1
|
Chen CC, Buchheit KM, Lee PY, Brodeur KE, Sohail A, Cho L, Baloh CH, Balestrieri B, Derakhshan T, Feng C, Boyce JA, Dwyer DF, Laidlaw TM. IL-4Rα signaling promotes barrier-altering oncostatin M and IL-6 production in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 2024; 154:458-467.e3. [PMID: 38704098 PMCID: PMC11305950 DOI: 10.1016/j.jaci.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Aspirin-exacerbated respiratory disease (AERD) is a severe disease involving dysregulated type 2 inflammation. However, the role other inflammatory pathways play in AERD is poorly understood. OBJECTIVE We sought to broadly define the inflammatory milieu of the upper respiratory tract in AERD and to determine the effects of IL-4Rα inhibition on mediators of nasal inflammation. METHODS Twenty-two AERD patients treated with dupilumab for 3 months were followed over 3 visits and compared to 10 healthy controls. Nasal fluid was assessed for 45 cytokines and chemokines using Olink Target 48. Blood neutrophils and cultured human mast cells, monocytes/macrophages, and nasal fibroblasts were assessed for response to IL-4/13 stimulation in vitro. RESULTS Of the nasal fluid cytokines measured, nearly one third were higher in AERD patients compared to healthy controls, including IL-6 and the IL-6 family-related cytokine oncostatin M (OSM), both of which correlated with nasal albumin levels, a marker of epithelial barrier dysregulation. Dupilumab significantly decreased many nasal mediators, including OSM and IL-6. IL-4 stimulation induced OSM production from mast cells and macrophages but not from neutrophils, and OSM and IL-13 stimulation induced IL-6 production from nasal fibroblasts. CONCLUSION In addition to type 2 inflammation, innate and IL-6-related cytokines are also elevated in the respiratory tract in AERD. Both OSM and IL-6 are locally produced in nasal polyps and likely promote pathology by negatively affecting epithelial barrier function. IL-4Rα blockade, although seemingly directed at type 2 inflammation, also decreases mediators of innate inflammation and epithelial dysregulation, which may contribute to dupilumab's therapeutic efficacy in AERD.
Collapse
Affiliation(s)
- Chongjia C Chen
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass.
| | - Kathleen M Buchheit
- Department of Medicine, Harvard Medical School, and the Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Boston, Mass
| | - Kailey E Brodeur
- Division of Immunology, Boston Children's Hospital, Boston, Mass
| | - Aaqib Sohail
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Laura Cho
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Carolyn H Baloh
- Department of Medicine, Harvard Medical School, and the Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Barbara Balestrieri
- Department of Medicine, Harvard Medical School, and the Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Tahereh Derakhshan
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Chunli Feng
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Joshua A Boyce
- Department of Medicine, Harvard Medical School, and the Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Daniel F Dwyer
- Department of Medicine, Harvard Medical School, and the Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Tanya M Laidlaw
- Department of Medicine, Harvard Medical School, and the Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| |
Collapse
|
2
|
Ding X, Pang Y, Liu Q, Zhang H, Wu J, Lei J, Zhang T. GO-PEG Represses the Progression of Liver Inflammation via Regulating the M1/M2 Polarization of Kupffer Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306483. [PMID: 38229561 DOI: 10.1002/smll.202306483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/03/2024] [Indexed: 01/18/2024]
Abstract
As a highly promising nanomaterial, exploring the impact of the liver, a vital organ, stands out as a crucial focus in the examination of its biological effects. Kupffer cells (KCs) are one of the first immune cells to contact with exotic-substances in liver. Therefore, this study investigates the immunomodulatory effects and mechanisms of polyethylene glycol-modified graphene oxide (GO-PEG) on KCs. Initial RNA-seq and KEGG pathway analyses reveal the inhibition of the TOLL-like receptor, TNF-α and NOD-like receptor pathways in continually stimulated KCs exposed to GO-PEG. Subsequent biological experiments validate that a 48-hour exposure to GO-PEG alleviates LPS-induced KCs immune activation, characterized by a shift in polarization from M1 to M2. The underlying mechanism involves the absorption of double-stranded RNA/single-stranded RNA, inhibiting the activation of TLR3 and TLR7 in KCs. Employing a Kupffer/AML12 cell co-culture model and animal studies, it is observed that GO-PEG indirectly inhibit oxidative stress, mitochondrial dysfunction, and apoptosis in AML12 cells, partially mitigating systemic inflammation and preserving liver tissue/function. This effect is attributed to the paracrine interaction between KCs and hepatocytes. These findings suggest a meaningful and effective strategy for treating liver inflammation, particularly when combined with anti-inflammatory drugs.
Collapse
Affiliation(s)
- Xiaomeng Ding
- Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yanting Pang
- Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Qing Liu
- Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Haopeng Zhang
- Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jiawei Wu
- Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jialin Lei
- Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ting Zhang
- Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009, China
- Jiangsu key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China
| |
Collapse
|
3
|
Teng W, Subsomwong P, Narita K, Nakane A, Asano K. Heat Shock Protein SSA1 Enriched in Hypoxic Secretome of Candida albicans Exerts an Immunomodulatory Effect via Regulating Macrophage Function. Cells 2024; 13:127. [PMID: 38247818 PMCID: PMC10814802 DOI: 10.3390/cells13020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Candida albicans is an opportunistic pathogenic yeast that can survive in both normoxic and hypoxic environments. The involvement of C. albicans secretome on host biological processes has been demonstrated. However, the immunoregulatory function of C. albicans secretome released under hypoxic condition remains unclear. This study demonstrated the differences in cytokine responses and protein profiles between secretomes prepared under normoxic and hypoxic conditions. Furthermore, the immunoregulatory effects of heat shock protein SSA1(Ssa1), a protein candidate enriched in the hypoxic secretome, were investigated. Stimulation of mouse bone marrow-derived macrophages (BMMs) with Ssa1 resulted in the significant production of interleukin (IL)-10, IL-6, and tumor necrosis factor (TNF)-α as well as the significant expression of M2b macrophage markers (CD86, CD274 and tumor necrosis factor superfamily member 14), suggesting that C. albicans Ssa1 may promote macrophage polarization towards an M2b-like phenotype. Proteomic analysis of Ssa1-treated BMMs also revealed that Ssa1 reduced inflammation-related factors (IL-18-binding protein, IL-1 receptor antagonist protein, OX-2 membrane glycoprotein and cis-aconitate decarboxylase) and enhanced the proteins involved in anti-inflammatory response (CMRF35-like molecule 3 and macrophage colony-stimulating factor 1 receptor). Based on these results, we investigated the effect of Ssa1 on C. albicans infection and showed that Ssa1 inhibited the uptake of C. albicans by BMMs. Taken together, our results suggest that C. albicans alters its secretome, particularly by promoting the release of Ssa1, to modulate host immune response and survive under hypoxic conditions.
Collapse
Affiliation(s)
- Wei Teng
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (W.T.); (P.S.)
| | - Phawinee Subsomwong
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (W.T.); (P.S.)
| | - Kouji Narita
- Insititue for Animal Experimentation, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan;
| | - Akio Nakane
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan;
| | - Krisana Asano
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (W.T.); (P.S.)
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan;
| |
Collapse
|
4
|
Ma Y, Yu X, Ye S, Li W, Yang Q, Li YX, Wang Y, Wang YL. Immune-regulatory properties of endovascular extravillous trophoblast cells in human placenta. Placenta 2024; 145:107-116. [PMID: 38128221 DOI: 10.1016/j.placenta.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/04/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
INTRODUCTION Uterine spiral artery remodeling is the prerequisite for ensuring adequate blood supply to the maternal-fetal interface during human pregnancy. One crucial cellular event in this process involves the extensive replacement of the spiral artery endothelial cells by endovascular extravillous trophoblasts (enEVTs), a subtype of extravillous trophoblasts (EVTs). However, our understanding of the properties of enEVTs remains limited. METHODS Human enEVTs in decidual tissues during early pregnancy was purified using flow sorting by specific makers, NCAM1 and HLA-G. The high-throughput RNA sequencing analysis as well as the cytokine antibody array experiments were carried out to analyze for cell properties. Gene ontology (GO) enrichment, kyoto encyclopedia of genes and genomes (KEGG) enrichment, and gene set enrichment analysis (GSEA) were performed on differentially expressed genes of enEVTs. Immunofluorescent assays were used to verify the analysis results. RESULTS Both enEVTs and interstitial EVTs (iEVTs) exhibited gene expression patterns typifying EVT characteristics. Intriguingly, enEVTs displayed gene expression associated with immune responses, particularly reminiscent of M2 macrophage characteristics. The active secretion of multiple cytokines and chemokines by enEVTs provided partial validation for their expression pattern of immune-regulatory genes. DISCUSSION Our study reveals the immune-regulatory properties of human enEVTs and provides new insights into their functions and mechanisms involved in spiral artery remodeling.
Collapse
Affiliation(s)
- Yeling Ma
- School of Medicine, Shaoxing University, Shaoxing, Zhejiang, 312000, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xin Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Shenglong Ye
- Department of Gynecology and Obstetrics, Peking University Third Hospital, Beijing, China
| | - Wenlong Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qian Yang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Yu-Xia Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongqing Wang
- Department of Gynecology and Obstetrics, Peking University Third Hospital, Beijing, China.
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Soler MF, Abaurrea A, Azcoaga P, Araujo AM, Caffarel MM. New perspectives in cancer immunotherapy: targeting IL-6 cytokine family. J Immunother Cancer 2023; 11:e007530. [PMID: 37945321 PMCID: PMC10649711 DOI: 10.1136/jitc-2023-007530] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
Chronic inflammation has been recognized as a canonical cancer hallmark. It is orchestrated by cytokines, which are master regulators of the tumor microenvironment (TME) as they represent the main communication bridge between cancer cells, the tumor stroma, and the immune system. Interleukin (IL)-6 represents a keystone cytokine in the link between inflammation and cancer. Many cytokines from the IL-6 family, which includes IL-6, oncostatin M, leukemia inhibitory factor, IL-11, IL-27, IL-31, ciliary neurotrophic factor, cardiotrophin 1, and cardiotrophin-like cytokine factor 1, have been shown to elicit tumor-promoting roles by modulating the TME, making them attractive therapeutic targets for cancer treatment.The development of immune checkpoint blockade (ICB) immunotherapies has radically changed the outcome of some cancers including melanoma, lung, and renal, although not without hurdles. However, ICB shows limited efficacy in other solid tumors. Recent reports support that chronic inflammation and IL-6 cytokine signaling are involved in resistance to immunotherapy. This review summarizes the available preclinical and clinical data regarding the implication of IL-6-related cytokines in regulating the immune TME and the response to ICB. Moreover, the potential clinical benefit of combining ICB with therapies targeting IL-6 cytokine members for cancer treatment is discussed.
Collapse
Affiliation(s)
- Maria Florencia Soler
- Biogipuzkoa (previously known as Biodonostia) Health Research Institute, Donostia-San Sebastian, Spain
| | - Andrea Abaurrea
- Biogipuzkoa (previously known as Biodonostia) Health Research Institute, Donostia-San Sebastian, Spain
| | - Peio Azcoaga
- Biogipuzkoa (previously known as Biodonostia) Health Research Institute, Donostia-San Sebastian, Spain
| | - Angela M Araujo
- Biogipuzkoa (previously known as Biodonostia) Health Research Institute, Donostia-San Sebastian, Spain
| | - Maria M Caffarel
- Biogipuzkoa (previously known as Biodonostia) Health Research Institute, Donostia-San Sebastian, Spain
- Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
6
|
Yuan Y, Zhang Q, Wu B, Huang T, Gong P, Xiang L. Oncostatin M regulates macrophages polarization in osseointegration via yes-associated protein. Int Immunopharmacol 2023; 120:110348. [PMID: 37220694 DOI: 10.1016/j.intimp.2023.110348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/25/2023]
Abstract
OBJECTIVES Oncostatin M(OSM), secreted by monocytes and macrophages, has been noted to participate in bone homeostasis and macrophage polarization, which might be regulated by yes-associated protein (YAP). This study aimed to elucidate the influence and mechanisms of OSM-YAP on macrophages polarization in osseointegration. MATERIAL AND METHODS In vitro, flow cytometry, real-time PCR, and Elisa were performed to evaluate inflammatory function in bone marrow-derived macrophages (BMDMs) with OSM, siOSMR, and YAP inhibitor verteporfin (VP). In vivo, macrophage-specific YAP-deficient mice were generated to investigate the role of OSM via YAP signaling in osseointegration. RESULTS This study demonstrated that OSM could inhibit the M1 polarization, promote the M2 polarization, and induce the expression of osteogenic-related factors via VP. The conditional knock-out of YAP inhibited the osseointegration in mice, and promoted the inflammatory reaction around the implants, while OSM could restore the effect. CONCLUSIONS Our results demonstrated that OSM might play an important role in the polarization of BMDMs, and bone formation around dental and femoral implants. This effect was closely conducted by Hippo-YAP pathway. CLINICAL SIGNIFICANCE Understanding the role and mechanism of OSM in macrophage polarization around dental implants could improve comprehension of signal network of osseointegration, and it might offer a potential target of therapies to accelerate osseointegration and reduce inflammatory reactions.
Collapse
Affiliation(s)
- Ying Yuan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 400016, China
| | - Qin Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bingfeng Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tianyu Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Abo-Aziza FAM, Wasfy BM, Wahba SMR, Abd-Elhalem SS. Mesenchymal Stem Cells and Myeloid-Derived Suppressor Cells Interplay in Adjuvant-Induced Arthritis Rat Model. Int Immunopharmacol 2023; 120:110300. [PMID: 37192553 DOI: 10.1016/j.intimp.2023.110300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
There has not been much researchs on the biological relationship between myeloid-derived suppressor cells (MDSCs) and mesenchymal stem cells (MSCs). The goal of the current work is to examine how these cells cooperate with one another in a rat model of adjuvant-induced arthritis (AIA). Three groups of equal numbers of rats were created; the first group served as the control. Complete Freund's adjuvant (CFA) was injected into the second group to induce AIA. The third group underwent MSCstreatment. Three weeks later, ANA, IL-1β, IL-4, IL-6, IL-10, TNF-α, IFN-γ, M-CSF, iNOS and Arg-1 were determined using ELISA. Flowcytometric studies for MDSCs using CD11bc + and His48 + antibodies were performed. Current results showed significantly higher levels of WBCs, ANA, IL-1, IL-4, IL-6, IL-10, TNF-α, M-CSF, iNOS and Arg-1 along with a significant rise in MDSCs % in the AIA group compared to the control group. As opposed to AIA animals, MSCs administration resulted in a considerable improvement in cytokine levels, supporting the immunomodulation function of MSCs. Histological examination of the joints in the AIA group revealed articular cartilage degradation as well as infiltration of inflammatory cells and fibroplasia. These several evidences suggested that MDSCs may perform various roles in autoimmunity. Understanding how MDSCs and MSCs contribute to arthritis may help their prospective application in immunotherapy. Therefore, the reciprocal collaboration of MSCs and MDSCs must therefore be the subject of new investigations, which can offer new platforms for the development of more effective and individualized therapies for the treatment of immunological illnesses.
Collapse
Affiliation(s)
- Faten A M Abo-Aziza
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, 12622 Cairo, Egypt.
| | - Basma M Wasfy
- Department of Zoology, Faculty of Women for Arts, Science and Education, Ain Shams University, 11757 Cairo, Egypt
| | - Sanaa M R Wahba
- Department of Zoology, Faculty of Women for Arts, Science and Education, Ain Shams University, 11757 Cairo, Egypt
| | - Sahar S Abd-Elhalem
- Department of Zoology, Faculty of Women for Arts, Science and Education, Ain Shams University, 11757 Cairo, Egypt
| |
Collapse
|
8
|
MacDonald K, Botelho F, Ashkar AA, Richards CD. Type I Interferon Signaling is Required for Oncostatin-M Driven Inflammatory Responses in Mouse Lung. J Interferon Cytokine Res 2022; 42:568-579. [DOI: 10.1089/jir.2022.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
| | - Fernando Botelho
- Department of Medicine, McMaster Immunology Research Centre (MIRC), McMaster University, Hamilton, Ontario, Canada
| | | | - Carl D. Richards
- Department of Medicine, McMaster Immunology Research Centre (MIRC), McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
9
|
Rankouhi TR, Keulen DV, Tempel D, Venhorst J. Oncostatin M: Risks and Benefits of a Novel Therapeutic Target for Atherosclerosis. Curr Drug Targets 2022; 23:1345-1369. [PMID: 35959619 DOI: 10.2174/1389450123666220811101032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Cardiovascular disease (CVD) is a leading cause of death worldwide. It is predicted that approximately 23.6 million people will die from CVDs annually by 2030. Therefore, there is a great need for an effective therapeutic approach to combat this disease. The European Cardiovascular Target Discovery (CarTarDis) consortium identified Oncostatin M (OSM) as a potential therapeutic target for atherosclerosis. The benefits of modulating OSM - an interleukin (IL)-6 family cytokine - have since been studied for multiple indications. However, as decades of high attrition rates have stressed, the success of a drug target is determined by the fine balance between benefits and the risk of adverse events. Safety issues should therefore not be overlooked. OBJECTIVE In this review, a risk/benefit analysis is performed on OSM inhibition in the context of atherosclerosis treatment. First, OSM signaling characteristics and its role in atherosclerosis are described. Next, an overview of in vitro, in vivo, and clinical findings relating to both the benefits and risks of modulating OSM in major organ systems is provided. Based on OSM's biological function and expression profile as well as drug intervention studies, safety concerns of inhibiting this target have been identified, assessed, and ranked for the target population. CONCLUSION While OSM may be of therapeutic value in atherosclerosis, drug development should also focus on de-risking the herein identified major safety concerns: tissue remodeling, angiogenesis, bleeding, anemia, and NMDA- and glutamate-induced neurotoxicity. Close monitoring and/or exclusion of patients with various comorbidities may be required for optimal therapeutic benefit.
Collapse
Affiliation(s)
- Tanja Rouhani Rankouhi
- Department of Risk Analysis for Products in Development, TNO, Utrechtseweg 48, 3704 HE, Zeist, The Netherlands
| | - Daniëlle van Keulen
- SkylineDx BV, Science and Clinical Development, 3062 ME Rotterdam, The Netherlands
| | - Dennie Tempel
- SkylineDx BV, Science and Clinical Development, 3062 ME Rotterdam, The Netherlands
| | - Jennifer Venhorst
- Department of Risk Analysis for Products in Development, TNO, Utrechtseweg 48, 3704 HE, Zeist, The Netherlands
| |
Collapse
|
10
|
He S, Wang C, Huang Y, Lu S, Li W, Ding N, Chen C, Wu Y. Chlamydia psittaci plasmid-encoded CPSIT_P7 induces macrophage polarization to enhance the antibacterial response through TLR4-mediated MAPK and NF-κB pathways. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119324. [PMID: 35809864 DOI: 10.1016/j.bbamcr.2022.119324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Although the protective effects of Chlamydia psittaci plasmid-encoded protein CPSIT_P7 as vaccine antigens to against chlamydial infection have been confirmed in our previous study, the function and mechanism of CPSIT_P7 inducing innate immunity in the antibacterial response remain unknown. Here, we found that plasmid protein CPSIT_P7 could induce M1 macrophage polarization upregulating the genes of the surface molecule CD86, proinflammatory cytokines (TNF-α, IL-6, and IL-1β), and antibacterial effector NO synthase 2 (iNOS). During M1 macrophage polarization, macrophages acquire phagocytic and microbicidal competence, which promotes the host antibacterial response. As we observed that CPSIT_P7-induced M1 macrophages could partially reduce the infected mice pulmonary Chlamydia psittaci load. Furthermore, CPSIT_P7 induced M1 macrophage polarization through the TLR4-mediated MAPK and NF-κB pathways. Collectively, our results highlight the effect of CPSIT_P7 on macrophage polarization and provide new insights into new prevention and treatment strategies for chlamydial infection.
Collapse
Affiliation(s)
- Siqin He
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China
| | - Chuan Wang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China
| | - Yanru Huang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China
| | - Simin Lu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China
| | - Weiwei Li
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China
| | - Nan Ding
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China
| | - Chaoqun Chen
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China.
| | - Yimou Wu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
11
|
Guo Y, Tsai HI, Zhang L, Zhu H. Mitochondrial DNA on Tumor-Associated Macrophages Polarization and Immunity. Cancers (Basel) 2022; 14:1452. [PMID: 35326602 PMCID: PMC8946090 DOI: 10.3390/cancers14061452] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/26/2022] [Accepted: 03/09/2022] [Indexed: 12/04/2022] Open
Abstract
As the richest immune cells in most tumor microenvironments (TMEs), tumor-associated macrophages (TAMs) play an important role in tumor development and treatment sensitivity. The phenotypes and functions of TAMs vary according to their sources and tumor progression. Different TAM phenotypes display distinct behaviors in terms of tumor immunity and are regulated by intracellular and exogenous molecules. Additionally, dysfunctional and oxidatively stressed mitochondrial-derived mitochondrial DNA (mtDNA) plays an important role in remodeling the phenotypes and functions of TAMs. This article reviews the interactions between mtDNA and TAMs in the TME and further discusses the influence of their performance on tumor genesis and development.
Collapse
Affiliation(s)
- Yaxin Guo
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
| | - Hsiang-i Tsai
- Laboratory of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
| | - Lirong Zhang
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
| | - Haitao Zhu
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
- Laboratory of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
| |
Collapse
|
12
|
Kheir S, Villeret B, Garcia-Verdugo I, Sallenave JM. IL-6-elafin genetically modified macrophages as a lung immunotherapeutic strategy against Pseudomonas aeruginosa infections. Mol Ther 2022; 30:355-369. [PMID: 34371178 PMCID: PMC8753374 DOI: 10.1016/j.ymthe.2021.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/28/2021] [Accepted: 07/29/2021] [Indexed: 01/07/2023] Open
Abstract
Pseudomonas aeruginosa (P.a) infections are a major public health issue in ventilator-associated pneumoniae, cystic fibrosis, and chronic obstructive pulmonary disease exacerbations. P.a is multidrug resistant, and there is an urgent need to develop new therapeutic approaches. Here, we evaluated the effect of direct pulmonary transplantation of gene-modified (elafin and interleukin [IL]-6) syngeneic macrophages in a mouse model of acute P.a infection. Wild-type (WT) or Elafin-transgenic (eTg) alveolar macrophages (AMs) or bone marrow-derived macrophages (BMDMs) were recovered from bronchoalveolar lavage or generated from WT or eTg mouse bone marrow. Cells were modified with adenovirus IL-6 (Ad-IL-6), characterized in vitro, and transferred by oropharyngeal instillation in the lungs of naive mice. The protective effect was assessed during P.a acute infection (survival studies, mechanistic studies of the inflammatory response). We show that a single bolus of genetically modified syngeneic AMs or BMDMs provided protection in our P.a-induced model. Mechanistically, Elafin-modified AMs had an IL-6-IL-10-IL-4R-IL-22-antimicrobial molecular signature that, in synergy with IL-6, enhanced epithelial cell proliferation and tissue repair in the alveolar unit. We believe that this innovative cell therapy strategy could be of value in acute bacterial infections in the lung.
Collapse
Affiliation(s)
- Saadé Kheir
- INSERM U1152, Laboratoire d’Excellence Inflamex, Université de Paris, Hôpital Bichat—Claude-Bernard, Paris 75014, France
| | - Bérengère Villeret
- INSERM U1152, Laboratoire d’Excellence Inflamex, Université de Paris, Hôpital Bichat—Claude-Bernard, Paris 75014, France
| | - Ignacio Garcia-Verdugo
- INSERM U1152, Laboratoire d’Excellence Inflamex, Université de Paris, Hôpital Bichat—Claude-Bernard, Paris 75014, France
| | - Jean-Michel Sallenave
- INSERM U1152, Laboratoire d’Excellence Inflamex, Université de Paris, Hôpital Bichat—Claude-Bernard, Paris 75014, France,Corresponding author: Jean-Michel Sallenave, INSERM U1152, Laboratoire d’Excellence Inflamex, Université de Paris, Hôpital Bichat—Claude-Bernard, Paris 75014, France.
| |
Collapse
|
13
|
Wang Z, Kun Y, Lei Z, Dawei W, Lin P, Jibo W. LncRNA MIAT downregulates IL-1β, TNF-ɑ to suppress macrophage inflammation but is suppressed by ATP-induced NLRP3 inflammasome activation. Cell Cycle 2021; 20:194-203. [PMID: 33459112 DOI: 10.1080/15384101.2020.1867788] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cardiovascular disease (CVD) has been identified as the leading cause of premature deaths in rheumatoid arthritis (RA), accounting for about 40 to 50% of all deaths. Macrophage inflammation is regarded as a key point to link to the two diseases. Recently, long non-coding RNAs (lncRNAs) have acknowledged as a regulator of inflammation significantly. Here, we firstly found that lncRNA myocardial infarction associated transcript (lncRNA MIAT), a crucial lncRNA to regulate CVD, expressed increasingly in synovium and myocardial tissues of collagen-induced arthritis (CIA) mice. Besides, we also verified that the increased infiltration of macrophage occurred in those tissues of the CIA. In vitro, we found that macrophage inflammation induced by LPS could up-regulate lncRNA MIAT expression. LncRNA MIAT seemed to inhibit the expression of IL-1β, TNF-ɑ and be suppressed by ATP-induced NLRP3 inflammasome activation pathway. Therefore, these data indicated an anti-inflammatory effect of lncRNA MIAT in macrophage and an original research direction for high cardiovascular risk in RA.
Collapse
Affiliation(s)
- Ziye Wang
- Department of Rheumatology & Clinical Immunology, Affiliated Hospital of Qingdao University , Qingdao,China
| | - Yang Kun
- Medical Research Center, Affiliated Hospital of Qingdao University , China
| | - Zhao Lei
- Department of Rheumatology & Clinical Immunology, Affiliated Hospital of Qingdao University , Qingdao,China
| | - Wen Dawei
- Department of Rheumatology & Clinical Immunology, Affiliated Hospital of Qingdao University , Qingdao,China
| | - Pan Lin
- Department of Rheumatology & Clinical Immunology, Affiliated Hospital of Qingdao University , Qingdao,China
| | | |
Collapse
|
14
|
IL-33 Mediates Lung Inflammation by the IL-6-Type Cytokine Oncostatin M. Mediators Inflamm 2020; 2020:4087315. [PMID: 33376451 PMCID: PMC7744230 DOI: 10.1155/2020/4087315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/27/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
The interleukin-1 family member IL-33 participates in both innate and adaptive T helper-2 immune cell responses in models of lung disease. The IL-6-type cytokine Oncostatin M (OSM) elevates lung inflammation, Th2-skewed cytokines, alternatively activated (M2) macrophages, and eosinophils in C57Bl/6 mice in vivo. Since OSM induces IL-33 expression, we here test the IL-33 function in OSM-mediated lung inflammation using IL-33-/- mice. Adenoviral OSM (AdOSM) markedly induced IL-33 mRNA and protein levels in wild-type animals while IL-33 was undetectable in IL-33-/- animals. AdOSM treatment showed recruitment of neutrophils, eosinophils, and elevated inflammatory chemokines (KC, eotaxin-1, MIP1a, and MIP1b), Th2 cytokines (IL-4/IL-5), and arginase-1 (M2 macrophage marker) whereas these responses were markedly diminished in IL-33-/- mice. AdOSM-induced IL-33 was unaffected by IL-6-/- deficiency. AdOSM also induced IL-33R+ ILC2 cells in the lung, while IL-6 (AdIL-6) overexpression did not. Flow-sorted ILC2 responded in vitro to IL-33 (but not OSM or IL-6 stimulation). Matrix remodelling genes col3A1, MMP-13, and TIMP-1 were also decreased in IL-33-/- mice. In vitro, IL-33 upregulated expression of OSM in the RAW264.7 macrophage cell line and in bone marrow-derived macrophages. Taken together, IL-33 is a critical mediator of OSM-driven, Th2-skewed, and M2-like responses in mouse lung inflammation and contributes in part through activation of ILC2 cells.
Collapse
|
15
|
Oncostatin M: A mysterious cytokine in cancers. Int Immunopharmacol 2020; 90:107158. [PMID: 33187910 DOI: 10.1016/j.intimp.2020.107158] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/04/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
Oncostatin M (OSM), as a member of the Interleukin-6 family cytokines, plays a significant role in inflammation, autoimmunity, and cancers. It is mainly secreted by T lymphocytes, neutrophils, and macrophages and was initially introduced as anti-cancer agent. However, in some cases, it promotes cancer progression. Overexpression of OSM and OSM receptor has been detected in various cancers including colon cancer, breast cancer, pancreatic cancer, myeloma, brain tumors, chronic lymphocytic leukemia, and hepatoblastoma. STAT3 is the main downstream signaling molecule of OSM, which operates the leading role in modifications of cancer cells and enhancing cell growth, invasion, survival, and all other hallmarks of cancer cells. However, due to the presence of multiple signaling pathways, it can act contradictory in some cancers. In this review, we will discuss the emerging roles of OSM in cancer and elucidate its function in tumor control or progression and finally discuss therapeutic approaches designed to manipulate this cytokine in cancer.
Collapse
|
16
|
Ho L, Yip A, Lao F, Botelho F, Richards CD. RELMα is Induced in Airway Epithelial Cells by Oncostatin M Without Requirement of STAT6 or IL-6 in Mouse Lungs In Vivo. Cells 2020; 9:cells9061338. [PMID: 32471168 PMCID: PMC7349350 DOI: 10.3390/cells9061338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 01/02/2023] Open
Abstract
Resistin-like molecule alpha (RELMα) and YM-1 are secreted proteins implicated in murine models of alternatively activated macrophage (AA/M2) accumulation and Th2-skewed inflammation. Since the gp130 cytokine Oncostatin M (OSM) induces a Th2-like cytokine and AA/M2 skewed inflammation in mouse lung, we here investigated regulation of RELMα and YM-1. Transient pulmonary overexpression of OSM by Adenovirus vector (AdOSM) markedly induced RELMα and YM-1 protein expression in total lung. In situ hybridization showed that RELMα mRNA was highly induced in airway epithelial cells (AEC) and was co-expressed with CD68 mRNA in some but not all CD68+ cells in parenchyma. IL-6 overexpression (a comparator gp130 cytokine) induced RELMα, but at significantly lower levels. IL-6 (assessing IL-6-/- mice) was not required, nor was STAT6 (IL-4/13 canonical signalling) for AdOSM-induction of RELMα in AEC. AEC responded directly to OSM in vitro as assessed by pSTAT3 activation. RELMα-deficient mice showed similar inflammatory cell infiltration and cytokine responses to wt in response to AdOSM, but showed less accumulation of CD206+ AA/M2 macrophages, reduced induction of extracellular matrix gene mRNAs for COL1A1, COL3A1, MMP13, and TIMP1, and reduced parenchymal alpha smooth muscle actin. Thus, RELMα is regulated by OSM in AEC and contributes to extracellular matrix remodelling in mouse lung.
Collapse
|
17
|
Richards CD, Botelho F. Oncostatin M in the Regulation of Connective Tissue Cells and Macrophages in Pulmonary Disease. Biomedicines 2019; 7:E95. [PMID: 31817403 PMCID: PMC6966661 DOI: 10.3390/biomedicines7040095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022] Open
Abstract
Oncostatin M (OSM), as one of the gp130/IL-6 family of cytokines, interacts with receptor complexes that include the gp130 signaling molecule and OSM receptor β OSMRβ chain subunits. OSMRβ chains are expressed relatively highly across a broad array of connective tissue (CT) cells of the lung, such as fibroblasts, smooth muscle cells, and epithelial cells, thus enabling robust responses to OSM, compared to other gp130 cytokines, in the regulation of extracellular matrix (ECM) remodeling and inflammation. OSMRβ chain expression in lung monocyte/macrophage populations is low, whereas other receptor subunits, such as that for IL-6, are present, enabling responses to IL-6. OSM is produced by macrophages and neutrophils, but not CT cells, indicating a dichotomy of OSM roles in macrophage verses CT cells in lung inflammatory disease. ECM remodeling and inflammation are components of a number of chronic lung diseases that show elevated levels of OSM. OSM-induced products of CT cells, such as MCP-1, IL-6, and PGE2 can modulate macrophage function, including the expression of OSM itself, indicating feedback loops that characterize Macrophage and CT cell interaction.
Collapse
Affiliation(s)
- Carl D. Richards
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 3Z5, Canada;
| | | |
Collapse
|
18
|
Houben E, Hellings N, Broux B. Oncostatin M, an Underestimated Player in the Central Nervous System. Front Immunol 2019; 10:1165. [PMID: 31191538 PMCID: PMC6549448 DOI: 10.3389/fimmu.2019.01165] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/08/2019] [Indexed: 12/12/2022] Open
Abstract
For a long time, the central nervous system (CNS) was believed to be an immune privileged organ. In the last decades, it became apparent that the immune system interacts with the CNS not only in pathological, but also in homeostatic situations. It is now clear that immune cells infiltrate the healthy CNS as part of immune surveillance and that immune cells communicate through cytokines with CNS resident cells. In pathological conditions, an enhanced infiltration of immune cells takes place to fight the pathogen. A well-known family of cytokines is the interleukin (IL)-6 cytokine family. All members are important in cell communication and cell signaling in the immune system. One of these members is oncostatin M (OSM), for which the receptor is expressed on several cells of the CNS. However, the biological function of OSM in the CNS is not studied in detail. Here, we briefly describe the general aspects related to OSM biology, including signaling and receptor binding. Thereafter, the current understanding of OSM during CNS homeostasis and pathology is summarized.
Collapse
Affiliation(s)
- Evelien Houben
- Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Niels Hellings
- Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Bieke Broux
- Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
19
|
Sackett SD, Otto T, Mohs A, Sander LE, Strauch S, Streetz KL, Kroy DC, Trautwein C. Myeloid cells require gp130 signaling for protective anti‐inflammatory functions during sepsis. FASEB J 2019; 33:6035-6044. [DOI: 10.1096/fj.201802118r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sara Dutton Sackett
- Department of Internal Medicine IIIUniversity Hospital Rheinisch‐Westfälische Technische Hochschule (RWTH) Aachen Aachen Germany
- Department of Surgery, Division of TransplantationUniversity of Wisconsin‐Madison Madison Wisconsin USA
| | - Tobias Otto
- Department of Internal Medicine IIIUniversity Hospital Rheinisch‐Westfälische Technische Hochschule (RWTH) Aachen Aachen Germany
| | - Antje Mohs
- Department of Internal Medicine IIIUniversity Hospital Rheinisch‐Westfälische Technische Hochschule (RWTH) Aachen Aachen Germany
| | - Leif E. Sander
- Department of Internal Medicine IIIUniversity Hospital Rheinisch‐Westfälische Technische Hochschule (RWTH) Aachen Aachen Germany
- Department of Infectious Diseases and Pulmonary MedicineCharité‐Universitätsmedizin BerlinCorporate Member of Freie Universität BerlinHumboldt‐Universität zu BerlinBerlin Institute of Health Berlin Germany
- German Center for Lung Research (DZL) Berlin Germany
| | - Sonja Strauch
- Department of Internal Medicine IIIUniversity Hospital Rheinisch‐Westfälische Technische Hochschule (RWTH) Aachen Aachen Germany
| | - Konrad L. Streetz
- Department of Internal Medicine IIIUniversity Hospital Rheinisch‐Westfälische Technische Hochschule (RWTH) Aachen Aachen Germany
| | - Daniela C. Kroy
- Department of Internal Medicine IIIUniversity Hospital Rheinisch‐Westfälische Technische Hochschule (RWTH) Aachen Aachen Germany
| | - Christian Trautwein
- Department of Internal Medicine IIIUniversity Hospital Rheinisch‐Westfälische Technische Hochschule (RWTH) Aachen Aachen Germany
| |
Collapse
|
20
|
Botelho FM, Rodrigues R, Guerette J, Wong S, Fritz DK, Richards CD. Extracellular Matrix and Fibrocyte Accumulation in BALB/c Mouse Lung upon Transient Overexpression of Oncostatin M. Cells 2019; 8:cells8020126. [PMID: 30764496 PMCID: PMC6406700 DOI: 10.3390/cells8020126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 02/06/2023] Open
Abstract
The accumulation of extracellular matrix in lung diseases involves numerous factors, including cytokines and chemokines that participate in cell activation in lung tissues and the circulation of fibrocytes that contribute to local fibrotic responses. The transient overexpression of the gp130 cytokine Oncostatin M can induce extracellular matrix (ECM) accumulation in mouse lungs, and here, we assess a role for IL-13 in this activity using gene deficient mice. The endotracheal administration of an adenovirus vector encoding Oncostatin M (AdOSM) caused increases in parenchymal lung collagen accumulation, neutrophil numbers, and CXCL1/KC chemokine elevation in bronchioalveolar lavage fluids. These effects were similar in IL-13-/- mice at day 7; however, the ECM matrix induced by Oncostatin M (OSM) was reduced at day 14 in the IL-13-/- mice. CD45+col1+ fibrocyte numbers were elevated at day 7 due to AdOSM whereas macrophages were not. Day 14 levels of CD45+col1+ fibrocytes were maintained in the wildtype mice treated with AdOSM but were reduced in IL-13-/- mice. The expression of the fibrocyte chemotactic factor CXCL12/SDF-1 was suppressed marginally by AdOSM in vivo and significantly in vitro in mouse lung fibroblast cell cultures. Thus, Oncostatin M can stimulate inflammation in an IL-13-independent manner in BALB/c lungs; however, the ECM remodeling and fibrocyte accumulation is reduced in IL-13 deficiency.
Collapse
Affiliation(s)
- Fernando M Botelho
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, L8S 4L8, Canada.
| | | | | | | | | | | |
Collapse
|
21
|
Ayaub EA, Tandon K, Padwal M, Imani J, Patel H, Dubey A, Mekhael O, Upagupta C, Ayoub A, Dvorkin-Gheva A, Murphy J, Kolb PS, Lhotak S, Dickhout JG, Austin RC, Kolb MRJ, Richards CD, Ask K. IL-6 mediates ER expansion during hyperpolarization of alternatively activated macrophages. Immunol Cell Biol 2018; 97:203-217. [PMID: 30298952 PMCID: PMC7379543 DOI: 10.1111/imcb.12212] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 08/29/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022]
Abstract
Although recent evidence has shown that IL-6 is involved in enhanced alternative activation of macrophages toward a profibrotic phenotype, the mechanisms leading to their increased secretory capacity are not fully understood. Here, we investigated the effect of IL-6 on endoplasmic reticulum (ER) expansion and alternative activation of macrophages in vitro. An essential mediator in this ER expansion process is the IRE1 pathway, which possesses a kinase and endoribonuclease domain to cleave XBP1 into a spliced bioactive molecule. To investigate the IRE1-XBP1 expansion pathway, IL-4/IL-13 and IL-4/IL-13/IL-6-mediated alternative programming of murine bone marrow-derived and human THP1 macrophages were assessed by arginase activity in cell lysates, CD206 and arginase-1 expression by flow cytometry, and secreted CCL18 by ELISA, respectively. Ultrastructural intracellular morphology and ER biogenesis were examined by transmission electron microscopy and immunofluorescence. Transcription profiling of 128 genes were assessed by NanoString and Pharmacological inhibition of the IRE1-XBP1 arm was achieved using STF-083010 and was verified by RT-PCR. The addition of IL-6 to the conventional alternative programming cocktail IL-4/IL-13 resulted in increased ER and mitochondrial expansion, profibrotic profiles and unfolded protein response-mediated induction of molecular chaperones. IRE1-XBP1 inhibition substantially reduced the IL-6-mediated hyperpolarization and normalized the above effects. In conclusion, the addition of IL-6 enhances ER expansion and the profibrotic capacity of IL-4/IL-13-mediated activation of macrophages. Therapeutic strategies targeting IL-6 or the IRE1-XBP1 axis may be beneficial to prevent the profibrotic capacity of macrophages.
Collapse
Affiliation(s)
- Ehab A Ayaub
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Karun Tandon
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Manreet Padwal
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Jewel Imani
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Hemisha Patel
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Anisha Dubey
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Olivia Mekhael
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Chandak Upagupta
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Anmar Ayoub
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Anna Dvorkin-Gheva
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - James Murphy
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Philipp S Kolb
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Sarka Lhotak
- Department of Medicine, Hamilton Centre for Kidney Research, McMaster University, Hamilton, ON, Canada
| | - Jeffrey G Dickhout
- Department of Medicine, Hamilton Centre for Kidney Research, McMaster University, Hamilton, ON, Canada
| | - Rick C Austin
- Department of Medicine, Hamilton Centre for Kidney Research, McMaster University, Hamilton, ON, Canada
| | - Martin R J Kolb
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada
| | - Carl D Richards
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Kjetil Ask
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
22
|
Taraballi F, Sushnitha M, Tsao C, Bauza G, Liverani C, Shi A, Tasciotti E. Biomimetic Tissue Engineering: Tuning the Immune and Inflammatory Response to Implantable Biomaterials. Adv Healthc Mater 2018; 7:e1800490. [PMID: 29995315 DOI: 10.1002/adhm.201800490] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/31/2018] [Indexed: 12/31/2022]
Abstract
Regenerative medicine technologies rely heavily on the use of well-designed biomaterials for therapeutic applications. The success of implantable biomaterials hinges upon the ability of the chosen biomaterial to negotiate with the biological barriers in vivo. The most significant of these barriers is the immune system, which is composed of a highly coordinated organization of cells that induce an inflammatory response to the implanted biomaterial. Biomimetic platforms have emerged as novel strategies that aim to use the principle of biomimicry as a means of immunomodulation. This principle has manifested itself in the form of biomimetic scaffolds that imitate the composition and structure of biological cells and tissues. Recent work in this area has demonstrated the promising potential these technologies hold in overcoming the barrier of the immune system and, thereby, improve their overall therapeutic efficacy. In this review, a broad overview of the use of these strategies across several diseases and future avenues of research utilizing these platforms is provided.
Collapse
Affiliation(s)
- Francesca Taraballi
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
- Department of Orthopedic & Sports Medicine The Houston Methodist Hospital Houston TX 77030 USA
| | - Manuela Sushnitha
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
- Department of Bioengineering Rice University Houston TX 77005 USA
| | - Christopher Tsao
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
| | - Guillermo Bauza
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
- Center for NanoHealth Swansea University Medical School Swansea University Bay Singleton Park Wales Swansea SA2 8PP UK
| | - Chiara Liverani
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
- Biosciences Laboratory Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS Via Piero Maroncelli 40 47014 Meldola FC Italy
| | - Aaron Shi
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
- Wiess School of Natural Sciences Rice University Houston TX 77251‐1892 USA
| | - Ennio Tasciotti
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
- Department of Orthopedic & Sports Medicine The Houston Methodist Hospital Houston TX 77030 USA
| |
Collapse
|
23
|
Rückerl D, Seoane PI. The M2 triangle: gp130 binding cytokines drive macrophages to promote tumor growth. Immunol Cell Biol 2018; 96:243-245. [DOI: 10.1111/imcb.12016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dominik Rückerl
- Division of Infection, Immunity and Respiratory Medicine; School of Biological Sciences; Faculty of Biology, Medicine and Health; University of Manchester; Manchester Academic Health Science Centre; Manchester M13 9PT UK
| | - Paula I Seoane
- Institute of Microbiology and Infection; School of Biosciences; University of Birmingham; Birmingham B15 2TT UK
| |
Collapse
|