1
|
Sharan R, Zou Y, Lai Z, Singh B, Shivanna V, Dick E, Hall-Ursone S, Khader S, Mehra S, Alvarez X, Rengarajan J, Kaushal D. Concurrent TB and HIV therapies effectively control clinical reactivation of TB during co-infection but fail to eliminate chronic immune activation. RESEARCH SQUARE 2024:rs.3.rs-4908400. [PMID: 39257997 PMCID: PMC11384027 DOI: 10.21203/rs.3.rs-4908400/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The majority of Human Immunodeficiency Virus (HIV) negative individuals exposed to Mycobacterium tuberculosis (Mtb) control the bacillary infection as latent TB infection (LTBI). Co-infection with HIV, however, drastically increases the risk to progression to tuberculosis (TB) disease. TB is therefore the leading cause of death in people living with HIV (PLWH) globally. Combinatorial antiretroviral therapy (cART) is the cornerstone of HIV care in humans and reduces the risk of reactivation of LTBI. However, the immune control of Mtb infection is not fully restored by cART as indicated by higher incidence of TB in PLWH despite cART. In the macaque model of co-infection, skewed pulmonary CD4+ TEM responses persist, and new TB lesions form despite cART treatment. We hypothesized that regimens that concurrently administer anti-TB therapy and cART would significantly reduce TB in co-infected macaques than cART alone, resulting in superior bacterial control, mitigation of persistent inflammation and lasting protective immunity. We studied components of TB immunity that remain impaired after cART in the lung compartment, versus those that are restored by concurrent 3 months of once weekly isoniazid and rifapentine (3HP) and cART in the rhesus macaque (RM) model of LTBI and Simian Immunodeficiency Virus (SIV) co-infection. Concurrent administration of cART + 3HP did improve clinical and microbiological attributes of Mtb/SIV co-infection compared to cART-naïve or -untreated RMs. While RMs in the cART + 3HP group exhibited significantly lower granuloma volumes after treatment, they, however, continued to harbor caseous granulomas with increased FDG uptake. cART only partially restores the constitution of CD4 + T cells to the lung compartment in co-infected macaques. Concurrent therapy did not further enhance the frequency of reconstituted CD4+ T cells in BAL and lung of Mtb/SIV co-infected RMs compared to cART, and treated animals continued to display incomplete reconstitution to the lung. Furthermore, the reconstituted CD4+ T cells in BAL and lung of cART + 3HP treated RMs exhibited an increased frequencies of activated, exhausted and inflamed phenotype compared to LTBI RMs. cART + 3HP failed to restore the effector memory CD4+ T cell population that was significantly reduced in pulmonary compartment post SIV co-infection. Concurrent therapy was associated with the induction of Type I IFN transcriptional signatures and led to increased Mtb-specific TH1/TH17 responses correlated with protection, but decreased Mtb-specific TNFa responses, which could have a detrimental impact on long term protection. Our results suggest the mechanisms by which Mtb/HIV co-infected individuals remain at risk for progression due to subsequent infections or reactivation due of persisting defects in pulmonary T cell responses. By identifying lung-specific immune components in this model, it is possible to pinpoint the pathways that can be targeted for host-directed adjunctive therapies for TB/HIV co-infection.
Collapse
Affiliation(s)
| | | | - Zhao Lai
- The University of Texas Health San Antonio
| | | | | | | | | | | | | | | | | | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute
| |
Collapse
|
2
|
Pahuja I, Ghoshal A, Okieh AA, Verma A, Negi K, Agarwal M, Chandra NS, Sharma SK, Bhaskar A, Dwivedi VP. Immunoinhibitory effects of anti-tuberculosis therapy induce the host vulnerability to tuberculosis recurrence. Microbiol Spectr 2024; 12:e0041224. [PMID: 38809023 PMCID: PMC11218458 DOI: 10.1128/spectrum.00412-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/10/2024] [Indexed: 05/30/2024] Open
Abstract
The host immune responses play a pivotal role in the establishment of long-term memory responses, which effectively aids in infection clearance. However, the prevailing anti-tuberculosis therapy, while aiming to combat tuberculosis (TB), also debilitates innate and adaptive immune components of the host. In this study, we explored how the front-line anti-TB drugs impact the host immune cells by modulating multiple signaling pathways and subsequently leading to disease relapse. Administration of these drugs led to a reduction in innate immune activation and also the cytokines required to trigger protective T cell responses. Moreover, these drugs led to activation-induced cell death in the mycobacterial-specific T cell leading to a reduced killing capacity. Furthermore, these drugs stalled the T cell differentiation into memory subsets by modulating the activation of STAT3, STAT4, FOXO1, and NFκB transcription factors and hampering the Th1 and Th17-mediated long-term host protective memory responses. These findings suggest the urgent need to augment directly observed treatment, short-course (DOTS) therapy with immunomodulatory agents to mitigate the adverse effects linked to the treatment.IMPORTANCEAs a central component of TB eradication initiatives, directly observed treatment, short-course (DOTS) therapy imparts immune-dampening effects during the course of treatment. This approach undermines the host immune system by delaying the activation process and lowering the immune response. In our investigation, we have unveiled the impact of DOTS on specific immune cell populations. Notably, the signaling pathways involving STAT3 and STAT4 critical for memory responses and NFκβ associated with pro-inflammation were substantially declined due to the therapy. Consequently, these drugs exhibit limited effectiveness in preventing recurrence of the disease. These observations highlight the imperative integration of immunomodulators to manage TB infection.
Collapse
Affiliation(s)
- Isha Pahuja
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Molecular Medicine, Jamia Hamdard University, New Delhi, India
| | - Antara Ghoshal
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ahmed Abdallah Okieh
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Akanksha Verma
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Kriti Negi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Meetu Agarwal
- Department of Molecular Medicine, Jamia Hamdard University, New Delhi, India
| | - Nidhi Subhash Chandra
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Saurabh Kumar Sharma
- School of Computer & Systems Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ashima Bhaskar
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
3
|
Stewart EL, Counoupas C, Quan DH, Wang T, Petrovsky N, Britton WJ, Triccas JA. Lung IL-17A-Producing CD4 + T Cells Correlate with Protection after Intrapulmonary Vaccination with Differentially Adjuvanted Tuberculosis Vaccines. Vaccines (Basel) 2024; 12:128. [PMID: 38400112 PMCID: PMC10892942 DOI: 10.3390/vaccines12020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, results in approximately 1.6 million deaths annually. BCG is the only TB vaccine currently in use and offers only variable protection; however, the development of more effective vaccines is hindered by a lack of defined correlates of protection (CoP) against M. tuberculosis. Pulmonary vaccine delivery is a promising strategy since it may promote lung-resident immune memory that can respond rapidly to respiratory infection. In this study, CysVac2, a subunit protein previously shown to be protective against M. tuberculosis in mouse models, was combined with either Advax® adjuvant or a mixture of alum plus MPLA and administered intratracheally into mice. Peripheral immune responses were tracked longitudinally, and lung-local immune responses were measured after challenge. Both readouts were then correlated with protection after M. tuberculosis infection. Although considered essential for the control of mycobacteria, induction of IFN-γ-expressing CD4+ T cells in the blood or lungs did not correlate with protection. Instead, CD4+ T cells in the lungs expressing IL-17A correlated with reduced bacterial burden. This study identified pulmonary IL-17A-expressing CD4+ T cells as a CoP against M. tuberculosis and suggests that mucosal immune profiles should be explored for novel CoP.
Collapse
Affiliation(s)
- Erica L. Stewart
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (E.L.S.); (C.C.)
- Centre for Infection and Immunity, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (D.H.Q.); (T.W.); (W.J.B.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Claudio Counoupas
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (E.L.S.); (C.C.)
- Centre for Infection and Immunity, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (D.H.Q.); (T.W.); (W.J.B.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Diana H. Quan
- Centre for Infection and Immunity, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (D.H.Q.); (T.W.); (W.J.B.)
- Centre for Inflammation, School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Trixie Wang
- Centre for Infection and Immunity, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (D.H.Q.); (T.W.); (W.J.B.)
| | | | - Warwick J. Britton
- Centre for Infection and Immunity, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (D.H.Q.); (T.W.); (W.J.B.)
- Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - James A. Triccas
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (E.L.S.); (C.C.)
- Centre for Infection and Immunity, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (D.H.Q.); (T.W.); (W.J.B.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
4
|
Prendergast KA, Nagalingam G, West NP, Triccas JA. Mycobacterium tuberculosis Deficient in PdtaS Cytosolic Histidine Kinase Displays Attenuated Growth and Affords Protective Efficacy against Aerosol M. tuberculosis Infection in Mice. Vaccines (Basel) 2024; 12:50. [PMID: 38250863 PMCID: PMC10821411 DOI: 10.3390/vaccines12010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
New control measures are urgently required to control tuberculosis (TB), as the current vaccine, Bacille Calmette-Guérin (BCG), has had a limited impact on disease spread. The identification of virulence mechanisms of Mycobacterium tuberculosis is an important strategy in vaccine design, as it permits the development of strains attenuated for growth that may have vaccine potential. In this report, we determined the role of the PdtaS response regulator in M. tuberculosis virulence and defined the vaccine potential of a pdtaS-deficient strain. Deletion of pdtaS (MtbΔpdtaS) resulted in reduced persistence of M. tuberculosis within mouse organs, which was equivalent to the persistence of the BCG vaccine in the lung and liver of infected mice. However, the generation of effector CD4+ and CD8+ T cells (CD44+CD62LloKLRG1+) was similar between wild-type M. tuberculosis and MtbΔpdtaS and greater than that elicited by BCG. Heightened immunity induced by MtbΔpdtaS compared to BCG was also observed by analysis of antigen-specific IFN-γ-secreting T cell responses induced by vaccination. MtbΔpdtaS displayed improved protection against aerosol M. tuberculosis compared to BCG, which was most apparent in the lung at 20 weeks post-infection. These results suggest that the deletion of the PdtaS response regulator warrants further appraisal as a tool to combat TB in humans.
Collapse
Affiliation(s)
- Kelly A. Prendergast
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (K.A.P.); (G.N.)
- School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Gayathri Nagalingam
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (K.A.P.); (G.N.)
- School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Nicholas P. West
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia;
| | - James A. Triccas
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (K.A.P.); (G.N.)
- School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
5
|
Singh DK, Bhaskar A, Pahuja I, Shaji A, Moitra B, Shi Y, Dwivedi VP, Das G. Cotreatment With Clofazimine and Rapamycin Eliminates Drug-Resistant Tuberculosis by Inducing Polyfunctional Central Memory T-Cell Responses. J Infect Dis 2023; 228:1166-1178. [PMID: 37290049 DOI: 10.1093/infdis/jiad214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/10/2023] [Accepted: 06/07/2023] [Indexed: 06/10/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, is acquiring drug resistance at a faster rate than the discovery of new antibiotics. Therefore, alternate therapies that can limit the drug resistance and disease recurrence are urgently needed. Emerging evidence indicates that combined treatment with antibiotics and an immunomodulator provides superior treatment efficacy. Clofazimine (CFZ) enhances the generation of T central memory (TCM) cells by blocking the Kv1.3+ potassium channels. Rapamycin (RAPA) facilitates M. tuberculosis clearance by inducing autophagy. In this study, we observed that cotreatment with CFZ and RAPA potently eliminates both multiple and extensively drug-resistant (MDR and XDR) clinical isolates of M. tuberculosis in a mouse model by inducing robust T-cell memory and polyfunctional TCM responses. Furthermore, cotreatment reduces the expression of latency-associated genes of M. tuberculosis in human macrophages. Therefore, CFZ and RAPA cotherapy holds promise for treating patients infected with MDR and XDR strains of M. tuberculosis.
Collapse
Affiliation(s)
- Dhiraj Kumar Singh
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Ashima Bhaskar
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Isha Pahuja
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Aishwarya Shaji
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Barnani Moitra
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Yufang Shi
- State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Gobardhan Das
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
6
|
Li J, Jing Q, Hu Z, Wang X, Hu Y, Zhang J, Li L. Mycobacterium tuberculosis-specific memory T cells in bronchoalveolar lavage of patients with pulmonary tuberculosis. Cytokine 2023; 171:156374. [PMID: 37782984 DOI: 10.1016/j.cyto.2023.156374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND Mycobacterium tuberculosis(MTB) most often infects the lungs and results in pulmonary tuberculosis(TB). MTB-specific memory T cells are able to respond quickly against antigens and help reduce the burden of pulmonary bacteria. The characteristics, function and chemotaxis axis of memory T cells in the lung remain unclear. The current study aimed to clarify the classification, function and recruitment of local antigen-specific memory T cells in the lung and the periphery blood of patients with pulmonary TB. METHODS A total of 85 patients with active pulmonary TB were included in the study. Bronchoalveolar lavage fluid (BALF) and Peripheral blood were collected for further detection. The cell-surface markers and intracellular staining of memory T cell subtypes were measured by flow cytometry. The level of CXCL9, CXCL10 and CXCL11 in Bronchoalveolar lavage fluid cells and peripheral blood mononuclear cells (PBMC) were measured by Real-time PCR. RESULTS The ratio of effective Memory T cells (TEM) were the highest in BALF of patients with pulmonary TB. In patients, CXCR3 and its ligands was increased in memory T cells of BALF compared with PBMC. IFN-γ+TNF-α+ effective Memory T cells and central memory T cells from BALF were increased after antigen stimulation. CXCR3 was higher in IFN-γ+ compared with IFN-γ- in CD4+ TCM and TEM from BALF of patients. Compared with PBMC, the PD-1 levels of terminal effector memory RA+(TEMRA) and TEM cells in CD4+ memory T cells of BALF were significantly increased. In addition, PD-1 was increased in IFN-γ+ compared with IFN-γ- in CD4+TEM from BALF of patients. There was no difference in Treg ratio between PBMC and BALF of TB patients. CONCLUSIONS The CXCL9/CXCL11-CXCR3 axis may participate in the chemotaxis of memory T cells from the peripheral to lung. CD4+TEM and TEMRA in BALF may have exhausted, especially the cytokine producing TEM. Our study clarified the characteristics of antigen-specific memory T cells in local lung and may have impact on strategies of therapy and vaccine.
Collapse
Affiliation(s)
- Jun Li
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, China
| | - Qiusheng Jing
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, China
| | - Zhimin Hu
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, China
| | - Xuan Wang
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, China
| | - Yan Hu
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, China
| | - Jing Zhang
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, China
| | - Li Li
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, China.
| |
Collapse
|
7
|
Marques-Neto LM, Trentini MM, Kanno AI, Rodriguez D, Leite LCDC. Recombinant BCG expressing the LTAK63 adjuvant increased memory T cells and induced long-lasting protection against Mycobacterium tuberculosis challenge in mice. Front Immunol 2023; 14:1205449. [PMID: 37520577 PMCID: PMC10374402 DOI: 10.3389/fimmu.2023.1205449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Vaccine-induced protection against Mycobacterium tuberculosis (Mtb) is usually ascribed to the induction of Th1, Th17, and CD8+ T cells. However, protective immune responses should also involve other immune cell subsets, such as memory T cells. We have previously shown improved protection against Mtb challenge using the rBCG-LTAK63 vaccine (a recombinant BCG strain expressing the LTAK63 adjuvant, a genetically detoxified derivative of the A subunit from E. coli heat-labile toxin). Here we show that mice immunized with rBCG-LTAK63 exhibit a long-term (at least until 6 months) polyfunctional Th1/Th17 response in the draining lymph nodes and in the lungs. This response was accompanied by the increased presence of a diverse set of memory T cells, including central memory, effector memory and tissue-resident memory T cells. After the challenge, the T cell phenotype in the lymph nodes and lungs were characterized by a decrease in central memory T cells, and an increase in effector memory T cells and effector T cells. More importantly, when challenged 6 months after the immunization, this group demonstrated increased protection in comparison to BCG. In conclusion, this work provides experimental evidence in mice that the rBCG-LTAK63 vaccine induces a persistent increase in memory and effector T cell numbers until at least 6 months after immunization, which correlates with increased protection against Mtb. This improved immune response may contribute to enhance the long-term protection.
Collapse
|
8
|
Liu X, Li H, Li S, Yuan J, Pang Y. Maintenance and recall of memory T cell populations against tuberculosis: Implications for vaccine design. Front Immunol 2023; 14:1100741. [PMID: 37063832 PMCID: PMC10102482 DOI: 10.3389/fimmu.2023.1100741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Despite the widespread use of standardised drug regimens, advanced diagnostics, and Mycobacterium bovis Bacille-Calmette-Guérin (BCG) vaccines, the global tuberculosis (TB) epidemic remains uncontrollable. To address this challenge, improved vaccines are urgently required that can elicit persistent immunologic memory, the hallmark of successful vaccines. Nonetheless, the processes underlying the induction and maintenance of immunologic memory are not entirely understood. Clarifying how memory T cells (Tm cells) are created and survive long term may be a crucial step towards the development of effective T cell–targeted vaccines. Here, we review research findings on the memory T cell response, which involves mobilization of several distinct Tm cell subsets that are required for efficient host suppression of M. tuberculosis (Mtb) activity. We also summaries current knowledge related to the T cell response-based host barrier against Mtb infection and discuss advantages and disadvantages of novel TB vaccine candidates.
Collapse
Affiliation(s)
| | | | | | | | - Yu Pang
- *Correspondence: Jinfeng Yuan, ; Yu Pang,
| |
Collapse
|
9
|
Withaferin A Protects against Primary and Recurrent Tuberculosis by Modulating Mycobacterium-Specific Host Immune Responses. Microbiol Spectr 2023:e0058323. [PMID: 36916966 PMCID: PMC10100980 DOI: 10.1128/spectrum.00583-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The fate of Mycobacterium tuberculosis infection is governed by immune signaling pathways that can either eliminate the pathogen or result in tuberculosis (TB). Anti-TB therapy (ATT) is extensive and is efficacious only against active, drug-sensitive strains of M. tuberculosis. Due to severe side effects, ATT often causes impairment of host immunity, making it imperative to use novel immunotherapeutics for better clinical outcomes. In this study, we have explored the immunomodulatory potential of withaferin A (WA) as an immunotherapeutic against TB. Here, we demonstrate that WA can constrain intracellular drug-sensitive and -resistant strains of M. tuberculosis by augmenting host immune responses. We also established the potential of WA treatment in conjunction with isoniazid. We show that WA directs the host macrophages toward defensive M1 polarization and enhances TH1 and TH17 immune responses against M. tuberculosis infection. The reduced bacterial burden upon T cell adoptive transfer further corroborated the augmented T cell responses. Interestingly, WA stimulated the generation of T cell memory populations by instigating STAT signaling, thereby reducing the rate of TB recurrence due to reactivation and reinfection. We substantiate the prospects of WA as a potent adjunct immunomodulator that enriches protective memory cells by prompting STAT signaling and improves host defense against M. tuberculosis. IMPORTANCE Despite being extensive, conventional antituberculosis therapy (ATT) is barely proficient in providing sterile immunity to tuberculosis (TB). Failure to constrain the escalating global TB burden due to the emergence of drug-resistant bacterial strains and immune dampening effects of ATT necessitates adjunct immunotherapeutics for better clinical outcomes. We evaluated the prospects of withaferin A (WA), an active constituent of Withania somnifera, as an adjunct immunomodulator against diverse M. tuberculosis strains. WA efficiently restricts the progression of TB by stimulating antimycobacterial host responses, protective immune signaling, and activation of diverse immune cell populations. Protective effects of WA can be attributed to the enrichment of memory T cells by induction of STAT signaling, thereby enhancing resistance to reinfections and reactivation of disease. We ascertained the immunotherapeutic potential of WA in boosting host immune responses against M. tuberculosis.
Collapse
|
10
|
Mao LR, Du JP, Wang XC, Xu LF, Zhang YP, Sun QS, Shi ZL, Xing YR, Su YX, Wang SJ, Wang J, Ma JL, Zhang JY. Long-Term Immunogenicity and In Vitro Prophylactic Protective Efficacy of M. tuberculosis Fusion Protein DR2 Combined with Liposomal Adjuvant DIMQ as a Boosting Vaccine for BCG. ACS Infect Dis 2023; 9:593-608. [PMID: 36808986 DOI: 10.1021/acsinfecdis.2c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The resuscitation of dormant Mycobacterium tuberculosis is an important cause of adult tuberculosis (TB) transmission. According to the interaction mechanism between M. tuberculosis and the host, the latency antigen Rv0572c and region of difference 9 (RD9) antigen Rv3621c were selected in this study to prepare the fusion protein DR2. Stimulating clinically diagnosed active tuberculosis infections (i.e., TB patients), latent tuberculosis infections, and healthy controls confirmed that T lymphocytes could recognize DR2 protein in the peripheral blood of TB-infected individuals more than subcomponent protein. The DR2 protein was then emulsified in the liposome adjuvant dimethyl dioctadecyl ammonium bromide, and imiquimod (DIMQ) was administered to C57BL/6 mice immunized with Bacillus Calmette-Guérin (BCG) vaccine to evaluate their immunogenicity. Studies have shown that DR2/DIMQ, a booster vaccine for BCG primary immunization, can elicit robust CD4+ Th1 cell immune response and predominant IFN-γ+ CD4+ effector memory T cells (TEM) subsets. Furthermore, the serum antibody level and the expression of related cytokines increased significantly with the extension of immunization time, with IL2+, CD4+, or CD8+ central memory T cells (TCM) subsets predominant in the long term. This immunization strategy showed matched prophylactic protective efficacy by performing in vitro challenge experiment. This result provides robust evidence that the novel subunit vaccine prepared by fusion protein DR2 combined with liposomal adjuvant DIMQ is a promising TB vaccine candidate for further preclinical trials as a booster vaccine for BCG.
Collapse
Affiliation(s)
- Li-Rong Mao
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Jian-Peng Du
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Xiao-Chun Wang
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Li-Fa Xu
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Yan-Peng Zhang
- Department of Cosmetology, School of Medicine, Huainan Union University, Huainan 232038, China
| | - Qi-Shan Sun
- Department of Clinical Laboratory, Huainan Chaoyang Hospital, Huainan 232007, China
| | - Zi-Lun Shi
- Department of Clinical Laboratory, Affiliated Cancer Hospital, Anhui University of Science and Technology, Huainan 232035, China
| | - Ying-Ru Xing
- Department of Clinical Laboratory, Anhui Zhongke Gengjiu Hospital, Hefei 230000, China
| | - Yi-Xin Su
- Department of Clinical Laboratory, Affiliated Cancer Hospital, Anhui University of Science and Technology, Huainan 232035, China
| | - Sheng-Jian Wang
- Department of Clinical Laboratory, Huainan Chaoyang Hospital, Huainan 232007, China
| | - Jian Wang
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Ji-Lei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450000, China
| | - Jing-Yan Zhang
- Department of Clinical Laboratory, Affiliated Heping Hospital, Changzhi Medical College, Changzhi 046000, China
| |
Collapse
|
11
|
Singleton KL, Joffe A, Leitner WW. Review: Current trends, challenges, and success stories in adjuvant research. Front Immunol 2023; 14:1105655. [PMID: 36742311 PMCID: PMC9892189 DOI: 10.3389/fimmu.2023.1105655] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Vaccine adjuvant research is being fueled and driven by progress in the field of innate immunity that has significantly advanced in the past two decades with the discovery of countless innate immune receptors and innate immune pathways. Receptors for pathogen-associated molecules (PAMPs) or host-derived, danger-associated molecules (DAMPs), as well as molecules in the signaling pathways used by such receptors, are a rich source of potential targets for agonists that enable the tuning of innate immune responses in an unprecedented manner. Targeted modulation of immune responses is achieved not only through the choice of immunostimulator - or select combinations of adjuvants - but also through formulation and systematic modifications of the chemical structure of immunostimulatory molecules. The use of medium and high-throughput screening methods for finding immunostimulators has further accelerated the identification of promising novel adjuvants. However, despite the progress that has been made in finding new adjuvants through systematic screening campaigns, the process is far from perfect. A major bottleneck that significantly slows the process of turning confirmed or putative innate immune receptor agonists into vaccine adjuvants continues to be the lack of defined in vitro correlates of in vivo adjuvanticity. This brief review discusses recent developments, exciting trends, and notable successes in the adjuvant research field, albeit acknowledging challenges and areas for improvement.
Collapse
|
12
|
Tim-3 expression is induced by mycobacterial antigens and identifies tissue-resident subsets of MAIT cells from patients with tuberculosis. Microbes Infect 2023; 25:105021. [PMID: 35811063 DOI: 10.1016/j.micinf.2022.105021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/23/2022] [Accepted: 07/03/2022] [Indexed: 02/04/2023]
Abstract
Tissue-resident MAIT cells in tuberculous pleural effusions, the site of tuberculosis infection, were investigated in the study. Tim-3+CD69+CD103+ and CD39+CD69+CD103+ tissue-resident MAIT cell subsets were identified in tuberculous pleural effusions. Tim-3 expression in MAIT cells was greatly induced and CD39 expression was elevated following ex vivo stimulation with Mycobacterium tuberculosis antigens. Mycobacterial antigen-stimulated Tim-3+CD69+CD103+ tissue-resident MAIT cells had higher frequency of IFN-γ- and granzyme B-producing cells than Tim-3-CD69+CD103+ subset, while CD39+CD69+CD103+ MAIT cells had similar frequency of IFN-γ-positive cells but higher ratio of granzyme B-producing cells than CD39-CD69+CD103+ subset. Blocking of IL-2, IL-12p70 or IL-18 but not IL-15 led to significantly reduced expression of Tim-3 compared with isotype antibody control. In contrast, CD39 expression was not influenced by any of the cytokines tested. Tim-3+ MAIT cells had higher levels of lipid uptake and lipid content than Tim-3- cells. It is concluded that Tim-3+CD69+CD103+ tissue-resident MAIT cells were elevated in tuberculous pleural effusions and had higher capacity to produce effector molecules of IFN-γ and granzyme B.
Collapse
|
13
|
Wiull K, Boysen P, Kuczkowska K, Moen LF, Carlsen H, Eijsink VGH, Mathiesen G. Comparison of the Immunogenic Properties of Lactiplantibacillus plantarum Carrying the Mycobacterial Ag85B-ESAT-6 Antigen at Various Cellular Localizations. Front Microbiol 2022; 13:900922. [PMID: 35722346 PMCID: PMC9204040 DOI: 10.3389/fmicb.2022.900922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The bacille Calmette-Guèrin (BCG) vaccine has been used for a century; nonetheless, tuberculosis (TB) remains one of the deadliest diseases in the world. Thus, new approaches to developing a new, more efficient vaccine are desirable. Mucosal vaccines are of particular interest, considering that Mycobacterium tuberculosis first enters the body through the mucosal membranes. We have previously demonstrated the immunogenicity of a recombinant Lactiplantibacillus plantarum delivery vector with TB hybrid antigen Ag85B-ESAT-6 anchored to the cell membrane. The goal of the present study was to analyze the impact of antigen localization in the immune response. Thus, we assessed two novel vaccine candidates, with the TB antigen either non-covalently anchored to the cell wall (LysMAgE6) or located intracellularly (CytAgE6). In addition, we compared two expression systems, using an inducible (LipoAgE6) or a constitutive promoter (cLipoAgE6) for expression of covalently anchored antigen to the cell membrane. Following administration to mice, antigen-specific CD4+ T-cell proliferation and IFN-γ and IL-17A secretion were analyzed for lung cell and splenocyte populations. Generally, the immune response in lung cells was stronger compared to splenocytes. The analyses showed that the type of expression system did not significantly affect the immunogenicity, while various antigen localizations resulted in markedly different responses. The immune response was considerably stronger for the surface-displaying candidate strains compared to the candidate with an intracellular antigen. These findings emphasize the significance of antigen exposure and further support the potential of L. plantarum as a mucosal vaccine delivery vehicle in the fight against TB.
Collapse
Affiliation(s)
- Kamilla Wiull
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
- *Correspondence: Kamilla Wiull,
| | - Preben Boysen
- Faculty of Veterinary Medicine, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Katarzyna Kuczkowska
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Lars Fredrik Moen
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Harald Carlsen
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Vincent G. H. Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Geir Mathiesen
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
- Geir Mathiesen,
| |
Collapse
|
14
|
Lv W, He P, Ma Y, Tan D, Li F, Xie T, Han J, Wang J, Mi Y, Niu H, Zhu B. Optimizing the Boosting Schedule of Subunit Vaccines Consisting of BCG and "Non-BCG" Antigens to Induce Long-Term Immune Memory. Front Immunol 2022; 13:862726. [PMID: 35493466 PMCID: PMC9039131 DOI: 10.3389/fimmu.2022.862726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Boosting Bacillus Calmette-Guérin (BCG) with subunit vaccine is expected to induce long-term protection against tuberculosis (TB). However, it is urgently needed to optimize the boosting schedule of subunit vaccines, which consists of antigens from or not from BCG, to induce long-term immune memory. To address it two subunit vaccines, Mtb10.4-HspX (MH) consisting of BCG antigens and ESAT6-CFP10 (EC) consisting of antigens from the region of difference (RD) of Mycobacterium tuberculosis (M. tuberculosis), were applied to immunize BCG-primed C57BL/6 mice twice or thrice with different intervals, respectively. The long-term antigen-specific immune responses and protective efficacy against M. tuberculosis H37Ra were determined. The results showed that following BCG priming, MH boosting twice at 12-24 weeks or EC immunizations thrice at 12-16-24 weeks enhanced the number and function of long-lived memory T cells with improved protection against H37Ra, while MH boosting thrice at 12-16-24 weeks or twice at 8-14 weeks and EC immunizations twice at 12-24 weeks or thrice at 8-10-14 weeks didn't induce long-term immunity. It suggests that following BCG priming, both BCG antigens MH boosting twice and "non-BCG" antigens EC immunizations thrice at suitable intervals induce long-lived memory T cell-mediated immunity.
Collapse
Affiliation(s)
- Wei Lv
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Pu He
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yanlin Ma
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Daquan Tan
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Fei Li
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Tao Xie
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jiangyuan Han
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Juan Wang
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Youjun Mi
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Institute of Pathophysiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Hongxia Niu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Bingdong Zhu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| |
Collapse
|
15
|
Goletti D, Petrone L, Manissero D, Bertoletti A, Rao S, Ndunda N, Sette A, Nikolayevskyy V. The potential clinical utility of measuring severe acute respiratory syndrome coronavirus 2-specific T-cell responses. Clin Microbiol Infect 2021; 27:1784-1789. [PMID: 34256141 PMCID: PMC8272618 DOI: 10.1016/j.cmi.2021.07.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Both humoral and cell-mediated responses are associated with immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although our understanding of the potential role of T-cell responses in the context of coronavirus disease 2019 (COVID-19) is rapidly increasing, more information is still needed. OBJECTIVES To provide an overview of the role of T-cell immunity in COVID-19, in the context of natural infection and post-vaccination, and discuss the potential utility of measuring SARS-CoV-2-specific T-cell responses, drawing on experience of the use of interferon-γ release assays (IGRAs) in tuberculosis (TB). SOURCES PubMed articles up to 16 April 2021. CONTENT T-cell responses can be detected very early in the course of COVID-19, earlier than the detection of antibody responses, and are correlated with COVID-19 outcome. Lower CD4+ and CD8+ T-cell counts are markers of more severe disease, longer duration of viral RNA positivity and increased mortality. In line with natural infection, SARS-CoV-2 vaccination stimulates robust T-cell responses, which probably play an important role in protection; data on long-term T-cell responses are currently limited. The utility of measuring T-cell responses is already well established in both aiding the diagnosis of TB infection using IGRAs, and evaluation of T-cell responses to TB vaccine candidates. A variety of assays have already been developed to measure SARS-CoV-2-specific T-cell responses, including IGRAs, intracellular cytokine staining and activation-induced markers. IGRAs based on SARS-CoV-2 antigens can distinguish between convalescent and uninfected healthy blood donors. IMPLICATIONS Simple assays for measuring the quantity and function of T-cell responses may have utility in the prognostication of COVID-19, and for monitoring immune responses to SARS-CoV-2 vaccination and population-based immunity to SARS-CoV-2 variants of interest.
Collapse
Affiliation(s)
- Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases (INMI), "Lazzaro Spallanzani"-IRCCS, Rome, Italy.
| | - Linda Petrone
- Translational Research Unit, National Institute for Infectious Diseases (INMI), "Lazzaro Spallanzani"-IRCCS, Rome, Italy
| | | | - Antonio Bertoletti
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore; Singapore Immunology Network, A∗STAR, Singapore
| | | | - Nduku Ndunda
- Former QIAGEN Employee, 2005 Mada Residences, Downtown Dubai, PO Box 50502, United Arab Emirates
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Vladyslav Nikolayevskyy
- QIAGEN Manchester Ltd, Manchester, UK; Department of Infectious Diseases and Immunity, Imperial College, London, UK
| |
Collapse
|
16
|
A single dose, BCG-adjuvanted COVID-19 vaccine provides sterilising immunity against SARS-CoV-2 infection. NPJ Vaccines 2021; 6:143. [PMID: 34848711 PMCID: PMC8633321 DOI: 10.1038/s41541-021-00406-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/03/2021] [Indexed: 12/23/2022] Open
Abstract
Global control of COVID-19 requires broadly accessible vaccines that are effective against SARS-CoV-2 variants. In this report, we exploit the immunostimulatory properties of bacille Calmette-Guérin (BCG), the existing tuberculosis vaccine, to deliver a vaccination regimen with potent SARS-CoV-2-specific protective immunity. Combination of BCG with a stabilised, trimeric form of SARS-CoV-2 spike antigen promoted rapid development of virus-specific IgG antibodies in the blood of vaccinated mice, that was further augmented by the addition of alum. This vaccine formulation, BCG:CoVac, induced high-titre SARS-CoV-2 neutralising antibodies (NAbs) and Th1-biased cytokine release by vaccine-specific T cells, which correlated with the early emergence of T follicular helper cells in local lymph nodes and heightened levels of antigen-specific plasma B cells after vaccination. Vaccination of K18-hACE2 mice with a single dose of BCG:CoVac almost completely abrogated disease after SARS-CoV-2 challenge, with minimal inflammation and no detectable virus in the lungs of infected animals. Boosting BCG:CoVac-primed mice with a heterologous vaccine further increased SARS-CoV-2-specific antibody responses, which effectively neutralised B.1.1.7 and B.1.351 SARS-CoV-2 variants of concern. These findings demonstrate the potential for BCG-based vaccination to protect against major SARS-CoV-2 variants circulating globally.
Collapse
|
17
|
Hakim JMC, Yang Z. Predicted Structural Variability of Mycobacterium tuberculosis PPE18 Protein With Immunological Implications Among Clinical Strains. Front Microbiol 2021; 11:595312. [PMID: 33488541 PMCID: PMC7819968 DOI: 10.3389/fmicb.2020.595312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/27/2020] [Indexed: 11/13/2022] Open
Abstract
Recent advancements in vaccinology have led to the development of the M72/AS01E subunit vaccine, of which the major component is the Mycobacterium tuberculosis (MTB) PPE18 protein. Previous studies have demonstrated the genetic variability of the gene encoding PPE18 protein and the resulting peptide changes in diverse clinical strains of MTB; however, none have modeled the structural changes resulting from these peptide changes and their immunological implications. In this study, we investigated the structural predictions of 29 variant PPE18 proteins previously reported. We found evidence that PPE18 is at least a two-domain protein, with a highly conserved first domain and a largely variable second domain that has different coevolutionary clusters. Further, we investigated putative epitope sites in the clinical variants of PPE18 using prediction software. We found a negative relationship between T-cell epitope number and residue variability, while B-cell epitope likelihood was positively correlated with residue variability. Moreover, we found far more residues in the second domain predicted to be B-cell epitopes compared with the first domain. These results suggest an important functional role of the first domain and a role in immune evasion for the second, which extends our knowledge base of the basic biology of the PPE18 protein and indicates the need for further study into non-traditional immunological responses to TB.
Collapse
Affiliation(s)
- Jill M C Hakim
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Zhenhua Yang
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
18
|
Yang Q, Zhang M, Chen Q, Chen W, Wei C, Qiao K, Ye T, Deng G, Li J, Zhu J, Cai Y, Chen X, Ma L. Cutting Edge: Characterization of Human Tissue-Resident Memory T Cells at Different Infection Sites in Patients with Tuberculosis. THE JOURNAL OF IMMUNOLOGY 2020; 204:2331-2336. [PMID: 32229539 DOI: 10.4049/jimmunol.1901326] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/07/2020] [Indexed: 01/08/2023]
Abstract
Tissue-resident memory T cells (TRMs) have a key role in mediating the host defense against tuberculosis (TB) in mice, but their human counterparts have not been well characterized. In this article, we recruited patients with TB and determined TRM frequency, trafficking, activation marker expression, and cytokine production by flow or mass cytometry at different infection sites, including peripheral blood, pleural fluid, bronchoalveolar lavage fluid, and lung. We found a high frequency of TRMs at all infection sites apart from the peripheral blood. These TRMs exhibited a memory phenotype, were highly activated (based on CD38 and HLA-DR expression), and expressed high levels of trafficking (CCR5 and CXCR6) and exhaustion (PD-1) markers. When stimulated with Mycobacterium tuberculosis, TRMs secreted cytokines, including IFN-γ, TNF-α, and IL-2, and exhibited a multifunctional phenotype. TRMs limited intracellular M. tuberculosis replication in macrophages. These data inform our current understanding of immunosurveillance at different infection sites in patients with TB.
Collapse
Affiliation(s)
- Qianting Yang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.,National Clinical Research Center for Infectious Diseases, Guangdong Key Lab for Diagnosis and Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Mingxia Zhang
- National Clinical Research Center for Infectious Diseases, Guangdong Key Lab for Diagnosis and Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Qi Chen
- National Clinical Research Center for Infectious Diseases, Guangdong Key Lab for Diagnosis and Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Weixin Chen
- National Clinical Research Center for Infectious Diseases, Guangdong Key Lab for Diagnosis and Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Cailin Wei
- National Clinical Research Center for Infectious Diseases, Guangdong Key Lab for Diagnosis and Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Kun Qiao
- National Clinical Research Center for Infectious Diseases, Guangdong Key Lab for Diagnosis and Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Taosheng Ye
- National Clinical Research Center for Infectious Diseases, Guangdong Key Lab for Diagnosis and Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Guofang Deng
- National Clinical Research Center for Infectious Diseases, Guangdong Key Lab for Diagnosis and Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Jin Li
- Department of Pulmonary and Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; and
| | - Jialou Zhu
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Yi Cai
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Xinchun Chen
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China;
| |
Collapse
|
19
|
Affiliation(s)
- Joanna R Kirman
- Department of Microbiology & Immunology, University of Otago, Dunedin, New Zealand
| | - Kylie M Quinn
- RMIT University School of Biomedical and Health Sciences, Bundoora, VIC, Australia.,Monash University Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|