1
|
Ray A, Moore TF, Naik DSL, Borsch DM. Insights into the Two Most Common Cancers of Primitive Gut-Derived Structures and Their Microbial Connections. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1515. [PMID: 39336556 PMCID: PMC11434611 DOI: 10.3390/medicina60091515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
The gastrointestinal and respiratory systems are closely linked in different ways, including from the embryological, anatomical, cellular, and physiological angles. The highest number (and various types) of microorganisms live in the large intestine/colon, and constitute the normal microbiota in healthy people. Adverse alterations of the microbiota or dysbiosis can lead to chronic inflammation. If this detrimental condition persists, a sequence of pathological events can occur, such as inflammatory bowel disease, dysplasia or premalignant changes, and finally, cancer. One of the most commonly identified bacteria in both inflammatory bowel disease and colon cancer is Escherichia coli. On the other hand, patients with inflammatory bowel disease are at risk of several other diseases-both intestinal (such as malnutrition and intestinal obstruction, besides cancer) and extraintestinal (such as arthritis, bronchiectasis, and cancer risk). Cancers of the lung and colon are the two most common malignancies occurring worldwide (except for female breast cancer). Like the bacterial role in colon cancer, many studies have shown a link between chronic Chlamydia pneumoniae infection and lung cancer. However, in colon cancer, genotoxic colibactin-producing E. coli belonging to the B2 phylogroup may promote tumorigenesis. Furthermore, E. coli is believed to play an important role in the dissemination of cancer cells from the primary colonic site. Currently, seven enteric pathogenic E. coli subtypes have been described. Conversely, three Chlamydiae can cause infections in humans (C. trachomatis may increase the risk of cervical and ovarian cancers). Nonetheless, striking genomic plasticity and genetic modifications allow E. coli to constantly adjust to the surrounding environment. Consequently, E. coli becomes resistant to antibiotics and difficult to manage. To solve this problem, scientists are thinking of utilizing suitable lytic bacteriophages (viruses that infect and kill bacteria). Several bacteriophages of E. coli and Chlamydia species are being evaluated for this purpose.
Collapse
Affiliation(s)
- Amitabha Ray
- School of Health Professions, D’Youville University, 320 Porter Ave, Buffalo, NY 14201, USA
| | - Thomas F. Moore
- College of Health Sciences, Glenville State University, Glenville, WV 26351, USA;
| | - Dayalu S. L. Naik
- ICMR National Institute of Traditional Medicine, Belagavi 590010, India;
| | - Daniel M. Borsch
- Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, PA 15601, USA;
| |
Collapse
|
2
|
Visnyaiová K, Varga I, Feitscherová C, Pavlíková L, Záhumenský J, Mikušová R. Morphology of the immune cells in the wall of the human uterine tube and their possible impact on reproduction-uterine tube as a possible immune privileged organ. Front Cell Dev Biol 2024; 12:1325565. [PMID: 38516130 PMCID: PMC10955054 DOI: 10.3389/fcell.2024.1325565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
The uterine tube, as well as other parts of the upper female reproductive system, is immunologically unique in its requirements for tolerance to allogenic sperm and semi-allogenic embryos, yet responds to an array of sexually transmitted pathogens. To understand this dichotomy, there is a need to understand the functional morphology of immune cells in the wall of the uterine tube. Thus, we reviewed scientific literature regarding immune cells and the human uterine tube by using the scientific databases. The human uterine tube has a diverse population of immunocompetent cells representing both the innate and adaptive immune systems. We describe in detail the possible roles of cells of the mononuclear phagocyte system (macrophages and dendritic cells), T and B lymphocytes, natural killer cells, neutrophils and mast cells in association with the reproductive functions of uterine tubes. We are also discussing about the possible "immune privilege" of the uterine tube, as another mechanism to tolerate sperm and embryo without eliciting an inflammatory immune response. In uterine tube is not present an anatomical blood-tissue barrier between antigens and circulation. However, the immune cells of the uterine tube probably represent a type of "immunological barrier," which probably includes the uterine tube among the immunologically privileged organs. Understanding how immune cells in the female reproductive tract play roles in reproduction is essential to understand not only the mechanisms of gamete transport and fertilization as well as embryo transport through the uterine tube, but also in improving results from assisted reproduction.
Collapse
Affiliation(s)
- Kristína Visnyaiová
- Second Department of Gynecology and Obstetrics, Faculty of Medicine, Comenius University in Bratislava and University Hospital, Bratislava, Slovakia
| | - Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Claudia Feitscherová
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Lada Pavlíková
- Department of Rehabilitation Studies, Faculty of Health Care Studies, University of Western Bohemia, Pilsen, Czechia
| | - Jozef Záhumenský
- Second Department of Gynecology and Obstetrics, Faculty of Medicine, Comenius University in Bratislava and University Hospital, Bratislava, Slovakia
| | - Renáta Mikušová
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
3
|
Arasu Y, Bryan E, Russell FA, Huettner N, Carey AJ, Boyd BJ, Beagley KW, Dargaville TR. Enhanced clearance of C. muridarum infection using azithromycin-loaded liposomes. Int J Pharm 2024; 650:123709. [PMID: 38101758 DOI: 10.1016/j.ijpharm.2023.123709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Chlamydia trachomatis is an intracellular bacterium which infects around 129 million people annually. Despite similar infection rates between sexes, most research investigating the effects of chlamydial infection on fertility has focused on females. There is now emerging evidence of a potential link between Chlamydia and impaired male fertility. The only treatments for chlamydial infection are antibiotics, with azithromycin (AZI) being one of the commonly used drugs. However, recent studies have suggested that optimizing the treatment regime is necessary, as higher concentrations of AZI may be required to effectively clear the infection in certain cell types, particularly testicular macrophages. To address this challenge, we have prepared liposomes consisting of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) loaded with AZI for clearing Chlamydia. These liposomes exhibited stability over time and were readily taken up by both macrophages and epithelial cells. Moreover, they demonstrated significant enhancement of chlamydial clearance in both cell types. In a mouse model, the drug-loaded liposomes cleared Chlamydia within the penile urethra more efficiently than the same dose of unencapsulated drug. Furthermore, the liposome-drug treatment showed significant protective effects on sperm motility and morphology, suggesting potential benefits in reducing sperm damage caused by the infection.
Collapse
Affiliation(s)
- Yanushia Arasu
- School of Chemistry and Physics and Centre for Materials Science, Faculty of Science, Queensland University of Technology, Brisbane, Australia; School of Biomedical Sciences and Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Australia
| | - Emily Bryan
- School of Biomedical Sciences and Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Australia
| | - Freya A Russell
- School of Biomedical Sciences and Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Australia
| | - Nick Huettner
- School of Chemistry and Physics and Centre for Materials Science, Faculty of Science, Queensland University of Technology, Brisbane, Australia
| | - Alison J Carey
- School of Biomedical Sciences and Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Clayton, Australia; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth W Beagley
- School of Biomedical Sciences and Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Australia
| | - Tim R Dargaville
- School of Chemistry and Physics and Centre for Materials Science, Faculty of Science, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
4
|
Armitage CW, Carey AJ, Bryan ER, Kollipara A, Trim LK, Beagley KW. Pathogenic NKT cells attenuate urogenital chlamydial clearance and enhance infertility. Scand J Immunol 2023; 97:e13263. [PMID: 36872855 PMCID: PMC10909442 DOI: 10.1111/sji.13263] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/12/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
Urogenital chlamydial infections continue to increase with over 127 million people affected annually, causing significant economic and public health pressures. While the role of traditional MHCI and II peptide presentation is well defined in chlamydial infections, the role of lipid antigens in immunity remains unclear. Natural killer (NK) T cells are important effector cells that recognize and respond to lipid antigens during infections. Chlamydial infection of antigen-presenting cells facilitates presentation of lipid on the MHCI-like protein, CD1d, which stimulates NKT cells to respond. During urogenital chlamydial infection, wild-type (WT) female mice had significantly greater chlamydial burden than CD1d-/- (NKT-deficient) mice, and had significantly greater incidence and severity of immunopathology in both primary and secondary infections. WT mice had similar vaginal lymphocytic infiltrate, but 59% more oviduct occlusion compared to CD1d-/- mice. Transcriptional array analysis of oviducts day 6 post-infection revealed WT mice had elevated levels of Ifnγ (6-fold), Tnfα (38-fold), Il6 (2.5-fold), Il1β (3-fold) and Il17a (6-fold) mRNA compared to CD1d-/- mice. In infected females, oviduct tissues had an elevated infiltration of CD4+ -invariant NKT (iNKT) cells, however, iNKT-deficient Jα18-/- mice had no significant differences in hydrosalpinx severity or incidence compared to WT controls. Lipid mass spectrometry of surface-cleaved CD1d in infected macrophages revealed an enhancement of presented lipids and cellular sequestration of sphingomyelin. Taken together, these data suggest an immunopathogenic role for non-invariant NKT cells in urogenital chlamydial infections, facilitated by lipid presentation via CD1d via infected antigen-presenting cells.
Collapse
Affiliation(s)
- Charles W. Armitage
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Alison J. Carey
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Emily R. Bryan
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Avinash Kollipara
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Logan K. Trim
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Kenneth W. Beagley
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of TechnologyBrisbaneQueenslandAustralia
| |
Collapse
|
5
|
DIENSTHUBER D, SIMNACHER U, PETERS S, WALTHER P, ESSIG A, HAGEMANN JB. Clearing Chlamydia abortus infection in epithelial cells and primary human macrophages by use of antibiotics and the MDM2-p53-inhibitor nutlin-3. Diagn Microbiol Infect Dis 2022; 103:115715. [DOI: 10.1016/j.diagmicrobio.2022.115715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 03/21/2022] [Accepted: 04/15/2022] [Indexed: 11/03/2022]
|
6
|
Zhao L, Li J, Zhou X, Pan Q, Zhao W, Yang X, Wang H. Natural Killer Cells Regulate Pulmonary Macrophages Polarization in Host Defense Against Chlamydial Respiratory Infection. Front Cell Infect Microbiol 2022; 11:775663. [PMID: 35059323 PMCID: PMC8764407 DOI: 10.3389/fcimb.2021.775663] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022] Open
Abstract
NK cells and pulmonary macrophages both are important components of innate immunity. The interaction between NK cells and pulmonary macrophages during chlamydial infection is poorly understood. In this study, we explored the effect of NK cells on regulation of pulmonary macrophage function during chlamydial respiratory infection. We found that NK depletion led to polarization of pulmonary macrophages from M1 to M2 phenotype, and it is related to reduced miR-155 expression in lung macrophage. Using adoptive transfer approach, we found that the recipients receiving lung macrophages isolated from C. muridarum-infected NK-cell-depleted mice exhibited an increased bacterial load and severe inflammation in the lung upon chlamydial challenge infection when compared with the recipients of lung macrophages from infected isotype control antibody treated mice. Herein, the effects of NK cells on macrophage polarization were examined in vitro. We found that NK cells from chlamydial-infected mice (iNK) significantly induced M1 polarization compared to that from uninfected mice (uNK). Inhibition of miR-155 expression in macrophages reduced M1 polarization induced by iNK, while miR-155 over-expression enhanced it. Furthermore, neutralization of IFN-γ in the coculture system decreased the expression of miR-155 by macrophages, and resulted in weakened M1 polarization. The data indicates that NK cells promote M1 polarization through up-regulation of miR-155 in macrophages by producing IFN-γ during chlamydial infection, and NK-regulated macrophage polarization is functionally relevant to host defense against the infection.
Collapse
Affiliation(s)
- Lei Zhao
- Laboratory of Basic Medical Science, Qilu Hospital of Shandong University, Jinan, China
| | - Jing Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, China.,Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiaoqing Zhou
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Qianqian Pan
- Department of Respiratory, Laiwu Central Hospital, Jinan, China
| | - Weiming Zhao
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xi Yang
- Departments of Immunology and Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Hong Wang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
7
|
Racková J, Záhumenský J, Zikán M, Menzlová E, Sehnal B. Chlamydia trachomatis and Neisseria gonorrhoeae PCR detection in women treated for ectopic pregnancy. J OBSTET GYNAECOL 2021; 42:1370-1373. [PMID: 34904517 DOI: 10.1080/01443615.2021.1979947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The aim of this study was to determine the presence of Chlamydia trachomatis (ChT) and Neisseria gonorrhoae (NG) in the genital tract of women with ectopic pregnancy and to compare the positive results with patients' self-reported history of PID. Overall 40 women were eligible for the study. The samples for the ChT and NG Polymerase Chain-reaction (PCR) detection were obtained from the cervix, endometrium and fallopian tube. The results of testing for NG at all sites were negative as were the results from cervical testing for ChT. The prevalence of ChT in the upper genital tract was 12.5%. No statistically significant correlation was found between the positive cases and the previous signs of PID and laparoscopic findings. We found statistically significant relationship between signs of pelvic inflammation in a pacients' history and histopathological findings of tubal inflammation. 12.5% prevalence of ChT confirms the ascending genital infection. There was no association between the positive PCR result and clinical history of pelvic inflammation.IMPACT STATEMENTWhat is already known on this subject? Pelvic inflammatory disease, Chlamydia trachomatis and Neisseria gonorrhoae infections are the main risks for ectopic pregnancy. Clinical history of PID and perioperative adhesions may suggest prior upper genital infection.What do the results of this study add? Chlamydia trachomatis positive PCR result can be found in the upper genital tract without the positivity of cervical smear in women with ectopic pregnancy. Our study is unique in assessing the endometrial biopsy for the presence of Chlamydia trachomatis and Neisseria gonorrhoae.What are the implications of these findings for future clinical practice and/or future clinical research? There is no statistically significant association between positive PCR result and clinical history of PID or pelvic adhesions found during laparoscopy for tubal pregnancy. Therefore there is no need for the preventive antibiotic treatment in patients with these findings.
Collapse
Affiliation(s)
- Jana Racková
- Department of Obstetrics and Gynecology, University Hospital Bulovka, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jozef Záhumenský
- 2nd Department of Obstetrics and Gynecology, University Hospital Bratislava and Comenius University, Bratislava, Slovak Republic
| | - Michael Zikán
- Department of Obstetrics and Gynecology, University Hospital Bulovka, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Erika Menzlová
- Department of Obstetrics and Gynecology, University Hospital Bulovka, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Borek Sehnal
- Department of Obstetrics and Gynecology, University Hospital Bulovka, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
8
|
Li X, Cao G, Yang H, Zhi D, Li L, Wang D, Liu M, Su H. S100A8 expression in oviduct mucosal epithelial cells is regulated by estrogen and affects mucosal immune homeostasis. PLoS One 2021; 16:e0260188. [PMID: 34793556 PMCID: PMC8601440 DOI: 10.1371/journal.pone.0260188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/03/2021] [Indexed: 12/05/2022] Open
Abstract
Chronic inflammation can cause oviduct mucosal damage and immune dysfunction, leading to infertility, early pregnancy loss, ectopic pregnancy, tumors, and a decrease in reproductive capacities in female animals. Estrogen can suppress immune responses in different tissues and oviducts, and regulate the oviduct immune balance; however, the underlying mechanisms remain unclear. The objective of this study was to explore the mechanism of estrogen-regulated oviduct mucosal immunity and discover new estrogen targets for regulating oviduct mucosal immune homeostasis. Sheep oviduct epithelial cells (SOECs) were treated with 17-β estradiol (E2). Transcriptome sequencing and analysis showed differentially expressed S100 calcium-binding protein A (S100A) genes that may participate in the oviduct mucosa immunoregulation of estrogen. Quantitative polymerase chain reaction and immunocytochemistry analysis showed that S100A8 expression changed dynamically in E2-treated SOECs and peaked after 7 h of treatment. Estrogen nuclear receptors and G protein-coupled membrane receptors promoted E2-dependent S100A8 upregulation. The S100A8 gene was disrupted using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 method. Levels of inflammatory factors interleukin (IL)-1β and IL-4 were significantly upregulated in S100A8-knockdown SOECs, whereas those of the anti-inflammatory factor IL-10 was downregulated. Following S100A8 knockdown in SOECs treated with E2 for 7 h, IL-10 levels increased significantly. Estrogen affected oviduct mucosa immune function and dynamically regulated S100A8 in SOECs. S100A8 knockdown caused an excessive immune response, indicating that S100A8 is beneficial for maintaining immune homeostasis in the oviduct mucosa. Moreover, estrogen can compensate for the effect of S100A8 knockdown by upregulating IL-10.
Collapse
Affiliation(s)
- Xiaodan Li
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agricultural University, Hohhot, China
- Department of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Guifang Cao
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agricultural University, Hohhot, China
- * E-mail:
| | - Hongxin Yang
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agricultural University, Hohhot, China
- Department of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Dafu Zhi
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lei Li
- Maternal and Child Health Hospital of Hohhot, Hohhot, China
| | - Daqing Wang
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, China
| | - Moning Liu
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Hong Su
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
9
|
Romand X, Liu X, Rahman MA, Bhuyan ZA, Douillard C, Kedia RA, Stone N, Roest D, Chew ZH, Cameron AJ, Rehaume LM, Bozon A, Habib M, Armitage CW, Nguyen MVC, Favier B, Beagley K, Maurin M, Gaudin P, Thomas R, Wells TJ, Baillet A. Mediation of Interleukin-23 and Tumor Necrosis Factor-Driven Reactive Arthritis by Chlamydia-Infected Macrophages in SKG Mice. Arthritis Rheumatol 2021; 73:1200-1210. [PMID: 33452873 DOI: 10.1002/art.41653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 01/07/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE ZAP-70W163C BALB/c (SKG) mice develop reactive arthritis (ReA) following infection with Chlamydia muridarum. Since intracellular pathogens enhance their replicative fitness in stressed host cells, we examined how myeloid cells infected with C muridarum drive arthritis. METHODS SKG, Il17a-deficient SKG, and BALB/c female mice were infected with C muridarum or C muridarum luciferase in the genitals. C muridarum dissemination was assessed by in vivo imaging or genomic DNA amplification. Macrophages were depleted using clodronate liposomes. Anti-tumor necrosis factor (anti-TNF) and anti-interleukin-23p19 (anti-IL-23p19) were administered after infection or arthritis onset. Gene expression of Hspa5, Tgtp1, Il23a, Il17a, Il12b, and Tnf was compared in SKG mice and BALB/c mice. RESULTS One week following infection with C muridarum, macrophages and neutrophils were observed to have infiltrated the uteri of mice and were also shown to have carried C muridarum DNA to the spleen. C muridarum load was higher in SKG mice than in BALB/c mice. Macrophage depletion was shown to reduce C muridarum load and prevent development of arthritis. Compared with BALB/c mice, expression of Il23a and Il17a was increased in the uterine and splenic neutrophils of SKG mice. The presence of anti-IL-23p19 during infection or Il17a deficiency suppressed arthritis. Tnf was overexpressed in the joints of SKG mice within 1 week postinfection, and persisted beyond the first week. TNF inhibition during infection or at arthritis onset suppressed the development of arthritis. Levels of endoplasmic reticulum stress were constitutively increased in the joints of SKG mice but were induced, in conjunction with immunity-related GTPase, by C muridarum infection in the uterus. CONCLUSION C muridarum load is higher in SKG mice than in BALB/c mice. Whereas proinflammatory IL-23 produced by neutrophils contributes to the initiation of C muridarum-mediated ReA, macrophage depletion reduces C muridarum dissemination to other tissues, tissue burden, and the development of arthritis. TNF inhibition was also shown to suppress arthritis development. Our data suggest that enhanced bacterial dissemination in macrophages of SKG mice drives the TNF production needed for persistent arthritis.
Collapse
Affiliation(s)
- Xavier Romand
- Université Grenoble Alpes, GREPI TIMC-IMAG, UMR 5525, Grenoble, France
| | - Xiao Liu
- University of Queensland Diamantina Institute and Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - M Arifur Rahman
- University of Queensland Diamantina Institute and Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Zaied Ahmed Bhuyan
- University of Queensland Diamantina Institute and Princess Alexandra Hospital, Brisbane, Queensland, Australia, and North South University, Dhaka, Bangladesh
| | - Claire Douillard
- Université Grenoble Alpes, GREPI TIMC-IMAG, UMR 5525, Grenoble, France
| | - Reena Arora Kedia
- University of Queensland Diamantina Institute and Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Nathan Stone
- University of Queensland Diamantina Institute and Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Dominique Roest
- University of Queensland Diamantina Institute and Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Zi Huai Chew
- University of Queensland Diamantina Institute and Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Amy J Cameron
- University of Queensland Diamantina Institute and Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Linda M Rehaume
- University of Queensland Diamantina Institute and Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Aurélie Bozon
- Université Grenoble Alpes, GREPI TIMC-IMAG, UMR 5525, Grenoble, France
| | - Mohammed Habib
- Université Grenoble Alpes, GREPI TIMC-IMAG, UMR 5525, Grenoble, France
| | - Charles W Armitage
- Queensland University of Technology, Brisbane, Queensland, Australia, and King's College London, London, UK
| | | | - Bertrand Favier
- Université Grenoble Alpes, GREPI TIMC-IMAG, UMR 5525, Grenoble, France
| | - Kenneth Beagley
- Queensland University of Technology, Brisbane, Queensland, Australia
| | - Max Maurin
- Université Grenoble Alpes, GREPI TIMC-IMAG, UMR 5525, Grenoble, France
| | - Philippe Gaudin
- Université Grenoble Alpes, GREPI TIMC-IMAG, UMR 5525, Grenoble, France
| | - Ranjeny Thomas
- University of Queensland Diamantina Institute and Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Timothy J Wells
- University of Queensland Diamantina Institute and Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Athan Baillet
- Université Grenoble Alpes, GREPI TIMC-IMAG, UMR 5525, Grenoble, France
| |
Collapse
|
10
|
Bryan ER, Kim J, Beagley KW, Carey AJ. Testicular inflammation and infertility: Could chlamydial infections be contributing? Am J Reprod Immunol 2020; 84:e13286. [DOI: 10.1111/aji.13286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Emily R. Bryan
- School of Biomedical Sciences Institute of Health and Biomedical Innovation Queensland University of Technology Brisbane Qld Australia
| | - Jay Kim
- School of Biomedical Sciences Institute of Health and Biomedical Innovation Queensland University of Technology Brisbane Qld Australia
| | - Kenneth W. Beagley
- School of Biomedical Sciences Institute of Health and Biomedical Innovation Queensland University of Technology Brisbane Qld Australia
| | - Alison J. Carey
- School of Biomedical Sciences Institute of Health and Biomedical Innovation Queensland University of Technology Brisbane Qld Australia
| |
Collapse
|