919-1 Tancha Onna-son, 904-0495 Okinawa, Japan
| | - Rahul V. Rane
- Commonwealth Scientific and Industrial Research Organisation, Clunies Ross St, (GPO Box 1700), Acton, ACT 2601 Australia
- Bio21 Institute, School of BioSciences, University of Melbourne, 30 Flemington Road, Parkville, VIC 3010 Australia
| | - Miguel L. Grau
- Okinawa Institute of Science and Technology, 1919-1 Tancha Onna-son, 904-0495 Okinawa, Japan
| | - John M. K. Roberts
- Commonwealth Scientific and Industrial Research Organisation, Clunies Ross St, (GPO Box 1700), Acton, ACT 2601 Australia
| | | | | | | | | | - Alexander S. Mikheyev
- Okinawa Institute of Science and Technology, 1919-1 Tancha Onna-son, 904-0495 Okinawa, Japan
- Australian National University, Canberra, ACT 2600 Australia
| |
Collapse
|